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Abstract

TheMars system is described which models coopera�
tive scheduling within a society of shipping companies
as a multiagent system� Emphasis is placed on the
functionality of the system as a whole  the solution
of the global scheduling problem emerges from local
decision�making and problem�solving strategies� An
extension of the contract net protocol is presented� we
show that it can be used to obtain good initial solu�
tions for complex resource allocation problems� By in�
troducing global information based upon auction pro�
tocols� this initial solution can be improved signi�cant�
ly� Experimental results are provided evaluating the
performance of di�erent cooperative scheduling strate�
gies�

Although the concepts for resource scheduling are pre�
sented solely for the transportation domain� their ab�
straction is useful for a broad variety of resource allo�
cation problems� TheMars system solves the dynam�
ic scheduling problem where no complete speci�cation
of the problem is available a priori� thus� it is designed
as an on�line system based upon anytime algorithms�

Topics�

Practical Applications of Multiagent Systems
Resource Allocation in Multiagent Systems

INTRODUCTION

Bidding protocols have been advocated as a valuable
metaphor in the design of distributed problem solving
for various problems� �Davis � Smith ��	
� proposed
the famous contract net protocol for task decompo�
sition and task allocation in multiagent systems� as�
suming a setting where the agents are completely co�
operative in the sense that they always tell the truth
and that they pass utility to other agents without re�
strictions� In order to deal with a competitive setting
the walrasian auction was introduced �Wellman �����
�Lenting � Braspenning ����� de�ned the all pay auc�
tion to increase the global performance of the walrasian
auction�
In this paper we argue on the on hand that the so�

lutions found by distributed task allocation can be sig�

ni�cantly improved by introducing global information�
On the other hand� we show that the transportation
domain �Fischer et al� ���
� Sandholm ���
� o�ers
both a cooperative and a competitive setting� We
introduce a modi�cation of the contract net proto�
col to solve the distributed task allocation problem
and a procedure called simulated trading �Bachem�
Hochst�attler� � Malich ���
� to optimize a given solu�
tion iteratively� The performance of both strategies is
evaluated by a set of benchmarks�

Our domain of application is the planning and
scheduling of transportation orders which is done in
everyday life by human dispatchers in transportation
companies� Many of the problems which have to be
solved in this area� such as the Traveling Salesman and
related scheduling problems� are known to be NP�hard�
Moreover� not only since just�in�time production has
come up� planning must be performed under a high
degree of uncertainty and dynamics� In reality these
problems are far from being satisfactorily solved�

TheMars simulation testbed �cf� �Kuhn� M�uller� �
M�uller ���
�� constitutes a multiagent approach to the
transportation domain� it describes a scenario of geo�
graphically distributed transportation companies that
have to carry out transportation orders arriving dy�
namically� For this purpose� they have a set of trucks
at their disposal� We evaluate the behavior of the sys�
tem as a whole in a straightforward manner� the mea�
sure of coherence is the quality �costs� of the schedule�
Note that the companies themselves do not have fa�
cilities for scheduling orders� rather� it is their trucks
that maintain local plans� The actual solution to the
global order scheduling problem emerges from the lo�
cal decision�making of the agents� There are two basic
types of agents inMars corresponding to the physical
entities in the domain� shipping companies and trucks�
Looking upon trucks as agents allows us to delegate
problem�solving skills to them �such as route�planning
and local plan optimization�� The shipping company
agent has to allocate orders to its trucks� while try�
ing to satisfy the constraints provided by the customer
as well as local optimality criteria �costs�� A compa�
ny also may decide to cooperate with another com�



pany instead of having an order executed by its own
trucks� Each truck agent is associated with a particu�
lar shipping company from which it receives orders of
the form �Load amount a� of good g� at location l�
and transport it to location l� while satisfying

time constraints fc�� � � � � cng��
In earlier versions of the system� dynamics occurred

solely by the asynchronous arrival of transportation
orders� Once a truck had accepted an order� it was
sure to reach his destination in time� thus� there was
no need of replanning� We dropped this restriction
by introducing a model for simulating tra�c jams in
the system �Fischer et al� ������ the time a truck
needs in order to go from one place to another varies
dynamically according to the output of a simulation
model for tra�c jams� Thus� a truck has to reconsider
parts of its plan each time before it starts driving and
possibly has to change it�

