A MODEL FOR COOPERATIVE TRANSPORTATION SCHEDULING

Klaus Fischer, Jorg P. Muller, Markus Pischel, Darius Schier
German Research Center for Artificial Intelligence (DFKI)
Stuhlsatzenhausweg 3, D-66123 Saarbriicken

Abstract

The MARS system is described which models coopera-
tive scheduling within a society of shipping companies
as a multiagent system. FEmphasis is placed on the
functionality of the system as a whole — the solution
of the global scheduling problem emerges from local
decision-making and problem-solving strategies. An
extension of the contract net protocol is presented; we
show that it can be used to obtain good initial solu-
tions for complex resource allocation problems. By in-
troducing global information based upon auction pro-
tocols, this initial solution can be improved significant-
ly. Experimental results are provided evaluating the
performance of different cooperative scheduling strate-
gies.

Although the concepts for resource scheduling are pre-
sented solely for the transportation domain, their ab-
straction is useful for a broad variety of resource allo-
cation problems. The MARS system solves the dynam-
ic scheduling problem where no complete specification
of the problem is available a priori; thus, it is designed
as an on-line system based upon anytime algorithms.

Topics:

Practical Applications of Multiagent Systems
Resource Allocation in Multiagent Systems

INTRODUCTION

Bidding protocols have been advocated as a valuable
metaphor in the design of distributed problem solving
for various problems. (Davis & Smith 1983) proposed
the famous contract net protocol for task decompo-
sition and task allocation in multiagent systems, as-
suming a setting where the agents are completely co-
operative in the sense that they always tell the truth
and that they pass utility to other agents without re-
strictions. In order to deal with a competitive setting
the walrasian auction was introduced (Wellman 1992).
(Lenting & Braspenning 1994) defined the all pay auc-
tion to increase the global performance of the walrasian
auction.

In this paper we argue on the on hand that the so-
lutions found by distributed task allocation can be sig-

nificantly improved by introducing global information.
On the other hand, we show that the transportation
domain (Fischer et al. 1993; Sandholm 1993) offers
both a cooperative and a competitive setting. We
introduce a modification of the contract net proto-
col to solve the distributed task allocation problem
and a procedure called simulated trading (Bachem,
Hochstattler, & Malich 1993) to optimize a given solu-
tion iteratively. The performance of both strategies is
evaluated by a set of benchmarks.

Our domain of application is the planning and
scheduling of transportation orders which is done in
everyday life by human dispatchers in transportation
companies. Many of the problems which have to be
solved in this area, such as the Traveling Salesman and
related scheduling problems, are known to be NP-hard.
Moreover, not only since just-in-time production has
come up, planning must be performed under a high
degree of uncertainty and dynamics. In reality these
problems are far from being satisfactorily solved.

The MaRs simulation testbed (cf. (Kuhn, Miiller, &
Miiller 1993)) constitutes a multiagent approach to the
transportation domain; it describes a scenario of geo-
graphically distributed transportation companies that
have to carry out transportation orders arriving dy-
namically. For this purpose, they have a set of trucks
at their disposal. We evaluate the behavior of the sys-
tem as a whole in a straightforward manner: the mea-
sure of coherence is the quality (costs) of the schedule.
Note that the companies themselves do not have fa-
cilities for scheduling orders; rather, it is their trucks
that maintain local plans. The actual solution to the
global order scheduling problem emerges from the lo-
cal decision-making of the agents. There are two basic
types of agents in MARS corresponding to the physical
entities in the domain: shipping companies and trucks.
Looking upon trucks as agents allows us to delegate
problem-solving skills to them (such as route-planning
and local plan optimization). The shipping company
agent has to allocate orders to its trucks, while try-
ing to satisfy the constraints provided by the customer
as well as local optimality criteria (costs). A compa-
ny also may decide to cooperate with another com-

pany 1nstead of having an order executed by 1ts own
trucks. Each truck agent 1s associated with a particu-
lar shipping company from which it receives orders of
the form "Load amount a; of good g; at locationl!;
and transport it to location /s while satisfying
time constraints {c1,...,cn}"

In earlier versions of the system, dynamics occurred
solely by the asynchronous arrival of transportation
orders. Once a truck had accepted an order, it was
sure to reach his destination in time; thus, there was
no need of replanning. We dropped this restriction
by introducing a model for simulating traffic jams in
the system (Fischer et al. 1994): the time a truck
needs in order to go from one place to another varies
dynamically according to the output of a simulation
model for traffic jams. Thus, a truck has to reconsider
parts of its plan each time before it starts driving and
possibly has to change it.

