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Abs t rac t .  In this paper, we present the MARS multi-agent system. 
MARS models a society of cooperating transportation companies. Em- 
phasis is placed on how the functionality of the system as a whole - the 
solution of the global scheduling problem - emerges from local decision- 
making and problem-solvlng strategies, and on how variations of these 
strategies influence the performance of the system. We address three 
techniques of Distributed Artificial Intelligence (DAI) which are used for 
tackling the hard problems that occur in this domain, and which together 
give rise to the emergence of a solution to the global scheduling problem: 
(1) cooperation among the agents, (2) task decomposition and task al- 
location, and (3) decentralised planning. Finally, we briefly describe the 
implementation of the system and provide experimental results which 
show how different strategies for task decomposition and cooperation 
influence the behaviour of the system. 

1 Introduction 

Today, Distributed Artificial Intelligence (DAI) is rightfully regarded as one of 
the most dynamic branches within AI research. Using DAI techniques such as 
cooperation [6, 14], negotiation [27, 25, 17], task decomposition, and task allo- 
cation [8, 16], is believed to be promising for solving problems which are compu- 
tationally and structurally complex, highly dynamic, which are characterised by 
incomplete and inconsistent knowledge, and where information and control are 
physically distributed. However, verifying this belief by implementing real-world 
applications remains a challenge for researchers in DAI [22]. 

In this paper, we explore the usefulness of several DAI techniques for mod- 
elling a real-world application domain: a scenario of t ransportat ion companies is 
described. The companies have to carry out t ransportat ion orders which arrive 
dynamically. For this purpose, they have a set of trucks at their disposal. We 
evaluate the behaviour of the system as a whole in a straightforward manner: 
the measure of coherence is how well it can solve the problem of scheduling the 
orders, i.e. what cost are caused by carrying out the orders. What  is extraordi- 
nary with our approach is that  the companies themselves do not have facilities 
for planning orders. It is only the trucks which mMntMn locM plans. The actual 
solution to the global order scheduling problem emerges from the locM decision- 
making of the agents. There are three specific techniques used in order to bring 

about  this emergent functionality: 



123 

- Task decomposition and task allocation is done in order to assign orders to 
appropriate trucks. Different models of task decomposition and task alloca- 
tion are discussed in section 3.3 

- Cooperation (1) among shipping companies and (2) between a company and 
its trucks helps solving the problem of task decomposition and allocation. 
Whereas the latter kind of cooperation can be implemented using a simple 
contract-net-like protocol [8], cooperation among shipping companies has to 
respect the autonomy of the single companies, and thus requires a full model 
of negotiation [3, 16]. 

- Task decomposition and task allocation is guided by local decision crite- 
ria. These criteria are derived from the local plans. Moreover, polynomial 
algorithms are used in order to solve the scheduling problem locally (see 
subsection 3.1). 

In this paper, we do not treat in a detailed manner questions of protocols 
for cooperation and negotiation (see [16]). Rather, we provide an empirical in- 
vestigation of how different forms of cooperation and different models of task 
decomposition lead to different solutions to the global scheduling problem. 

The paper is organised as follows: In section 2.1, we present the transporta- 
tion domain. We show the relevance of the domain, and we argue for choosing 
a multi-agent approach for modelling the domain. In section 3, three important 
DAI techniques are addressed: cooperation, task decomposition and allocation, 
and decentralised planning. The cooperation mechanisms are explained in more 
detail by means of examples in section 4. Finally, in section 5, a series of exper- 
iments is described, and results are are provided and discussed. 

2 T h e  M A R S  M u l t i - a g e n t  S c e n a r i o  

2.1 The  D o m a i n  of  Application 

In a time of constantly growing world-wide economical transparency and inter- 
dependency, logistics and the planning of freight transports get more and more 
important both for economical and ecological reasons. Many of the problems 
which must be solved in this area, such as the Travelling Salesman and related 
scheduling problems, are known to be A/P-hard. Moreover, not only since just-in- 
time production has come up, planning must be performed under a high degree 
of uncertainty and incompleteness, and it is highly dynamic. Standard Opera- 
tions Research approaches (see [18, 7, 26] for an overview) can hardly cope with 
the dynamics of this domain (see [10] for a discussion of more recent approaches 
to fleet scheduling). In fact, also in reality these problems are far from being 
solved. Recent analysis [23] has revealed that more than one out of three trucks 
in the streets of Europe is driving without carriage, since it is on its way to pick 
up goods or on its way back home. 
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2.2 The  ( D ) A I  Aspec t s  

Why is it adequate to use AI techniques and more specifically DAI approaches to 
tackle the transportation problems described above? One reason is the complex- 
ity of the scheduling problem, which makes it very attractive for AI research 1. 
However there are more pragmatic reasons: Commonsense knowledge (e.g. taxo- 
nomical, topological, temporal, or expert knowledge) is necessary to solve the 
scheduling problems effectively. Local knowledge about the capabilities of the 
transportation company as well as knowledge about competitive (and maybe 
cooperative) companies massively influences the solutions. Moreover, since a 
global view is impossible (because of the complexity), there is a need to operate 
from a local point of view and thus to deal with incomplete knowledge with MI 
its consequences. 

