From: AAAI Technical Report WS-94-02. Compilation copyright © 1994, AAAI (www.aaai.org). All rights reserved.

1

Our research deals with principles and architectures for the design of autonomous
agents which act and interact in a shared, heterogeneous, and dynamic environment.
Surviving in such an environment while performing complex tasks, which often exceed
the problem-solving capacities of an individual agent, puts strong requirements on
agents, such as situated, goal-directed, adaptive, and efficient behaviour, as well as
facilities for interaction and coordination.
dynamic multi-agent environments. Whereas certain types of interactions can often be
performed by employing local mechanisms, others require coordinated planning (see

Integrating Agent Interaction into a Planner-Reactor
Architecture*

Jorg P. Miiller, Markus Pischelt
German Research Center for Artificial Intelligence (DFKI)
Stuhlsatzenhausweg 3, D-66123 Saarbriicken

Abstract

This paper deals with the development of methodologies and architectures
for autonomous systems that act and interact in a shared, dynamic environment.
We present the agent architecture INTERRAP!. INTERRAP extends previous
approaches to building layered architectures by a cooperation layer, and thus
allows the designer of a system not only to build agents with both reactive and
deliberative facilities, but also to provide important mechanisms for communi-
cation, coordination, and collaboration with other agents. The components of
the architecture and their interplay are described. It is evaluated by the sim-
ulation of an automated loading dock, an interacting robots application, where
autonomous forklifts have to perform loading and unloading tasks. We show
how different functionalities of the forklift agents can be modeled in an adequate
manner at different layers of the INTERRAP architecture. Thus, the main con-
tribution of this work is the reconciliation of (D)AI concepts such as goals, plans,
conflict resolution, and negotiation with mobile robot research which is absolute-
ly necessary in order to model the lower layers of the agent, such as sensor data
processing, obstacle avoidance, navigation, and physical control.

Introduction

*The work presented in this paper has been supported by the German Ministry of Research and

Technology under grant ITW9104

Te-mail:{jpm,pischel }@dfki.uni-sb.de
!Integration of Reactive Behaviour and Rational Planning

-229-

The latter are of special importance in

e.g. [KLR*92]), and thus the explicit representation of other agents’ beliefs, goals,
and plans. Trying to cover these requirements by using a layered architecture with
modules working in parallel is a very natural matter. Indeed, looking at currently
proposed agent architectures reveals that layered architectures are - rightfully - en
vogue (see e.g. [Bro86, GL86, Fir92, Fer92, LH92]). However, virtually all approaches
focus on the integration of a reactive, procedural component with a deliberative one.
Whereas this seems adequate to achieve the requirements of situated, goal-directed,
and efficient agents, it does not address issues of interaction and cooperation.

The INTERRAP agent model [MP93], which has been developed at the DFKI, is
an approach aimed to fill these gap. By providing a layered architecture, it allows the
designer of a system to specify the reactive, procedural, local planning, and interactive
capabilities of the agents. The layers are linked by a flexible control mechanism: as
tasks get more sophisticated, their control is shifted from lower layers to higher layers
(competence driven). At the same time, the lower layers remain active, and can thus
cope with new events. On the other hand, for task execution, control flows top-down
(activation driven) from higher layers to lower layers.

According to the characteristics of the application domain, the designer of a sys-
tem can configure appropriate agent types by mapping certain agent functionalities
to the different layers of the architectures. Thus, the scope of the model ranges from
describing very simple, purely reactive agents to very sophisticated agents equipped
with (cooperative) planning facilities. The objective of our work is to define a shell for
the development of autonomous, interacting systems.

The application that has been used to first evaluate our model is the FORKS
system, a simulation of an automated loading-dock, where autonomous forklift agents
have to load and to unload trucks?. Figure 1 gives an idea of the structure of the
scenario. In the loading dock, there are shelves which may contain different types of
goods. We use a grid-based representation of the loading-dock. The primitive actions
the forklifts can do are moving from one square to the next, turning around, grasping
and storing goods, and communicating with other agents. Each agent has a certain
range of perception, which it can observe. This representation of the world and the
agents’ actions simplify many of the problems of mechanical control and geometrical
trajectory planning while preserving its physical dynamics and its interactive character:
forklifts move around autonomously in the dock and have to synchronize and coordinate
their actions, they have to avoid collisions, and to resolve blocking situations. Apart
from merely local mechanisms for doing this, they should cooperate in order to resolve
conflicts (e.g. blockings or threatening collisions), or even to perform transportation
tasks.

The paper is structured as follows: In section 2, we give an overall description
of the INTERRAP model. In section 3, we provide a description of how reaction
and deliberation are achieved by the interplay of the behaviour-based and plan-based
component. Section 4 describes the integration of interaction into the INTERRAP
model. In section 5, related work in the field is discussed. We finish with a statement
of the contribution of this paper and with an outlook of future work in section 6.