TRANSPORTATION SCHEDULING
AND VERTICAL COOPERATION

Interaction of the agents within one shipping compa-
ny (called vertical cooperation) is totally cooperative.
This means that a specific truck agent (TA) will ac-
cept deals (i.e. results of negotiation processes) even if
he! does not benefit from it. We call such a setting an
instance of a cooperative task-oriented domain (cf. (Fis-
cher 1994)). In the cooperation between shipping com-
panies agents (SCA) we investigate in both a totally
cooperative and a competitive setting (we call the lat-
ter setting an instance of a competitive task-oriented
domain). If we assume a cooperative task-oriented do-
main, we are purely interested in the quality of the
overall schedule which is emerging from the local prob-
lem solving done in the SCAs and TAs.

On the other hand, if a competitive task-oriented do-
main among the SCAs is assumed, it is clear that the
overall schedule which is computed will be far from op-
timal. In this setting we investigate how a single SCA
can maximize her profits and how she can avoid being
tricked by other agents. In this paper we will concen-
trate on the cooperative setting and refer to (Fischer
1994) for the discussion of the latter setting.

Finding an Initial Solution

If an order o is announced to an SCA by a cus-
tomer (which can also be another SCA), she has to
compute a bid for executing the order. In order to
determine the costs, she forwards the order to her
TAs. Each TA A;,1 < ¢ < n € IN computes a bid
(A;, insertioncosts(7}, 0)%, @), where T} is the current

'We use ’he’ to refer to truck agents (TA) and ’she’
to refer to shipping company agents (SCA) to resolve
ambiguities.

2inselrtioncosts(T,',o) =aes cost(T; & o) — cost(T3).
cost(T,' D o) denotes the additional costs for A; when exe-
cuting o given T;.

tour of TA A; and a 1s the amount of the order A; 1s
able to transport. Let Q' = {o1,...,0m,},m; € IN
be the current set of orders of TA A;. A constraint
net is derived from the information which is specified
with the orders. Each solution to this constraint solv-
ing problem is a valid tour which fulfills all constraints
specified by @, A; tries to find the best tour for ¢’
using a constraint solving and constraint optimization
procedure®. For each order 0 an SCA announces to her
TAs, she gets a set of bids

B — {(Alaclaal)a .. 'a(Anacnaan)}an € N

where ¢; specifies the costs that arise to TA A; when
executing amount a; of order o. The SCA selects
(Amina Cmin, amin) S B with

V(A c,a) € B: Emin < ¢
Amin a
and sends a grant to the TA A,,;,, notifying him that
he will be granted the amount a,,;, provided that the
SCA itself will actually receive a grant for o by the
customer.

The procedure described so far i1s the well known
Contract Net protocol (CNP) (Davis & Smith 1983).
Because the CNP protocol provides time-out mecha-
nisms it is easy to turn it into an anytime algorithm
(Boddy & Dean 1994; Russell & Zilberstein 1993), pro-
ducing a solution whose quality increases monotonical-
ly if more time for computation is available. Of course,
it is possible that no solution is found within a speci-
fied time tg. In this case the specified transportation
order has to be rejected.

The Extended Contract Net Protocol

The pure contract net protocol runs into problems if
the tasks exceed the capacity of a single TA | i.e. amin <
amount-to-transport(o). In this case, the manager of
the task, i.e. the SCA, has to solve a knapsack problem,
which for itself is in general NP-hard. To overcome this
problem, we have decentralized task decomposition by
developing an extension of the CNP, which is called the
extended contract net protocol (ECNP). In the ECNP,
the two speech acts grant and reject are replaced by
four new speech acts: temporal grant, temporal reject,
definitive grant, and definitive reject (see Figures 1 and
2).
In the ECNP the manager (SCA) announces an or-
der o to its TAs. It then receives bids for the order
and selects the best one as specified above. The best
TA 1s sent a temporal grant. All others receive tem-
poral rejects. If the best bid does not cover the whole
amount of an order, the remaining part of the order is
reannounced by the SCA. This procedure is repeated
until there is a set of bids that covers the total amount
of the original order o. From this set of bids the SCA

®Qur implementation is based on the Oz (Henz, Smolka,
& Wiirtz 1993; Schulte, Smolka, & Wiirtz 1994) language
developed at DFKI.

o

O0oo0mo o0 Mmoo

000 O0m om
000 ooooom

mo oomo
D0moomooon
o omamo pomumo
— .