The last aspect leads to the DAI arguments: 

1. The domain is inherently distributed. Hence it is very natural to look at it 
as a multi-agent system. However, instead of tackling the problem from the 
point of view of the entities which are to be modelled and then relying on 
the emergence of the global solution, the classical approach to the problem 
is an (artificially) centralised one. 

2. The task of a centrally mMntaining and processing the knowledge about the 
shipping companies, their vehicles, and behaviour is very complex. Moreover, 
knowledge is often not even centrally available (real-life company are not 
willing to share all their local information with other companies). Therefore, 
modelling the companies as independent and autonomous units seems the 
only acceptable way to proceed. 

3. In real business, companies usually solve capacity problems by contacting 
partners that might be able to perform the problematic tasks. Then the par- 
ties negotiate the contract. However, task allocation, contracting, negotiating 
and performing joint actions are main topics in DAI research. 

2.3 The  Scenar io  

The MARS scenario (Modelling a Multi-Agent Scenario for Shipping Companies) 
[2] implements a group of shipping companies whose goal it is to deliver a set of 
dynamically given orders, satisfying a set of given time and/or cost constraints 2. 
The complexity of the orders may exceed the capacities of a single company. 
Therefore, cooperation between companies is required in order to achieve the goal 
in a satisfactory way. The common use of shared resources, e.g. train or ship, 
requires coordination between the companies. Although each company has a 
local, primarily self-interested view, cooperation between the shipping companies 
is necessary in order to achieve reasonable global plans (see section 5). 

1 At this year's International Conference on AI and Applications (CAIA'93), seven 
out of sixty-one papers dealt with scheduling problems! 

2 MARS has been implemented for UNIX using the rule-based development tool 
MAGSY [11]. 
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Apart from internal system agents, which perform tasks such as the repre- 
sentation and visualisation of the simulation world, the MARS agent society 
consists of two sorts of domain agents, which correspond to the logical entities 
in the domain: shipping companies and trucks. Looking upon trucks as agents 
allows us to delegate problem-solving skills to them (such as route-planning and 
local plan optimisation). Communication between agents is enabled by direct 
communication channels. 

The company agent is responsible for the disposition of the orders that have 
been confided to him. Thus, it has to allocate the orders to its trucks, while 
trying to satisfy the constraints provided by the user as well as local optimality 
criteria. The shipping companies can be regarded as experts for cooperation and 
cooperative problem solving. They are equipped with additional global knowl- 
edge which is needed for cooperating successfully with other companies. 

The truck agents represent the means of transport of a transportation com- 
pany. Each truck agent is associated with a particular shipping company from 
which it receives orders of the form "Load a goods gl at location ll and transport 
it to location 12 ". Given such an order, the truck agent does the planning of the 
route ([15], see also section 3.1) according to its geographical knowledge and 
it will inform the shipping company agent about the deliverance of the goods. 
Furthermore, it is able to support the shipping company during the disposition 
phase: The truck reports remaining capacities, planned routes and it is able to 
estimate the effort (and the effects) 3 that are caused by an order. 

3 D A I  Techniques  in the  M A R S  Scenario 

The description of the scenario reveals the autonomy of the agents as a necessary 
condition for a modelling that reflects the real world situation and that can even 
support the dispatcher in a real shipping company. In this section we describe 
several DAI methods that are used within MARS scenario. 

The general idea of the solution is based on the paradigm of self-organisation, 
which is applied to a society of knowledge-based systems: at the beginning, the 
system is in a state of equilibrium. This equilibrium is disturbed by the distri- 
bution of a set of orders among the company agents. This stimulates the truck 
agents to devise local plans and to inform their company about the cost arising 
for carrying out an order in their local context. Based on this information the 
company agent allocates the orders to its trucks. Having done this, the society 
of agents has constructed a valid plan to deliver the set of initial orders and 
has reached a state of equilibrium in the sense of [24]. Following the terminol- 
ogy of Steels further on, there are two types of dynamics which can disturb 
this equilibrium: an internal dynamics which is due to that the trucks reflect on 
their plans, and an external dynamics caused by incoming orders. Both kinds 
of dynamic events result in message passing activities in the system. By passing 
messages among the agents, local disturbances spread out into the local plans 

3 i.e. cost, time, security of transport, ... 
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of other agents. To reach an equilibrium state again (i.e., another valid global 
plan for the actuM set of orders) the messages are structured into negotiation 
protocols. The dissipative structure described by the different protocols is a co- 
operative task decomposition process based on the exchange of orders between 
the agents implementing a distributed and decentralised scheduling algorithm 
for this application domain. 