2See [FKM94] for a further application domain.

.230-

@
o
L |
> I
™)

Figure 1: The Loading-Dock

2 The INTERRAP Agent Model

In this section, we explain the key ideas of the INTERRAP agent model and its basic
functional structure. The main idea of INTERRAP is to define an agent by a set of
functional layers, linked by a activation-based control structure and a shared hierar-
chical knowledge base. Figure 2 overviews the INTERRAP agent model. It consists

~

4 Agent Hisrarehiont
Agant KB

ooperation ooperation

Cnggnom .- Knowledge
Local
Plans

Plan-based
Component

T
Acting : Communi- : Percelving
1

cation World Model

world

\ﬂmovﬂnno y

controt flow

ENVIRONMENT

-------- information access

Figure 2: The INTERRAP Agent Model

of five basic parts: the world interface (WIF), the behaviour-based component (BBC),
the plan-based component (PBC), the cooperation component (CC), and the agent
knowledge-base. The WIF contains the agent’s facilities for perception, action, and
communication. The BBC implements and controls the basic reactive behaviour of the
agent as well as its procedural knowledge (abstract actions). It is based on the concept
of patterns of behaviour. These allow an agent to react flexibly to its environment, and
to perform routine tasks without using an explicit symbolic representation of how the
task is to be performed. The PBC contains a planning mechanism which is able to
devise local single-agent plans. The plans are hierarchical skeletal plans whose nodes
may be either new subplans, or executable patterns of behaviour, or primitive actions.
Thus, the plan-based component may activate patterns of behaviour in order to achieve

-231-

certain goals. Planning helps an agent to act in a goal-directed manner. Moreover,
in a multi-agent context, planning is necessary to coordinate actions of agents. For
instance, agents should be able to devise joint plans ([KLR*92]) to cope with special
situations. This functionality is provided by the cooperation component CC.

The knowledge base is structured in a hierarchical manner. It consists of four
layers which basically correspond to the structure of the agent control, representing the
agent’s world model, the patterns of behaviour, local plans / goals, and knowledge of /
strategies for cooperation, respectively. The basic idea is that information is passed only
from lower layers of the knowledge base to higher layers. For example, the plan-based
component can access information about the world model, whereas the behaviour-based
component does not have access to planning or cooperation information.

In the following section, we introduce the loading-dock application. In the following
sections, the modules of INTERRAP and their interplay are explained in more detail.

3 Integrating Reaction and Deliberation

In this section, we describe the interplay between planning and execution in the INTER-
RAP model. For this purpose, the world interface, behaviour-based and plan-based
layers are examined in detail. Wherever necessary, the description will be enhanced by
examples taken from the loading-dock application.

3.1 The World Interface

In the world interface, the agent’s facilities for perception, action, and communication
are modeled. The perception part of the world interface controls the vision and sens-
ing facilities of the agent. Again the concrete implementation of this module heavily
depends on what kinds of agents we want to model. In our simulation system, per-
ception is implemented as follows: each agent has a configurable range of perception
(n X m squares). Since a change within this range of perception can be always as-
sociated with a certain square, each time something within the perceived fields of an
agent changes, the simulation world sends the agent a description of what has changed
within this square - at a symbolic level. In a real robot environment, this knowledge
has to be obtained by a complex hierarchical process of transformation of the sensor
data obtained by e.g. video camera, infra-red, laser, or ultrasonic sensors. The actions
component controls the effectoric capabilities of the agent. Obviously, these capabil-
ities are very domain-dependent. In the case of our forklift robots, these actions are
walk_ahead, turn_left, turn_right, put_boz, grasp_boz.The communication unit bears the
agent’s communicative facilities. It controls the physical realization of sending and re-
ceiving messages. Since we allow heterogeneous agents, outgoing messages have to be
transformed from the agent’s internal language into a format understood by all agents.
Analogously, incoming messages must be transformed into the local agent language.
This transformation is done by a translator module.

-232 .-

3.2 The Behaviour-based Component

The BBC implements the basic reactive behaviour and the procedural knowledge of
the agent. It consists of a control component bbc-control and of a set of patterns of
behaviour together with a priority mechanism which are represented and maintained in
the pattern maintenance unit. The bbc-control serves as an interface to the neighbour
modules and as an interpreter for the execution of the patterns of behaviour. The
pattern maintenance unit describes a mechanism for determining the situated priority
of the patterns (see [MP93] for a detailed description of pattern priority). A pattern
agenda is maintained and recomputed in each BBC cycle; the pattern with highest
priority in this agenda is chosen for execution by the bbc-control. In the following, we
will explain our concept of patterns of behaviour in more detail.