TRANSPORTATION SCHEDULING

AND VERTICAL COOPERATION

Interaction of the agents within one shipping compa�
ny �called vertical cooperation� is totally cooperative�
This means that a speci�c truck agent �TA� will ac�
cept deals �i�e� results of negotiation processes� even if
he� does not bene�t from it� We call such a setting an
instance of a cooperative task�oriented domain �cf� �Fis�
cher ������� In the cooperation between shipping com�
panies agents �SCA� we investigate in both a totally
cooperative and a competitive setting �we call the lat�
ter setting an instance of a competitive task�oriented
domain�� If we assume a cooperative task�oriented do�
main� we are purely interested in the quality of the
overall schedule which is emerging from the local prob�
lem solving done in the SCAs and TAs�
On the other hand� if a competitive task�oriented do�

main among the SCAs is assumed� it is clear that the
overall schedule which is computed will be far from op�
timal� In this setting we investigate how a single SCA
can maximize her pro�ts and how she can avoid being
tricked by other agents� In this paper we will concen�
trate on the cooperative setting and refer to �Fischer
����� for the discussion of the latter setting�

Finding an Initial Solution

If an order o is announced to an SCA by a cus�
tomer �which can also be another SCA�� she has to
compute a bid for executing the order� In order to
determine the costs� she forwards the order to her
TAs� Each TA Ai� � � i � n � IN computes a bid
�Ai� insertioncosts�Ti� o��� a�� where Ti is the current

�We use �he� to refer to truck agents �TA� and �she�
to refer to shipping company agents �SCA� to resolve
ambiguities�

�insertioncosts�Ti� o� �def cost�Ti � o� � cost�Ti��
cost�Ti � o� denotes the additional costs for Ai when exe�
cuting o given Ti�

tour of TA Ai and a is the amount of the order Ai is
able to transport� Let Oi � fo�� � � � � omi

g�mi � IN
be the current set of orders of TA Ai� A constraint
net is derived from the information which is speci�ed
with the orders� Each solution to this constraint solv�
ing problem is a valid tour which ful�lls all constraints
speci�ed by Oi� Ai tries to �nd the best tour for Oi

using a constraint solving and constraint optimization
procedure� � For each order o an SCA announces to her
TAs� she gets a set of bids

B � f�A�� c�� a��� � � � � �An� cn� an�g� n � IN

where ci speci�es the costs that arise to TA Ai when
executing amount ai of order o� The SCA selects
�Amin� cmin� amin� � B with

��A� c� a� � B �
cmin

amin

�
c

a

and sends a grant to the TA Amin� notifying him that
he will be granted the amount amin provided that the
SCA itself will actually receive a grant for o by the
customer�
The procedure described so far is the well known

Contract Net protocol �CNP� �Davis � Smith ��	
��
Because the CNP protocol provides time�out mecha�
nisms it is easy to turn it into an anytime algorithm
�Boddy � Dean ����� Russell � Zilberstein ���
�� pro�
ducing a solution whose quality increases monotonical�
ly if more time for computation is available� Of course�
it is possible that no solution is found within a speci�
�ed time t�� In this case the speci�ed transportation
order has to be rejected�

The Extended Contract Net Protocol

The pure contract net protocol runs into problems if
the tasks exceed the capacity of a single TA� i�e� amin �
amount�to�transport�o�� In this case� the manager of
the task� i�e� the SCA� has to solve a knapsack problem�
which for itself is in general NP�hard� To overcome this
problem� we have decentralized task decomposition by
developing an extension of the CNP� which is called the
extended contract net protocol �ECNP�� In the ECNP�
the two speech acts grant and reject are replaced by
four new speech acts� temporal grant� temporal reject�
de�nitive grant� and de�nitive reject �see Figures � and
��
In the ECNP the manager �SCA� announces an or�

der o to its TAs� It then receives bids for the order
and selects the best one as speci�ed above� The best
TA is sent a temporal grant� All others receive tem�
poral rejects� If the best bid does not cover the whole
amount of an order� the remaining part of the order is
reannounced by the SCA� This procedure is repeated
until there is a set of bids that covers the total amount
of the original order o� From this set of bids the SCA