0ommo
0 momoomog

Figure 1: The ECNP Protocol (Manager)

computes a bid which is passed to the customer. Based
on the answer of the customer, the SCA sends a defini-
tive grant (or definitive reject, respectively) to all TAs
which got temporal grants before. It is possible to
prove that in general all but the last bid selected are
locally optimal choices for the SCA (Fischer, Kuhn, &
Miiller 1994).

When a TA receives a temporal grant for the first
time, it has to store a copy of its local situation, i.e. the
currently valid plan, because it must be able to restore
this situation in case 1t obtains a definitive reject. All
subsequent temporal grants and temporal rejects are
handled like the grants and rejects in the pure CNP. If
a TA is sent a definitive grant for an order, it removes
the copy created above and switches to the new plan.
If a TA gets a definitive reject, it restores the situation
before the first temporal grant.

Simulated Trading: An Auction Procedure
for Further Optimization

Using the ECNP an SCA distributes incoming orders
to her set of TAs. However, because the situation
changes by new orders coming in and because the
TAs will stick to decisions made in the past, the solu-
tion found is not even guaranteed to be pareto-optimal
(Wellman 1992). At any point in time, when no ECNP
bidding process is active, each TA has a valid tour for
the suborders granted to him in the ECNP. For further
optimizing this solution, we use an auction mechanism
called simulated trading (ST) (Bachem, Hochstattler,
& Malich 1993).

The main idea is to let the SCA simulate a stock
exchange (see figure 3) where her TA can offer their
current orders at some specific “saving price” and may
buy orders at an “insert price”. While getting sell and
buy offers form her TAs the SCA tries to find an order

0 00D mmo|
)] 0 moo 0 0mmo
uuu;:n ‘ 0 momoomog

ooo oomao oo oomao|

0 moo
o

Figure 2: The ECNP Protocol (Bidder)

exchange that optimizes the global solution. This is
done by assigning each offer of a TA to a node in a so-
called trading graph TG = (V, E). A node v can be a
buy node v € V;, or a sell node v € Vi, 1.e. V = V, UVj.
Each node has a label v = (A, [, 0) which denotes the
name A of the TA, the level | denoting the number of
preceding offers A has sent to his SCA, and the order
o. For each buy node vy, the SCA inserts a directed
edge (vp, vs) to a sell node v, referring to the same or-
der. The price of a trade (the weight of each edge) is
the difference between the selling and the buying price
of the order. Thus, a global interchange of &k customers
between all of the current tours of the TA corresponds
to a matching in the trading graph. The weight of the
matching is defined by the profit of this global inter-
change. Searching for a trading matching is done by
a complete enumeration of the trading graph. Though
this requires exponential time in the worst case, it
turned out to be feasible in practice since normally
the trading graph does not have too many branches.
Whereas we allowed the splitting of orders into subor-
ders in the ECNP, we forbid it in the simulated trading
process, to restrict combinatorial explosion.

The buy- and sell-offers of the TAs are divided in
different decision levels. That means that the decision
process entering level [requires all previous offers in
lower levels 1,...,1 — 1 to be successfully finished. For
later use we will refer to this constraint as the level
constraint. The corresponding action of decision level
[changes the tour of the acting agent.

We define [7" and [M%% as the first and last decision
level of TA A;, respectively. If we have [["7 > [[%”
the agent A; does not get involved into the simulated
trading procedure, at all. Else we can recursively define

(s,

000 0oo0g
O0momo 0 moo

0momo 0 moo

Oooo ommooo
00O0NOMOm0 0 mom

000 Dmmoon
O00mDOmomo 0 mom

Figure 3: Hierarchical organization of the agents in
MARS.

the tour of TA A; of level [€ IN:

Ti(l:mn_l) = T; and for [> [
Ti(l_l) o {o} if agent A; sells
70 order o in level
S (1-1) .
T; @ {o} if agent A; buys

order o in level [
with {,,.c we define the maximal number of decision
levels such that the inequality [[**" — [me < las al-
ways holds. Each TA decision of buying or selling or-
ders is represented as a quintuple denoting tour, level,
customer, price, and decision type (buy or sell).