3.2.1 Patterns of Behaviour (PoB)

According to their activation/effect functionality, we distinguish between four basic
types of patterns: reactors, control modifiers, knowledge modifiers, and procedures.

Table 1 overviews this classification. Reactor patterns are triggered by external
Effect modify modify shift control
Activation world . knowledge to PBC
external (world) reactor | knowledge modifier | control modifier
internal (PBC) procedure ? ?

Table 1: Classification of Patterns of Behaviour

events and cause the agent to perform some sort of action. For example, stopping when
facing an obstacle in front of it should be implemented as a reactor pattern. Knowledge
modifiers are patterns that change the internal state of the agent (e.g. its knowledge).
They are activated by changes in the world perceived by the agent (i.e. by changes in
the agent’s world model). In our approach, they are used to implement the recognition
and classification of situations. Similar to knowledge sources in a blackboard system,
there are patterns that recognize and abstract specific situations (e.g. another agent
ahead, standing in a narrow corridor). Other patterns recognize more complex pattern
based on the results of the lower-level knowledge modifiers. Control modifiers are
patterns that expand control to the planner by calling the PBC. For example, a pattern
treat_order_beh will activate the PBC with the goal of planning an order as soon as
the agent has received a transportation order. Finally, procedure patterns implement
what is viewed as abstract actions by the planner®. For example, moving straight ahead
to a landmark is likely to be implemented as a procedure in a robot application, i.e. is
atomic from the perspective of the PBC. Since we assume that the planner basically
plans actions, our classification does not take into account patterns that are triggered
internally and yield only a modification of the agent’s world model or an activation of
the planner.

3A different view of procedures is that of routine tasks whose performance does not require explicit
planning,.

.233-

Based on this classification, patterns of behaviour are abstractly defined with the
following attributes:

(PoB

:name /* Name of pattern */

1type /* reactor, modifier, procedure */

rargs /* arguments */

ractivation /* activation condition */

:monitor /* conditions monitoring execution */
:failure /* failure condition: stop execution */
rsuccess /* condition for successful termination */
:during /* conditions that must hold during execution */
:post /* condition that must hold after execution */
:exceptions /* user-definable exceptions */

:exec_body /* actual executable body; e.g. control program */)

An exception is a tuple (Cond, Act), where Cond is a state formula, and Act is
an action description. The operational semantics is that if Cond becomes satisfied by
the current state of the world, Act is executed. Activation, failure, success, and post
conditions can be viewed as predefined exceptions with a fixed semantics of their action
part. Apart from these, user-defined exceptions can be specified.

Thus, patterns of behaviour have self-monitoring facilities. The conditions of an
active pattern are monitored by so-called guards, which are basically knowledge mod-
ifiers, i.e. patterns of behaviour which become active when the respective condition
(e.g. the termination condition of the parent pattern) becomes true. For example, the
termination condition for a PoB for moving to a landmark is satisfied when the agent
has reached the landmark. This again is monitored by a guard pattern.

An important problem is the interference between concurrent patterns of behaviour.
For example, approaching a shelf to grasp a box may conflict with an obstacle avoidance
pattern. In the literature, several mechanisms for dealing with this problem are known.
For example, DASEDIS [BS92] supports a simple static ordering of possible scripts
describing agent behaviour based on a total ordering of intentions. Brooks [Bro86] has
proposed a more sophisticated suppression/inhibition mechanism for the coordination
between patterns of behaviour of different layers. This, however, also leads to a static,
hard-wired connection between patterns. Moreover, it is not trivial for a pattern of
behaviour to determine which other pattern could possibly lead to a forbidden world
state. OQur approach is to specify in the :during condition a formula describing a set of
forbidden world states for each active pattern. This state description is made public to
all other patterns of behaviour. Thus, each time a pattern of behaviour tries to execute
a primitive action, it has to check locally whether performing this action would lead
to a forbidden world state. In order keep this procedure manageable for practical
applications, the algorithm for determining the truth of the monitoring conditions as
well as the representation of the monitoring conditions have to be restricted. In our
system, representing the world model as a set of ground propositions, and implementing
the truth predicate via database matching (as provided e.g. by OPS-5) turned out to
be a viable tradeoff balancing expressiveness and efficiency.

-234-

3.2.2 Implementation

In the following, we will outline the instantiation of the abstract model of the BBC
that we implemented for the FORKS system. The control part of the BBC is realized
based on the rule selection and interpretation strategy of OPS-5 implemented in the
MAGSY basic agent language [Fis93]. A pattern of behaviour is represented as a
rule set using a context maintenance algorithm based on the MEA strategy. Specific
rules of this rule set monitor the activation and monitoring conditions. The execution
body is formulated using OPS-5 based on the world interface primitives. Reactive,
data-driven, blackboard-like systems can be implemented very conveniently based on
OPS-5. Currently, we are working on a higher-level pattern specification language
similar to the one shown above, that can be compiled down to OPS-5 or C.