�Our implementation is based on the Oz �Henz� Smolka�
� W�urtz 	���� Schulte� Smolka� � W�urtz 	���� language
developed at DFKI�
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Figure �� The ECNP Protocol �Manager�

computes a bid which is passed to the customer� Based
on the answer of the customer� the SCA sends a de�ni�
tive grant �or de�nitive reject� respectively� to all TAs
which got temporal grants before� It is possible to
prove that in general all but the last bid selected are
locally optimal choices for the SCA �Fischer� Kuhn� �
M�uller ������
When a TA receives a temporal grant for the �rst

time� it has to store a copy of its local situation� i�e� the
currently valid plan� because it must be able to restore
this situation in case it obtains a de�nitive reject� All
subsequent temporal grants and temporal rejects are
handled like the grants and rejects in the pure CNP� If
a TA is sent a de�nitive grant for an order� it removes
the copy created above and switches to the new plan�
If a TA gets a de�nitive reject� it restores the situation
before the �rst temporal grant�

Simulated Trading� An Auction Procedure
for Further Optimization

Using the ECNP an SCA distributes incoming orders
to her set of TAs� However� because the situation
changes by new orders coming in and because the
TAs will stick to decisions made in the past� the solu�
tion found is not even guaranteed to be pareto�optimal
�Wellman ����� At any point in time� when no ECNP
bidding process is active� each TA has a valid tour for
the suborders granted to him in the ECNP� For further
optimizing this solution� we use an auction mechanism
called simulated trading �ST� �Bachem� Hochst�attler�
� Malich ���
��
The main idea is to let the SCA simulate a stock

exchange �see �gure 
� where her TA can o�er their
current orders at some speci�c �saving price� and may
buy orders at an �insert price�� While getting sell and
buy o�ers form her TAs the SCA tries to �nd an order
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Figure � The ECNP Protocol �Bidder�

exchange that optimizes the global solution� This is
done by assigning each o�er of a TA to a node in a so�
called trading graph TG � �V�E�� A node v can be a
buy node v � Vb or a sell node v � Vs� i�e� V � Vb�Vs�
Each node has a label v � �A� l� o� which denotes the
name A of the TA� the level l denoting the number of
preceding o�ers A has sent to his SCA� and the order
o� For each buy node vb� the SCA inserts a directed
edge �vb� vs� to a sell node vs referring to the same or�
der� The price of a trade �the weight of each edge� is
the di�erence between the selling and the buying price
of the order� Thus� a global interchange of k customers
between all of the current tours of the TA corresponds
to a matching in the trading graph� The weight of the
matching is de�ned by the pro�t of this global inter�
change� Searching for a trading matching is done by
a complete enumeration of the trading graph� Though
this requires exponential time in the worst case� it
turned out to be feasible in practice since normally
the trading graph does not have too many branches�
Whereas we allowed the splitting of orders into subor�
ders in the ECNP� we forbid it in the simulated trading
process� to restrict combinatorial explosion�

The buy� and sell�o�ers of the TAs are divided in
di�erent decision levels� That means that the decision
process entering level l requires all previous o�ers in
lower levels �� � � � � l� � to be successfully �nished� For
later use we will refer to this constraint as the level
constraint� The corresponding action of decision level
l changes the tour of the acting agent�

We de�ne lmin
i and lmax

i as the �rst and last decision
level of TA Ai� respectively� If we have l

min
i � lmax

i

the agent Ai does not get involved into the simulated
trading procedure� at all� Else we can recursively de�ne
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Figure 
� Hierarchical organization of the agents in
Mars�

the tour of TA Ai of level l � IN �

T
�lmin

i
���

i � Ti and for l � lmin
i �

T
�l�
i �

����
���

T
�l���
i � fog if agent Ai sells

order o in level l

T
�l���
i 	 fog if agent Ai buys

order o in level l

with lmax we de�ne the maximal number of decision
levels such that the inequality lmax

i � lmin
i � lmax al�

ways holds� Each TA decision of buying or selling or�
ders is represented as a quintuple denoting tour� level�
customer� price� and decision type �buy or sell��
The current decision level has to take into account