The current decision level has to take into account
preceding decisions. The prize for buying or selling an
order 1s calculated as savings or insertion costs depend-
ing on the type of decision. When an order is going to
be sold, the savings are calculated; otherwise the min-
imal insertion costs for this order are determined.

At every decision level, each TA sends at least one
of the above mentioned quintuples to the SA. The sell
and buy decisions of all TAs now form a bipartite graph
where a sell- and a buy-node are adjacent if they refer
to the same order.

This directed bipartite graph G is called trading
graph and is defined by:

G=(V=VUV,, F) with
VC{A,. .. A} x{1,.. . lnas} X {01,...;0m}:
TA A; with tour Ti(l_l)
buys order o in level [
TA A; with tour Tt(l_l)
buys order o in level [
(v,w)eE <— vel,,weV;:

v=_(,k),w=(,_k)

v=(A;,l,0) eV, <—

v=(4,,0) eV, <—

In this definition, '_’ denotes an anonymous variable.
Further let p : V — IRT denote the price of a decision
defined as:

. (I-1) 4
savings(7; ,0 ve Vs
o= (A0 = Sinesl o
insertioncosts(7," ' k) v eV,

So if the SA receives a buy-offer a new node is added

to V and connected to all sell-nodes referring to that
order. In case she receives a sell-offer, a new node
in Vs 1s inserted and, if there is already an buy-offer
for that order, a link from the inserted node to the
corresponding buy-node is created.

Since our objective is to implement the exchange of
orders among TAs, it may occur that edges and nodes
have to be deleted from the trading graph. A property
that we always want to preserve is admissibility:

A trading graph G = (V = V, U V}) is called admis-
sible <=

Vv € V3w € V; with (v,w) € E

Vi <1y < l3 with (A,ll,_), (A,l3,_) ev:
Jo € V with v = (A, Iy,)

This definition implies that each buy-node in an admis-
sible trading graph is adjacent to at least one sell-node
and that all decision levels are continuously planned.
Note that the admissibility condition is not violated
if the SA inserts a node or an edge in the graph be-
cause each TA is continuously planning his decisions
from one level up to the next higher one and is allowed
to buy only the orders that are offered in the trading
graph.

Now the SCA has to search for a set of node pairs,
each of which consists of a buy-node and a proper sell-
node under the conditions that every node is included
in at most one such pair and that the level constraint
is not violated. The level constraint implies that if
a node pair contains the decision in level [of tour T;
every foregoing decision of TA A; must be included into
another pair. Because every pair corresponds to an
edge of the trading graph we can define the set of pairs
we are looking for by a matching under constraints: Let
G = (V=W UV, E) be an admissible trading graph
with V. C {Ay,..., An} x {1... ez} X {01,...,0n}.
Further let § # M C E denote a set of edges. Let My
denote the set of nodes as follows:

My ={veV |JweV with (v,w) € MV(w,v) € M}

The set of edges M C E is called a trading matching
if it satisfies the following conditions:

V((ty, by, ko)y (B lws b)) € M -
Uy = (t,l,) e VAL, = u, € My and
Uy = (tw,l,) E VAL <y = uy € My and
Yo € My NV, : 3(v,w) € M and

4savings(Ti(l_1) ,0) =dey costs(T;) — costs(T; & o)

YVve My OV, :d(w,v)e M

Thus, according to this Definition a trading matching
now is an admissible trading graph that is a matching.
The gain of a trading matching My is defined as:

gain(My) = >)

vEMyv NV, vEMyNV,

p(v) —

Important for the ST procedure are the decision
criteria for the TA to decide which orders to sell or
buy. This is done using heuristics like “buy nearest”
and “sell farthest” combined with randomization tech-
niques.

Note that simulated trading can only be active dur-
ing a period of time when no new orders arrive at the
SCA. Nevertheless, while the ST process is active the
system maintains a valid solution because ST is done
using a copy of the current plan of a TA and the cur-
rent plan is replaced by the new one computed via the
simulated trading procedure only if that was success-
ful, i.e. a trading match was found which led to a new
optimum. Thus, reactivity is guaranteed: when a new
order arrives, the TA always uses the consistent origi-
nal plan to compute a bid for the ECNP. If a new order
occurs while simulated trading is active, the procedure
has to be aborted, unless the order fits into the plan
which has been used for the ST process.