3.3 The Plan-Based Component

The plan-based component of the INTERRAP model incorporates the agent’s local
planning facilities. It has two main functionalities according to its two neighbour mod-
ules, the BBC and the CC. Firstly, it has to devise a plan for a goal upon request from
the BBC (call do(Goal)) and to control the correct execution of this plan. Secondly,
it has to interpret the agent’s part in a joint plan conceived by the CC. A complete
specification of the PBC interface is provided by [MP93]. Note that, at this stage,
INTERRAP does not tie the system designer down to a specific planning formalism.
Rather, any mechanism can be used that can be adapted to this interface specifica-
tion. Since one of our major concerns when modeling the FORKS domain has been to
keep the planning process tractable by incorporating domain knowledge, we chose an
approach to planning from second principles: the actual planning task is reduced to
selecting from a plan library and instantiating a suitable plan indexed by the agent’s
current goal. The assumption behind this procedure is that of universal plans [Sch89],
i.e. plans that will achieve their goals irrespective of the initial state of the world.

In the rest of this section, we will define an instantiation of the PBC for the loading
dock domain.We describe the internal structure of the PBC, the plan representation
chosen, and we discuss plan execution.

3.3.1 Internal Structure of the PBC

It consists of a planning control module pbe-control, of a plan generator module, and
a plan evaluator module. The pbe-control contains the PBC interface and the plan
interpreter. The interface receives messages from and sends messages to the CC and
the BBC. The plan interpreter controls the processing and the decomposition of a
plan. Furthermore, based on the information brought about by the plan evaluator, it
decides which goal to plan next. For this purpose, it maintains a set of goal stacks.
This is necessary, because the planner may be called by several concurrent patterns
of behaviour. Thus, for each goal, one goal stack is maintained. In each cycle, the
interpreter chooses one of the goal stacks and processes the top goal of this stack.
Processing a goal means either (1) to expand the goal into subgoals, or (2) to activate
a pattern of behaviour.

-235.

Once activated by a call do(Goal) from the BBC, the pbc-control passes a request to
the plan generator. In the FORKS application, the task of the plan generator is merely
to select and to instantiate a set of plans for Goal from a plan library. The FORKS
local planner is hierarchical for it performs a one-step expansion every time it is called,
i.e. the current goal is expanded into its direct subgoals only. Using a decision-theoretic
evaluation model, the best of these plans is selected by the plan evaluator.

3.3.2 Plan Representation

In [McD91, LH92], requirements on a robot planning language were described. Based
on this, we defined the plan language Py which allows to build plan expressions starting
from primitive plan steps (abstract actions) p, p1, ps, ... and conditions (state formulae)
¢, 1, C3, . . . using sequential ([py, p]) and disjunctive ([p1; p2]) composition of plan steps,
tests (if c then p, else p;) and iteration (while ¢ do p) commands.

A skeletal plan library has been defined for the loading dock application. It consists
of a set of entries plan-1ib ::= (lpb-entry;, ..., lpb-entry;). Each entry of
the plan library is a tuple lpb-entry(Goal, Type, Body) . Goal is the reference
name of the entry and specifies which goal (or rather: which plan step corresponding
to a certain goal) is expanded by the specific entry. Type can be either s for skeletal
plan or b for executable pattern of behaviour. For Type = s, the Body of the entry
is a Pp plan expression which species the expansion of the entry plan step. Type =
b denotes that Body is an abstract action, implemented by an executable pattern of
behaviour in the BBC. Figure 3 shows an excerpt from the FORKS plan library.

i

lpb_entry(load_truck(T, B), s,

[do(fetchbox(B)), do(storebox(B, T))]1)
lpb_entry(fetch box(B), s,

[rr(box position(B, ?Pos)), do(goto landmark(Pos)), do(get(B))]).
lpb_entry(fetch box(B), b,

[do(random search(B))]). ;; pattern of behaviour

lpb_entry(gotolandmark(L;), b,

[do(gotolm beh(L;1))1)
lpb_entry(gotolandmark(L;), s,

[rr(where.am_i(?Lg)), do(genmoves(Ly, L1))])

Figure 3: Exemplary Plan Library

Thus, from the (top-down) point of view of the planner, the behaviour-based com-
ponent is a library implementing the abstract actions specified in the local plans. A
pattern of behaviour corresponds to a procedure which the PBC may call, and which
terminates with either a success or a failure. Calling such an abstract or primitive
action is done by an activate(bbc, Name_of Behaviour(Args)) message. The plan-
ner then waits for the termination report by the pattern of behaviour which has been
activated. This waiting is asynchronous, i.e. the planner can work on other goals and
accept new planning tasks by other patterns of behaviour in the meantime.