preceding decisions� The prize for buying or selling an
order is calculated as savings or insertion costs depend�
ing on the type of decision� When an order is going to
be sold� the savings are calculated� otherwise the min�
imal insertion costs for this order are determined�
At every decision level� each TA sends at least one

of the above mentioned quintuples to the SA� The sell
and buy decisions of all TAs now form a bipartite graph
where a sell� and a buy�node are adjacent if they refer
to the same order�
This directed bipartite graph G is called trading

graph and is de�ned by�

G � �V � Vb � Vs� E� with

V 
 fA�� � � � � Ang � f�� � � � � lmaxg � fo�� � � � � omg �

v � �Ai� l� o� � Vb � TA Ai with tour T
�l���
i

buys order o in level l

v � �Ai� l� o� � Vs � TA Ai with tour T
�l���
t

buys order o in level l

�v� w� � E � v � Vb� w � Vs �

v � � � � k�� w � � � � k�

In this de�nition� � � denotes an anonymous variable�
Further let � � V � IR� denote the price of a decision
de�ned as�

��v � �Ai� l� o�� �

�
savings�T

�l���
i � o�� v � Vs

insertioncosts�T
�l���
t � k� v � Vb

So if the SA receives a buy�o�er a new node is added
to Vb and connected to all sell�nodes referring to that
order� In case she receives a sell�o�er� a new node
in Vs is inserted and� if there is already an buy�o�er
for that order� a link from the inserted node to the
corresponding buy�node is created�
Since our objective is to implement the exchange of

orders among TAs� it may occur that edges and nodes
have to be deleted from the trading graph� A property
that we always want to preserve is admissibility�
A trading graph G � �V � Vs � Vb� is called admis�

sible ��

�v � Vb�w � Vs with �v� w� � E

�l� � l� � l� with �A� l�� �� �A� l�� � � V �

�v � V with v � �A� l�� �

This de�nition implies that each buy�node in an admis�
sible trading graph is adjacent to at least one sell�node
and that all decision levels are continuously planned�
Note that the admissibility condition is not violated
if the SA inserts a node or an edge in the graph be�
cause each TA is continuously planning his decisions
from one level up to the next higher one and is allowed
to buy only the orders that are o�ered in the trading
graph�
Now the SCA has to search for a set of node pairs�

each of which consists of a buy�node and a proper sell�
node under the conditions that every node is included
in at most one such pair and that the level constraint
is not violated� The level constraint implies that if
a node pair contains the decision in level l of tour Ti
every foregoing decision of TAAi must be included into
another pair� Because every pair corresponds to an
edge of the trading graph we can de�ne the set of pairs
we are looking for by a matching under constraints� Let
G � �V � Vb � Vs� E� be an admissible trading graph
with V 
 fA�� � � � � Ang � f� � � � � lmaxg � fo�� � � � � ong�
Further let � ��M 
 E denote a set of edges� Let MV

denote the set of nodes as follows�

MV � fv � V j �w � V with �v� w� �M��w� v� �Mg

The set of edges M 
 E is called a trading matching
if it satis�es the following conditions�

���tv� lv� kv�� �tw� lw� kw�� �M �

uv � �tv� l� � � V � l � lv  uv �MV and

uw � �tw� l� � � V � l � lw  uw �MV and

�v �MV � Vb � ��v� w� �M and

�savings�T �l���
i � o� �def costs�Ti�� costs�Ti � o�



�v �MV � Vs � ��w� v� �M

Thus� according to this De�nition a trading matching
now is an admissible trading graph that is a matching�
The gain of a trading matchingMV is de�ned as�

gain�MV � �
X

v�MV �Vs

��v� �
X

v�MV �Vb

��v�

Important for the ST procedure are the decision
criteria for the TA to decide which orders to sell or
buy� This is done using heuristics like �buy nearest�
and �sell farthest� combined with randomization tech�
niques�
Note that simulated trading can only be active dur�

ing a period of time when no new orders arrive at the
SCA� Nevertheless� while the ST process is active the
system maintains a valid solution because ST is done
using a copy of the current plan of a TA and the cur�
rent plan is replaced by the new one computed via the
simulated trading procedure only if that was success�
ful� i�e� a trading match was found which led to a new
optimum� Thus� reactivity is guaranteed� when a new
order arrives� the TA always uses the consistent origi�
nal plan to compute a bid for the ECNP� If a new order
occurs while simulated trading is active� the procedure
has to be aborted� unless the order �ts into the plan
which has been used for the ST process�

Plan Execution and Replanning

An important feature of the Mars system is that TAs
do not only compute plans� when time is up� they ac�
tually start executing the orders� Executing an order
includes the steps of loading� driving� and unloading�
Note� that even after the TA already has started the
execution of his local plan� it is possible for him to
participate in the ECNP protocol� However� in the
ST process the TA is not allowed to sell orders it has
already loaded�
A problem in plan execution is that planning is done

on statistical data which may be too optimistic� For in�
stance� when the plan is actually executed the TA may
get stuck in a tra�c jam� Therefore� replanning might
be necessary because the TA may run into problems
with respect to the time constraints which are speci�
�ed with the orders� Fortunately� this situation can be
nicely handled in our framework� We distinguish two
cases�
Firstly� there are disturbances that can be resolved

using local replanning� In some cases� the TA can do
this by selecting an alternative route to the next city
he has to deliver orders to� This is done by computing
the shortest path in a dynamically changing graph us�
ing Dijkstra�s algorithm� In other cases� this can force
the TA to completely recompute his local plan using
his local planning procedure� Even if the TA is able to
successfully derive a new plan which satis�es all con�
straints� the quality of the plan may drop and thus�
some orders may be sold within the next ST process�

Therefore� restricted global rescheduling may occur al�
ready in this case�
Secondly� if the TA cannot �x the problem by lo�

cal replanning� the procedure depends on whether the
order is already loaded on the TA or if it is not� In
the latter case� the TA initiates a simulated trading
process to sell the orders that he is no longer able to
execute� If a trading matching is found� this is a solu�
tion to the problem� If the simulated trading process
does not �nd a valid solution for the situation� the TA
has to report the problem and return the respective
orders to his SCA� In this case the SCA herself can
decide whether to sell the order to another SCA �see
below� or to contact the customer� report the problem�
and try to negotiate about the violated constraints� In
the worst case� the company has to pay a penalty fee�
If the orders that are causing trouble are already

loaded on the TA� it is not possible to just return the
order to the SCA or to sell it in a simulated trading
process� In this case� the only chance for the TA is to
report the problem to the SCA which then has to �nd
a solution by contacting the client� trying to relax the
constraints of the order� If a TA runs into this situation
he is paralyzed in the sense that he cannot participate
in the ECNP or in the simulated trading process un�
til he receives instructions from his SCA� Fortunately�
the ECNP and the simulated trading procedure can
deal with this situation because they do not require
participation of all TAs�

HORIZONTAL COOPERATION

Optimizing the utilization of transport capacities is the
foremost goal for an SCA� Due to the spatial and tem�
poral distribution of incoming orders� cooperation with
other SCAs �so�called horizontal cooperation� may be a
bene�cial operation� Although it would be possible to
use the simulated trading approach also for global opti�
mization by switching orders between SCAs� we claim
that such an approach is inadequate� for the following
reasons�

�� Within one shipping company� the setup for the sim�
ulated trading process can be provided easily� how�
ever� even in this case the current plans of the TAs
have to be frozen and each TA involved in this pro�
cess can only accept new orders after the simulated
trading process is �nished� A simulated trading pro�
cess between SCAs would require an immense syn�
chronization e�ort and a considerable communica�
tion overhead�

� In contrast to the coordination between a compa�
ny and its TAs� cooperation between companies is
a peer�to�peer process where a solution �e�g� a price
to be paid for an o�er� can only be found if all the
participants agree� and where the conditions of the
solution have to be negotiated among the companies�
Thus� there is no global decision authority in order
to control the negotiation process�




� SCAs will behave more sel�shly than TAs in nego�
tiation� Therefore� global optimality of the overall
schedule which emerges from local problem solving
is no longer the key criterion to guide negotiation�
Rather the SCAs will try to maximize their own prof�
its by selling and buying orders among each others�
Sel�shness is also the reason why� in general� the in�
formation about orders� costs� and prices necessary
for the simulated trading algorithm cannot be as�
sumed to be publicly available�

Because of these reasons we chose a model provid�
ing a stock exchange for transportation orders among
SCAs which is organized as a blackboard to which
SCAs can post orders they would like to sell speci�
fying a price they would like to achieve �see �gure 
��
If another SCA wants to buy an order� a bilateral ne�
gotiation process between these SCAs is started deter�
mining the actual price to be paid for the order in a
decentralized manner�
The decision�making of the companies during the ne�

gotiation process is based on information they obtain
by their TAs� e�g� information about free capacities and
costs� This allows a company to determine in how far
cooperation will lead to an increase of its local util�
ity� and thus� to determine its range of negotiation�
Another important issue for decision�making is part�
ner modeling� for example� if all the agents had com�
plete knowledge about the decision criteria of all other
agents� each agent could locally compute whether there
is a solution accepted by all the partners� In the case
where all the agents have the same decision criteria�
two agents could directly agree on the mean value of
the �rst bid and the �rst counter�o�er� since negotia�
tion will converge towards this value� However� in real�
ity� agents do not have complete knowledge about each
other� this makes the bargaining process interesting� In
the current system� partner modeling is restricted to
agents making simple assumptions on the parameters
of other agents� future research will aim at enhancing
this model� There are several con�gurable parameters
that can be used to vary the decision�making behavior
of an agent� e�g��

�d desired pro�t in per cent for an order�
�m minimal pro�t in per cent accepted by an agent�
� function determining the amount to which an

agent�s next o�er is modi�ed given its current of�
fer p� for example� it can be set to a constant

k or to max�k� ��d��m��p
n

�� where n is a scaling
factor determining the speed of convergence� the
max function guarantees termination of the nego�
tiation independent of the size of n�

�c threshold denoting the agent�s cooperation sen�
sitivity �i�e� how uneconomic does an order have
to be for an agent to o�er it to another agent��
�c � ��� ��

Providing a set of di�erent con�gurations and strate�
gies for agents is one important functionality of a

testbed� however� it has to be complemented by tools
for performing� monitoring� and evaluating experi�
ments in order to derive general properties of the fea�
tures that are producible by the testbed� This is dis�
cussed in the following subsection�

EXPERIMENTAL RESULTS

In order to evaluate the in�uence of the strate�
gies presented so far on the solution of the global
scheduling problem� we ran benchmarks developed by
�Desrochers� Desrosiers� � Solomon ����� consisting
of � test sets �a ��� orders describing instances of the
vehicle routing problem with time windows� This is a
static scheduling problem that does not challenge the
full expressiveness of Mars�

� There is only one depot from where a set of clients
has to be served�

� In each example there are ��� orders for ��� clients
where no client occurs twice�

� In the test data� it is assumed that only unloading
at the location of the client does need time� There
are no time restrictions speci�ed for the process of
loading a truck�

� There is only a single company modeled�

� It is assumed that there is always a direct line con�
nection between two cities�

However� despite these restrictions� optimal solutions
are known for only a small portion of the examples�
In general� optimal solutions can only be computed

if a problem is treated as a closed planning problem�
In this case� when the planning processes is started all
input data must be known� Throughout the planning
process the input data is not allowed to be changed�
It is clear that there exist special purpose algorithms
which perform more e�cient than our system for this
speci�c problem� but these algorithms are not able to
deal with the more general problem solved by Mars�
The parameters to be observed are the distance

needed by the trucks �the primary quality criterion in
the benchmark� and the number of trucks required by
the solution �which is an important criterion from an
economic point of view�� The parameters varied were
the number of orders ��� ��� and ���� respectively��
the percentage of orders with time constraints ��� ���
��� and ���  �� the strategy �pure ECNP or ST� and
the structure of the input set �random or pre�sorted
by the earliest start time�� The latter parameter is of
special importance� randomness simulates dynamics
in a sense that the agent has no knowledge about the
temporal ordering of transportation orders� Since no
benchmark for a dynamic problem was available� this
helps us to evaluate how graceful the performance of
our strategies degrades in the dynamic �non�ordered�
case with respect to the static �ordered� case�



Figure � shows the results from a class of experi�
ments comparing the relative performance of our solu�
tion before and after the optimization using ST with
the optimal solution for some examples where this so�
lution is known �assuming a sorted input set�� It shows
that the ECNP solution is between 
 and ��  worse
than the optimal solution and thus is comparable to
heuristic OR algorithms� in our experiments ST im�
proves this solution by an average of ca� � �

� � � � � �� � ��� �� �� ����� ���
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Figure �� Comparison of ECNP and ST with the Op�
timal Solution

A second class of experiments compares the perfor�
mance of ECNP with ST for di�erent problem sizes and
di�erent degrees of constrainedness� making a distinc�
tion between random and sorted input� The results of
these experiments are illustrated by �gure �a� to �d��
The main results of these experiments can be sum�

marized as follows� Firstly� ST improves the ECNP
solutions in most cases� Secondly� presorting improves
the behavior of both algorithms� however� ST yields
much better results in the unsorted case than pure EC�
NP� this implies that ST is a good strategy for dealing
with dynamic problems� since the trading process is
likely to resolve suboptimal order assignments in the
ECNP solutions� On the other hand� ECNP which
implements a greedy strategy is very sensitive with re�
spect to the ordering of the transportation orders�
Thirdly� note that the orders drawn along the x�

axis are sorted according to how strong they are con�
strained� ���  of the orders in the test sets �� �� �
are constrained� ��  of order sets � !� ��� and so
on� where test set � denotes the set named R��� in
the original benchmark data�  stands for R�� and so
on� It is an interesting observation that compared to
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Figure �� Comparison of ECNP and ST on Random
and Sorted Input Sets

ST� ECNP behaves relatively better for strongly con�
strained orders than for weaker constrained ones� for
� orders� ST is only �� better than ECNP �in sav�
ings of distance on an average� in the ��� constrained
case� whereas it saves �� for �  constrained or�
der sets� We might speculate that this is a general
property of greedy� contract�net�like algorithms� how�
ever� this speculation still needs being con�rmed by
further theoretical and empirical results� For results
comparing di�erent horizontal cooperation settings at
the SCA layer� we refer to �Fischer et al� ���
��

CONCLUSION

In this paper� we have presented the Mars system
modeling the transportation domain� a real�world ap�
plication that has been designed and implemented as a
multiagent system� The main contribution of the pa�
per is that it presents a combination of a contract�net�
like protocol and an auction procedure which provides
promising solutions to di�cult scheduling problems�
To evaluate the performance of theMars system� we

have provided a comparison of our approach with Op�
erations Research �OR� solutions� using a set of bench�
mark examples� The quality of the results achieved by
the multiagent approach has been shown to be com�
parable to those of heuristic OR algorithms� In ad�



dition� the multiagent approach is more �exible� it al�
lows to vary the number of agents on�line and can cope
with open� dynamic scheduling problems and with un�
certainty in plan execution� whereas the scope of the
available Operations Research techniques is limited to
static scheduling problems�
TheMars system has been implemented at the DF�

KI using theAGenDA development environment �Fis�
cher� M�uller� � Pischel ����� for multiagent systems�
AGenDA supports the design of agents according to
the InteRRaP agent architecture �M�uller � Pischel
����a� ����b� and provides several desirable function�
alities of a simulation system and testbed� such as
statistics and visualization tools� The fact that the
MARS system can be distributed over a large number
of physical machines makes it a powerful scheduling
tool� and it turned out to be useful to solve industrial
scheduling problems consisting of 	�� transportation
orders� Currently� a joint project with a shipping com�
pany with a daily dispatch volume of about ��� trucks
is envisaged� where a tuned version of Mars is to be
used as the kernel of an online scheduling assistant�
An important issue for future work are decision�

theoretic problems� Using the concepts presented in
this paper as a basis for decision�making� the SCAs
will start negotiation processes among each others� In
this negotiation processes� strategies must be found
that guarantee that agents will not bene�t e�g� from
lying� In �Fischer ������ it has already been shown
that the general results presented in �Zlotkin � Rosen�
schein ���
� for task�oriented domains are not directly
applicable to the transportation domain as presented
in this paper� Thus� a separate analysis of this setting
will be necessary�
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