Plan Execution and Replanning

An important feature of the MARS system is that TAs
do not only compute plans: when time is up, they ac-
tually start ezecuting the orders. Executing an order
includes the steps of loading, driving, and unloading.
Note, that even after the TA already has started the
execution of his local plan, it is possible for him to
participate in the ECNP protocol. However, in the
ST process the TA is not allowed to sell orders it has
already loaded.

A problem in plan execution is that planning is done
on statistical data which may be too optimistic. For in-
stance, when the plan is actually executed the TA may
get stuck in a traffic jam. Therefore, replanning might
be necessary because the TA may run into problems
with respect to the time constraints which are speci-
fied with the orders. Fortunately, this situation can be
nicely handled in our framework. We distinguish two
cases:

Firstly, there are disturbances that can be resolved
using local replanning. In some cases, the TA can do
this by selecting an alternative route to the next city
he has to deliver orders to. This is done by computing
the shortest path in a dynamically changing graph us-
ing Dijkstra’s algorithm. In other cases, this can force
the TA to completely recompute his local plan using
his local planning procedure. Even if the TA is able to
successfully derive a new plan which satisfies all con-
straints, the quality of the plan may drop and thus,
some orders may be sold within the next ST process.

Therefore, restricted global rescheduling may occur al-
ready in this case.

Secondly, if the TA cannot fix the problem by lo-
cal replanning, the procedure depends on whether the
order is already loaded on the TA or if it is not. In
the latter case, the TA initiates a simulated trading
process to sell the orders that he is no longer able to
execute. If a trading matching is found, this is a solu-
tion to the problem. If the simulated trading process
does not find a valid solution for the situation, the TA
has to report the problem and return the respective
orders to his SCA. In this case the SCA herself can
decide whether to sell the order to another SCA (see
below) or to contact the customer, report the problem,
and try to negotiate about the violated constraints. In
the worst case, the company has to pay a penalty fee.

If the orders that are causing trouble are already
loaded on the TA, it is not possible to just return the
order to the SCA or to sell it in a simulated trading
process. In this case, the only chance for the TA 1s to
report the problem to the SCA which then has to find
a solution by contacting the client, trying to relax the
constraints of the order. If a TA runs into this situation
he is paralyzed in the sense that he cannot participate
in the ECNP or in the simulated trading process un-
til he receives instructions from his SCA. Fortunately,
the ECNP and the simulated trading procedure can
deal with this situation because they do not require
participation of all TAs.

HORIZONTAL COOPERATION

Optimizing the utilization of transport capacities 1s the
foremost goal for an SCA. Due to the spatial and tem-
poral distribution of incoming orders, cooperation with
other SCAs (so-called horizontal cooperation) may be a
beneficial operation. Although it would be possible to
use the simulated trading approach also for global opti-
mization by switching orders between SCAs,; we claim
that such an approach is inadequate, for the following
reasons:

1. Within one shipping company, the setup for the sim-
ulated trading process can be provided easily; how-
ever, even in this case the current plans of the TAs
have to be frozen and each TA involved in this pro-
cess can only accept new orders after the simulated
trading process is finished. A simulated trading pro-
cess between SCAs would require an immense syn-
chronization effort and a considerable communica-
tion overhead.

2. In contrast to the coordination between a compa-

ny and its TAs, cooperation between companies is
a peer-to-peer process where a solution (e.g. a price
to be paid for an offer) can only be found if all the
participants agree, and where the conditions of the
solution have to be negotiated among the companies.
Thus, there is no global decision authority in order
to control the negotiation process.

3. 5CAs will behave more selfishly than TAs 1n nego-
tiation. Therefore, global optimality of the overall
schedule which emerges from local problem solving
is no longer the key criterion to guide negotiation.
Rather the SCAs will try to maximize their own prof-
its by selling and buying orders among each others.
Selfishness is also the reason why, in general, the in-
formation about orders, costs, and prices necessary
for the simulated trading algorithm cannot be as-
sumed to be publicly available.