- 236 -

4 Integrating Interaction

Some situations occurring in a multi-agent world exceed the problem-solving capaci-
ties of the local planner in that they require interactive capabilities. These situations
are described, recognized and handled from the local point of view of an agent by so-
called patterns of interactions at three different layers which correspond to the three
knowledge-based layers of the INTERRAP model: the situational context of a pattern
of interaction describes the external situation by which the interaction is character-
ized; the mental context describes the current goals of the agent which are affected
(endangered, blocked, or supported) by the interaction; In some cases, knowledge of
the situational context is sufficient to recognize and to handle an interaction: for ex-
ample, if a forklift approaches to another forklift f, very quickly, f, has to dodge -
no matter what goals it has. For others, knowledge about the goals of the agent that
perceives the interaction is required: the pure fact that another agent stands in front
of forklift f, is not sufficient to recognize a blocking conflict - unless f, has the goal to
move ahead. The recognition and treatment of other interactions requires additional
knowledge about the goals of other agents. For example, a blocking conflict between
two forklifts in a narrow shelf corridor may be resolved by cooperation when the goals
of both agents are known. The INTERRAP model supports a hierarchical model of the
recognition and handling of interactive situations: the situational context of a pattern
of interaction is represented at the behaviour-based layer; knowledge about the agent’s
local goals is maintained at the local planning layer; knowledge about the social context
(goals of other agents) is kept at the cooperation layer. Moreover, different mechanisms
of interaction can be specified at different layers, from simple local mechanisms in the
BBC (random moves, waiting behaviors for conflict resolution) to the construction and
negotiation of joint plans in the CC. For a more detailed description of the model of
interaction underlying the INTERRAP model we refer to [Mi94b).

In this section, we describe the functionality and the structure of the CC, the
representation of joint plans as well as subjects of plan evaluation and execution which
have to be dealt with when describing plans by and for multiple agents.

4.1 The Cooperation Component

The main functionality of the CC is that it has to devise a joint plan for a certain
situation and upon request by the PBC, given a description of the situational context
and of the mental context. The social context (goals of other agents involved) has to
be provided and checked by the cooperation component by evaluating available infor-
mation about other agents.This classification process results in a type of interaction,
which is used as an index to an entry in a library of joint plans. The basic parts of
the CC are the cc-control, the joint plan generator, the joint plan evaluator, and the
joint plan translator. The cc-control is the interface between the CC and the PBC.
Moreover, it coordinates the work of the other submodules of the component. The
Jjoint plan generator has to return a set of joint plans for a given situation specification
which satisfies the goals of all agents involved. As mentioned earlier, our objective
has been to keep planning tractable by utilizing domain-specific information, and to
concentrate on the interplay among the modules. Therefore, for the FORKS domain,

-237 -

the plan generator selects a set of joint skeletal plans indexed by the situation speci-
fication from a joint plan library rather than planning from first principles. The best
of these plans is then selected by the plan evaluator (see also subsection (4.3)). After
a negotiation phase, where the agents involved in the interaction agree on a joint plan
to execute, the joint plan translator transforms the joint plan into single-agent plans
which are interpreted and executed by the PBCs of the respective agents.

4.2 Representation of Joint Plans

In the sequel, we define a simple plan language for joint plans. Let A = {ay,...,an}
be a set of agents, S = {s1,...,5k} be a set of abstract actions, the primitives of our
plan language. For each occurrence of an s € S in a plan P, s = s, is labelled by the
agent a that executes s in the plan. '

Definition 1 Let s,s;,s2 € S. Then plan language P; is defined as follows:
e | € Py (empty plan body).
e s € P, for a primitive plan step s € S.
e Let s1,52 € Py. Then [s1, s29] € Py (sequential composition of plan steps).

e Let s1,82 € Pi. Then [s1;82] € P; (non-deterministic alternative composition of plan
steps).

Let 83,82 € P;. Then the simultaneous composition [s;||s2] € P;.

Let s;,89 € Py, let € be an arbitrary,predica,te. Then [if e then s; else s3] € Py
(conditional branch).

e Let s € Py, let e be an arbitrary predicate. Then [while e do s] € P; (while-loop).

Py is a linear plan language, since there is no means to express that two actions s;, s;
performed by two agents ¢, j are independent, i.e. can be executed concurrently. Plan
language P, remedies this:

Definition 2 (P;) Let A = {aj,...,an} be a set of agents. The plan language P, is
defined as follows:

e [] € P; (empty plan step).
o Let ly,...,l,, € P; be plan bodies, so that for each /;, i < m

— a single agent a; performs plan body /; (i.e. all role variables occurring in plan
steps in /; are instantiated with the singleton set {a;}), or

— [; contains only plan steps labelled by agent a; and concurrent composition plan
steps s1||s2. In the latter case, agent a; performs either s; or ss.

Then [ly,...,1,] € Py

The main idea is that a plan step does no longer denote one primitive plan step per-
formed by one agent, but rather represents a set of partial plans (one for each agent
participating in the joint plan) which can be executed concurrently.

-238-

4.3 Plan Evaluation

Since joint plans are subject to negotiation, the agent must be able to evaluate a joint
plan which has been proposed to it by another agent. On the other hand, in order
to generate “reasonable” joint plans itself, the agent must have a measure for what
a reasonable plan is. It is the task of the joint plan evaluator to determine whether
a plan is reasonable by computing its utility. The evaluator accepts as input a list
[P1,..., Py] of joint plans proposed for achieving a goal, and returns a list of evaluated
plans [(Py,€1),...,(Pk,ex)] where ¢; is the utility ascribed to P;. Defining utilities for
plans is a complicated matter. In general, the utility of a plan P can be computed as
the difference between its worth W and its cost C [ZR91]. A cost function for a plan can
often be computed in a straightforward manner: for example, in the current FORKS
implementation, the utility of a conjunctive* plan P is defined by C(P) = X cp ¢(p),
where p are primitive actions in P, where we assume that a cost function ¢ on primitive
plan steps is given. The worth of a plan, however, depends on the worth of the goals
that are achieved by this plan and is often much more difficult to be obtained. We
refer to [HH94] for the combination of utilities and goals and to [Mi{i94a] for a more
complete picture of plan evaluation in the framework of INTERRAP.

4.4 Plan Transformation and Execution

It is the task of the translator module to transform a joint plan into a single-agent
plan by projecting the agent’s part of the joint plan and by adding synchronization
actions which guarantee that the constraints contained in the original joint plan are
satisfied during plan execution. The translation algorithm can be found in [Mi93]. In
the following, we will show by means of an example how a blocking conflict between
two forklift agents is resolved by a joint plan.

Let us assume that another agent, say j, blocks the way of agent 7 in a narrow cor-
- ridor between two shelves. In this situation, the BBC recognizes a conflict and calls the
PBC by a request do(resolve shelf conflict((self, Agent))). The pbc_control
recognizes that it does not have a plan for solving a blocking conflict in a shelf corridor.
Therefore, it shifts control to the cooperation component which devises a joint plan,
and initiates a negotiation with the other agent on the joint plan. In the simplest case,
negotiation may consist of simple acceptance of the first plan proposed. However, an
iterated process of plan modification and plan refinement may be necessary in order to
come to a mutually accepted plan, i.e. a plan with sufficiently high utility for all agents
involved. The resulting joint plan is translated by the CC into a single-agent plan
which is augmented by synchronization commands. For example, a simple joint plan
for resolving the conflict situation shown in figure 4, allowing two agents two agents i
and j to change places (represented in plan language P,) is

JP;; = [[[move_aside(north)], [1],
[[walk_ahead], [walk_ahead]],
[[move_aside(south)], [11].

4A probabilistic evaluation model is used to evaluate tests and iteration plan steps.

-239.

The plan JP has.three plan steps. The separation in plan steps implements a
precedence ordering [C; on plan steps. The transition between plan steps one and two
describes the precedence constraint walk_aside(north); C; walk.ahead;. Note that our
representation allows concurrent actions of ¢ and j in step two. The transition to step
three corresponds to the constraint walk_ahead; C; walk_aside(south);. This joint
plan is translated into the following single-agent plan P for the agents by extracting
their respective parts of the plan and by enhancing it with synchronization commands.
These ensure that the precedence constraints expressed by the joint plan are respected
in the execution. In the case of agent 7, the translated plan looks as follows:

P; = [move_aside(north)

send_synch(j, ready), ;; send message to agent j

walk_ahead,

wait_synch(j, ready),

move_aside(south)].

o

The translation algorithm inserts a wait command in front of each plan step p for which
there exists a plan step p’ so that p' C; p. A send command has to be inserted after
each plan step ¢ for which there exists a plan step ¢’ so that ¢ C; ¢’. The translated
plan is passed to the PBC which interprets it by again activating appropriate patterns
of behaviour as described in section 3. Currently, a new joint plan language is under
development which allows to explicitly express the constraints and which allows to
specify arbitrary constraints on plan steps.