Because of these reasons we chose a model provid-
ing a stock exchange for transportation orders among
SCAs which is organized as a blackboard to which
SCAs can post orders they would like to sell speci-
fying a price they would like to achieve (see figure 3).
If another SCA wants to buy an order, a bilateral ne-
gotiation process between these SCAs is started deter-
mining the actual price to be paid for the order in a
decentralized manner.

The decision-making of the companies during the ne-
gotiation process 1s based on information they obtain
by their TAs, e.g. information about free capacities and
costs. This allows a company to determine in how far
cooperation will lead to an increase of its local util-
ity, and thus, to determine its range of negotiation.
Another important issue for decision-making is part-
ner modeling; for example, if all the agents had com-
plete knowledge about the decision criteria of all other
agents, each agent could locally compute whether there
is a solution accepted by all the partners. In the case
where all the agents have the same decision criteria,
two agents could directly agree on the mean value of
the first bid and the first counter-offer, since negotia-
tion will converge towards this value. However, in real-
ity, agents do not have complete knowledge about each
other; this makes the bargaining process interesting. In
the current system, partner modeling is restricted to
agents making simple assumptions on the parameters
of other agents; future research will aim at enhancing
this model. There are several configurable parameters
that can be used to vary the decision-making behavior
of an agent, e.g.:

wq desired profit in per cent for an order.

Wy, minimal profit in per cent accepted by an agent.

A function determining the amount to which an
agent’s next offer is modified given its current of-
fer p; for example, it can be set to a constant
k or to max(k, @M)’ where n is a scaling
factor determining the speed of convergence; the
maz function guarantees termination of the nego-
tiation independent of the size of n.

o, threshold denoting the agent’s cooperation sen-
sitivity (i.e. how uneconomic does an order have
to be for an agent to offer it to another agent);
o. €[0,1]

Providing a set of different configurations and strate-
gies for agents is one important functionality of a

testbed; however, 1t has to be complemented by tools
for performing, monitoring, and evaluating experi-
ments in order to derive general properties of the fea-
tures that are producible by the testbed. This i1s dis-
cussed in the following subsection.

EXPERIMENTAL RESULTS

In order to evaluate the influence of the strate-
gies presented so far on the solution of the global
scheduling problem, we ran benchmarks developed by
(Desrochers, Desrosiers, & Solomon 1992), consisting
of 12 test sets & 100 orders describing instances of the
vehicle routing problem with time windows. This is a
static scheduling problem that does not challenge the
full expressiveness of MARS:

e There is only one depot from where a set of clients
has to be served.

e In each example there are 100 orders for 100 clients
where no client occurs twice.

e In the test data, it is assumed that only unloading
at the location of the client does need time. There
are no time restrictions specified for the process of
loading a truck.

e There is only a single company modeled.

e It is assumed that there 1s always a direct line con-
nection between two cities.

However, despite these restrictions, optimal solutions
are known for only a small portion of the examples.

In general, optimal solutions can only be computed
if a problem is treated as a closed planning problem.
In this case, when the planning processes is started all
input data must be known. Throughout the planning
process the input data is not allowed to be changed.
It is clear that there exist special purpose algorithms
which perform more efficient than our system for this
specific problem, but these algorithms are not able to
deal with the more general problem solved by MARS.

The parameters to be observed are the distance
needed by the trucks (the primary quality criterion in
the benchmark) and the number of trucks required by
the solution (which is an important criterion from an
economic point of view). The parameters varied were
the number of orders (25, 50, and 100, respectively),
the percentage of orders with time constraints (25, 50,
75, and 100 %), the strategy (pure ECNP or ST) and
the structure of the input set (random or pre-sorted
by the earliest start time). The latter parameter is of
special importance: randomness simulates dynamics
in a sense that the agent has no knowledge about the
temporal ordering of transportation orders. Since no
benchmark for a dynamic problem was available, this
helps us to evaluate how graceful the performance of
our strategies degrades in the dynamic (non-ordered)
case with respect to the static (ordered) case.

Figure 4 shows the results ifrom a class of experi-
ments comparing the relative performance of our solu-
tion before and after the optimization using ST with
the optimal solution for some examples where this so-
lution is known (assuming a sorted input set). Tt shows
that the ECNP solution is between 3% and 74 % worse
than the optimal solution and thus is comparable to
heuristic OR algorithms; in our experiments ST im-
proves this solution by an average of ca. 12%.