@8

Figure 4: A Conflict Situation

Obviously, joint plans are not the only appropriate way of interacting. A great
deal of the interaction in a robot environment will be described by local, behaviour-
based mechanisms in the behaviour-based component of the INTERRAP architecture.
However, we claim that the deliberative methods of interaction maintained in the CC
become necessary for intelligent conflict resolution in highly constrained situations and
for reasonable collaboration between autonomous agents.

- 240 -

5 Related Work

Our work is related with principles of architectures for modeling interacting autonomous
systems with reactive and deliberative capabilities, and is this way related to work on
cooperation and agent architectures done in DAI (see [IGY92, Jen92] to mention just
a few of them) as well as to research on dynamic reactive planning. Our research has
extended work on reactive systems (see e.g. [Bro86, Fer89]) by adding a deliberative
component.

Classical Al planners usually consist of a plan generation module and a plan inter-
pretation module. Plans are basically sequences of primitive actions. Since in many
real-world domains, information comes in incrementally, other approaches have tried to
interleave plan construction and execution (e.g. [DL86]). Georgeff and Lansky [GL86]
proposed the use of precompiled methods in order to be able to cope with real-time con-
straints. Recently, architectures for reactive planning have been proposed which have
shown new ways to integrate aspects of deliberation and reaction. This development
has led to a general architecture for these kind of systems. A reactive planning system
consists of a planner and a reactor module. There exist different possibilities how to
define the interplay among these modules: either there is a behaviour-based component
which can call a planner (e.g. the SOAR system [Lai90]), or there is a planner with
an associated mechanism for interrupt handling and replanning [PR90]. Other recent
approaches seem to be closer to our model, since the planner and the behaviour-based
component (reactor) run in parallel: e.g. in [LH92], planning is viewed as adapting
the agent’s reactions. Firby [Fir92] has presented a layered robot architecture which
consists of a planner working with sketchy plans and an executor that activates robot
control programs. He stresses the interface between symbolic (abstract actions) and
continuous (control programs). Ferguson [Fer92] extends the reactor-planner archi-
tecture by a component called modeling layer. This layer is responsible for achieving
adaptive behaviour and constitutes a first step towards the integration of learning into
the system. Our main point is that there'{s no way to clearly model knowledge and
strategies for coordination and cooperation in any of the above systems.

The idea of integrating a cooperation layer has been advocated for by Jennings
(see e.g. [Jen92]). However, Jennings’ work in the ARCHON system was primarily
concerned with defining such a layer on top of a given system, whereas our research
focusses on from-scratch system design. Our modeling of the cooperation component
itself is closely related to work described by [Geo83] and by [KLR*92] as regards aspects
of cooperative planning.

6 Evaluation and Outlook

In this paper, the INTERRAP agent modeL was presented and evaluated by means of
a robotics application, the loading-dock domain. We consider the main contribution
of our work to be the following: Firstly, the scope of layered agent architectures has
been extended by the integration of an additional cooperation layer: this allows a
hierarchical recognition and deliberative treatment of a bulk of interactive situations
such as conflicts and potential cooperations. Secondly, the architecture allows the

-241-

designer of an agent to provide agents with application-specific functionalities at the
appropriate layers. It describes a first step towards a flexible system development shell.

Currently, the INTERRAP agent architecture does not provide a learning layer.
One reason for this is self-restraint: the extension to cooperation seemed to guarantee
sufficient interesting problems. On the other hand, it is not easy to see how learning
will fit into the layered framework. Since learning should be possible at each layer of
the agent, it is a currently open design decision whether the model should be extended
by a learner component (LC) on top of the CC, or whether learning should be treated
as an orthogonal concept which should be handled by an additional submodule in each
of the INTERRAP modules. This extension is an interesting topic for future work. We
are currently evaluating the simulation results in a real miniature robot environment.
This requires a thorough adaptation of the world interface layer, whereas only little
modification is necessary in the symbolic layers of the INTERRAP model. Finally,
further extensions will deal with the integration of mechanisms for planning from first
principles into the local as well as the cooperative planning framework.

References

[Bro86] Rodney A. Brooks. A robust layered control system for a mobile robot. In
IEEE Journal of Robotics and Automation, volume RA-2 (1), April 1986.

[BS92] B. Burmeister and K. Sundermeyer. Cooperative problem-solving guided
by intentions and perception. In E. Werner and Y. Demazeau, editors,
Decentralized A.1. 3. North-Holland, 1992.

[DL86] E. H. Durfee and V. R. Lesser. Incremental planning to control a blackboard-
based problem solver. In Proc. of the Fifth National Conference on Artificial
Intelligence, pages 58—64. Philadelphia, Pennsylvania, USA, 1986.