DmmooD m o
A 0 0mom o oo
— oooo

oo
0+ S | eaaa- ooo
ooo +
ooo T
ooo T
ooo T
ooo +
ooo +
ooo 4+
ooo +
ooo +
ooo +
ooo +
ooo +
ooo +
OO0 ========mmemmmmmmmmm———— -
D 0 0 0D 0D OO O ODOD O On Omooooo

Figure 4: Comparison of ECNP and ST with the Op-
timal Solution

A second class of experiments compares the perfor-
mance of ECNP with ST for different problem sizes and
different degrees of constrainedness, making a distinc-
tion between random and sorted input. The results of
these experiments are illustrated by figure 5a) to 5d).

The main results of these experiments can be sum-
marized as follows: Firstly, ST improves the ECNP
solutions in most cases. Secondly, presorting improves
the behavior of both algorithms; however, ST yields
much better results in the unsorted case than pure EC-
NP; this implies that ST is a good strategy for dealing
with dynamic problems, since the trading process is
likely to resolve suboptimal order assignments in the
ECNP solutions. On the other hand, ECNP which
implements a greedy strategy is very sensitive with re-
spect to the ordering of the transportation orders.

Thirdly, note that the orders drawn along the z-
axis are sorted according to how strong they are con-
strained: 100 % of the orders in the test sets 1, 5, 9
are constrained, 75 % of order sets 2, 6, 10, and so
on, where test set 1 denotes the set named R101 in
the original benchmark data, 2 stands for B102 and so
on. It is an interesting observation that compared to

“_ 0Oo0mom o oo

0 0mom o ooo

.
oo K} oomoooomo
[

|| | -

— =
0000OO0DOOOOO OO0 00000000 ODODO OO0
O0000000MmMOooD 000 0mom 0000 0OO000 000 0ooom

Figure 5: Comparison of ECNP and ST on Random
and Sorted Input Sets

ST, ECNP behaves relatively better for strongly con-
strained orders than for weaker constrained ones: for
25 orders, ST is only 7.2% better than ECNP (in sav-
ings of distance on an average) in the 100% constrained
case, whereas it saves 22.4% for 25 % constrained or-
der sets. We might speculate that this is a general
property of greedy, contract-net-like algorithms; how-
ever, this speculation still needs being confirmed by
further theoretical and empirical results. For results

comparing different horizontal cooperation settings at
the SCA layer, we refer to (Fischer et al. 1993).

CONCLUSION

In this paper, we have presented the MARS system
modeling the transportation domain, a real-world ap-
plication that has been designed and implemented as a
multiagent system. The main contribution of the pa-
per is that it presents a combination of a contract-net-
like protocol and an auction procedure which provides
promising solutions to difficult scheduling problems.
To evaluate the performance of the MARS system, we
have provided a comparison of our approach with Op-
erations Research (OR) solutions, using a set of bench-
mark examples. The quality of the results achieved by
the multiagent approach has been shown to be com-
parable to those of heuristic OR algorithms. In ad-

dition, the multiagent approach 1s more flexible: 1t al-
lows to vary the number of agents on-line and can cope
with open, dynamic scheduling problems and with un-
certainty in plan execution, whereas the scope of the
available Operations Research techniques is limited to
static scheduling problems.

The MARs system has been implemented at the DF-
KT using the AGENDA development environment (Fis-
cher, Miiller, & Pischel 1995) for multiagent systems.
AGENDA supports the design of agents according to
the INTERRAP agent architecture (Miller & Pischel
1994a; 1994b) and provides several desirable function-
alities of a simulation system and testbed, such as
statistics and visualization tools. The fact that the
MARS system can be distributed over a large number
of physical machines makes it a powerful scheduling
tool, and it turned out to be useful to solve industrial
scheduling problems consisting of 800 transportation
orders. Currently, a joint project with a shipping com-
pany with a daily dispatch volume of about 700 trucks
is envisaged, where a tuned version of MARS is to be
used as the kernel of an online scheduling assistant.

An important issue for future work are decision-
theoretic problems: Using the concepts presented in
this paper as a basis for decision-making, the SCAs
will start negotiation processes among each others. In
this negotiation processes, strategies must be found
that guarantee that agents will not benefit e.g. from
lying. In (Fischer 1994), it has already been shown
that the general results presented in (Zlotkin & Rosen-
schein 1993) for task-oriented domains are not directly
applicable to the transportation domain as presented
in this paper. Thus, a separate analysis of this setting
will be necessary.

References

Bachem, A.; Hochstattler, W.; and Malich, M. 1993.
The Simulated Trading Heuristic for Solving Vehicle
Routing Problems. Technical Report 93.139, Mathe-
matisches Institut der Universitat zu Koln.

Boddy, M., and Dean, T. L. 1994. Deliberation
scheduling for problem solving in time-constrained en-
vironments. Artificial Intelligence 67:245-285.

Davis, R., and Smith, R. G. 1983. Negotiation as a
metaphor for distributed problem solving. Artificial
Intelligence 20:63 — 109.

Desrochers, M.; Desrosiers, J.; and Solomon, M. 1992.
A new optimization algorithm for the vehicle rout-
ing problem with time windows. Operations Research
40(2).

Fischer, K., and O’Hare, G. M. P., eds. 1994. Inter-
national Workshop on Decision Theory for DAI Ap-
plications. Amsterdam: ECAT’94.

Fischer, K.; Kuhn, N.; Muller, H. J.; Muller, J. P;
and Pischel, M. 1993. Sophisticated and distributed:

The transportation domain. In Proc. of MAAMAW-
93. Neuchatel, CH: Fifth European Workshop on

Modelling Autonomous Agents in a Multi-Agent
World.

Fischer, K.; Miller, J. P.; Pischel, M.; and Jacob,
E. 1994. Modeling traffic jams in a logistics simula-
tion environment. In Proc. of the Furopean Simula-
tion Multiconference (ESM’94). Barcelona: Society
for Computer Simulation International (SCS).

Fischer, K.; Kuhn, N.; and Muller, J. P. 1994.
Distributed, knowledge-based, reactive scheduling in
the transportation domain. In Proc. of the Tenth
IEEE Conference on Artificial Intelligence and Ap-
plications.

Fischer, K.; Muller, J. P.; and Pischel, M. 1995.
AGenDA: A General Testbed for DAI Applications.
In Jennings, N. R., and O’Hare, G. M. P., eds., Foun-
dations of DAI John Wiley & Sons, Inc.

Fischer, K. 1994. Decision theoretic analysis of the
transportation domain. In (Fischer & O’Hare 1994).

Henz, M.; Smolka, G.; and Wurtz, J. 1993. Oz -
a programming language for multi-agent systems. In

Proceedings of the IJCAL
Kuhn, N.; Muller, H. J.; and Muller, J. P. 1993.

Simulating cooperative transportation companies. In
Proceedings of the European Simulation Multiconfer-
ence (ESM-93). Lyon, France: Society for Computer
Simulation.

Lenting, J., and Braspenning, P. 1994. An all-pay
auction approach to reallocation. In Proc. of ECAI-

94, 259-263.

Muller, J. P., and Pischel, M. 1994a. An architec-
ture for dynamically interacting agents. Internation-
al Journal of Intelligent and Cooperative Information
Systems (IJICIS) 3(1):25-45.

Muller, J. P., and Pischel, M. 1994b. Integrating
agent interaction into a planner-reactor architecture.
In Klein, M., ed., Proc. of the 13th International
Workshop on Distributed Artificial Intelligence.

Russell, S. J., and Zilberstein, S. 1993. Anytime sens-
ing, planning, and action: A practical model for robot
control. In Proc. of IJCAI’93, 1402-1407. Cham-
bery, F: Morgan Kaufmann Publishers Inc., San Ma-
teo, CA, USA.

Sandholm, T. 1993. An implementation of the con-
tract net protocol based on marginal cost calculations.
In Proc. of the 12th International Workshop on Dis-
tributed Artificial Intelligence, 295-308.

Schulte, C.; Smolka, G.; and Wurtz, J. 1994. Encap-
sulated search and constraint programming in Oz. In
Second Workshop on Principles and Practice of Con-
straint Programming, 116-129.

Wellman, M. 1992. A general-equilibrium approach
to distributed transportation planning. In Proc. of

AAATL-92, 282-290.

Zlotkin, G.) and Rosenschein, J. 5. 1993. A domain
theory for task-oriented negotiation. In Proc. of the

18th International Joint Conference on Artificial In-
telligence, volume 1.