[Fer89] J. Ferber. Eco-problem solving: How to solve a problem by interactions. In
Proc. of the 9th Workshop on DAI, pages 113-128, 1989.

[Fer92] I. A. Ferguson. TouringMachines: An Architecture for Dynamic, Rational,

I]‘JJI%MJC Agents. PhD thesis, Computer Laboratory, University of Cambridge,
, 1992.

[Fir92] R. James Firby. Building symbolic primitives with continuous control rou-
tines. In J. Hendler, editor, Proc.: of the First International Conference on
AT Planning Systems. Morgan Kaufmann Publishers, San Mateo, CA, 1992.

[Fis93] K. Fischer. The Rule-based Multi-Agent System MAGSY. In Proceedings
of the CKBS’92 Workshop. Keele University, 1993.

[FKM94] K. Fischer, N. Kuhn, and J. P. Miiller. Distributed, knowledge-based, reac-
tive scheduling in the transportation domain. In Proc. of the Tenth IEEE

Conference on Artificial Intelligence and Applications, San Antonio, Texas,
March 1994.

[Geo83] M. Georgeff. Communication and interaction in multi-agent plans. In
Proc. of IJCAI-83, pages 125-129, 1983.

L2

[GL86]

[HH94]

[1GY92]

[Jen92]

[KLR*92]

[Lai90]

[LH92]

[McD91)

[MP93]

[Mii93]

[Mii94a)

[Mii94b)

[PRYO]

[Sch89]

[ZR91]

M. P. Georgeff and A. L. Lansky. Procedural knowledge. In Proc. of the
{%%E' .55;1)866cz'al Issue on Knowledge Representation, volume 74, pages 1383—
, 1986.

P. Haddawy and S. Hanks. Utility models for goal-directed decision-
theoretic planners, 1994. Submitted to Artificial Intelligence journal.

T. Ishida, L. Gasser, and M. Yokoo. Organization self-design of dstribut-
ed production systems. IEEE Trans. Knowledge and Data Engineering,
4(2):123-133, 1992.

N. R. Jennings. Joint Intentions as a Model of Multi-Agent Cooperation.
PhD thesis, Queen Mary and Westfield College, London, August 1992.

D. Kinny, M. Ljungberg, A. Rao, E. Sonenberg, G. Tidhar, and E. Werner.
Planned team activity. In A. Cesta, R. Conte, and M. Miceli, editors, Pre-
Proceedings of MAAMAW’92, July 1992.

J. Laird. Integrating planning and execution in SOAR. In J. Hendler,
editor, AAAI Spring Symposium on Planning in Uncertain and Changing
Environments, University of Maryland, Systems Research Center, Stanford
CA, 1990. :

D. M. Lyons and A. J. Hendriks. A practical approach to integrating re-
action and deliberation. In Proc. of the Ist International Conference on
AI Planning Systems (AIPS), pages 153-162, San Mateo, CA, June 1992.

Morgan Kaufmann.

D. McDermott. Robot planning. Technical Report 861, Yale University,
Department of Computer Science, 1991.

J. P. Miiller and M. Pischel. The Agent Architecture INTERRAP: Concept
and Application. Technical Report RR-93-26, German Artificial Intelligence
Research Center (DFKI), Saarbriicken, June 1993.

J. P. Miller. Rational interaction via joint plans. In Workshop on Com-

maunication, Coordination, and Cooperation in Multiagent Systems, Berlin,
September 1993. KI-93, 17. Fachtagung der Kinstlichen Intelligenz.

J. P. Miiller. Evaluation of plans for multiple agents (preliminary report).
In K. Fischer and G. M. P. O’Hare, editors, Working Notes of the ECAI
Workshop on Decision Theory for DAI Applications, Amsterdam, NL, Au-
gust 1994. Forthcoming.

J. P. Miiller. A model of interaction for dynamic multi-agent environments.
In Preproc. of the 2nd Intl. Working Conference on Cooperating Knowledge-
based Systems (CKBS’94), Keele, 1994. Forthcoming.

M. E. Pollack and M. Ringuette. Introducing the tile-world: Experimentally
evaluating agent architectures. In Proc. of the Conference of the American
Association for Artificial Intelligence, pages 183-189, 1990.

M. Schoppers. Representation and automatic synthesis of reaction plans.
Technical Report UITUCDCS-R-89-1546 (phd-thesis), Dept. of Comuter Sci-
ence, University of Illinois at Urbana-Champaign, 1989.

G. Zlotkin and J. S. Rosenschein. Negotiation and goal relaxation. In
Y. Demazeau and J.-P. Miiller, editors, Decentralized A.I.2, pages 273-286.
North-Holland, 1991.

-243-