For the rest of this section we stress three aspects of this approach: the 
planning of the single agents, the forms of cooperation, and the mechanisms for 
task decomposition. 

3.1 The Distributed Scheduling Approach 

The task of delivering several orders is basically a scheduling problem. What 
makes it even harder is the two-dimensionality of task decomposition resulting 
from the special domain. The goods to be transported can be distributed to 
several means of transport (truck, train, ship, plane), and the route between two 
cities on a road map can be splitted up into sub-routes which can be taken at 
different times using different conveyances. Due to the combinatorial explosion 
resulting from this, it is often impossible to devise a globally optimal plan. We 
tackle this problem by computing locally good solutions for each agent. Thus, we 
hope to get an reasonable overall solution for the given problem. This solution 
is further optimised by cooperation between the problem solving agents. Here 
two agents only agree to a solution if none of them gets a decrease in his local 
utility, and if at least one of them has an increase in utility by the deal. This 
process of negotiation leads to pareto-optimal solutions. 

The problem of allocating a set of orders to a set of trucks is an JV'7~-hard 
problem. This can be shown by reducing the Rural Postman Problem (cf. [12]) 
which is known to be A/'~P-complete to the decision problem which corresponds to 
the order allocation problem. The Rural Postman Problem is defined as follows: 

INSTANCE:  Graph G = (V, E), length l(e) E Z + for each e E E, subset 
E ~ C E, bound B E Z +. 
QUESTION: Is there a circuit in G that includes each edge in E I and that 
has total length of at most B? 

The Rural Postman Problem remains AlP-complete even if l(e) = 1 for all e E E. 
The relationship between the modified problem and the task allocation problem 
becomes clear when we consider a company agent who only possesses a single 
truck, and who has for each edge ei = (vi~, vi,) E E t an order o~ from location vi, 
to location vi2 which needs the whole capacity of the truck. Then, there exists 
a circuit in G including each edge in E' which has a total length of at most B 
iff there exists a route for the truck which is at most of length B. 
This reduction shows that both the task allocation problem and route planning 
of the trucks for a set of orders are .A/':P-hard problems (see [9] for the detailed 
proof). Thus, in order to keep them manageable in a computer implementation, 
heuristic algorithms have to be applied which do not guarantee optimality, but 
which in most cases provide good results in a reasonable amount of time. 
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The solution for the routing of the trucks is built up incrementally. If a truck 
has a plan to visit the locations 10,...,  In, l0 in order to deliver orders o l , . . . ,  or, 
and has to add a new order o from starting location s to target location t it 
inserts s and t into his plan such that the detour is minimised. This does not 
mean that s and t need not to be successive locations in the new plan. Rather, 
enough capacity has to remain to deliver the orders oi+1, �9 �9 oj+l together with 
order o. If s is inserted after li and t is inserted after lj with j > i, the detour is 
computed by the formula ~f j > i + 1 

detour = { dist(ll, s) 

dist(li, s) 

Jr dist(s, li+1) + dist(lj, t) + dist(t, 1~+1) 
- (dist(li, li+1) + dist(lj, lj+l)) 

+ dist(s, t) + dist(t, li+l) - dist(li, 1~+1) 

if j > i + l  

if j = i + l  

The time needed by this algorithm to insert one order into a delivery plan con- 
taining n locations to visit is bound by O(n2). The number of locations in a 
plan depends linearly on the number of orders a truck has got. Therefore, by 
this algorithm the time needed for the planning of a route for m orders is bound 
by O(mZ). The allocation of the orders to trucks by the company agent is done 
using the contract net protocol: the company agent offers an order to some eli- 
gible trucks who evaluate their plans and inform the company agent about that. 
Based on this information it chooses the best offer and allocates the order to 
that truck. It follows from the above considerations that this algorithm for the 
task allocation within a shipping company is also of time complexity O(mS). 

Another interesting question is what kind of algorithm is implemented by this 
procedure. However, this depends on the company agent's strategy for processing 
the m contract nets to allocate the orders: if it always completes a protocol 
before it initiates the one for the next order, the procedure described above 
implements a greedy algorithm for the task allocation process. An alternative 
to that strategy is that the company agent can maintain several contract net 
protocols for different orders at the same time and can base its decision on the 
information that it receives by all the bids in the different protocols. Thus, the 
strategies of the agent allow to incorporate a broad range of heuristics into the 
allocation process. However, the second alternative requires more sophisticated 
planning mechanisms, since there is high uncertainty in the plans. For instance, 
if an order is open for allocation and the truck is asked to give a bid for a 
second order, shall it believe that it is allocated the first one or not ~. The different 
assumptions lead to different bids. Therefore, in our system, we preferred the 
former strategy. 

The outcome of the task allocation can be improved by the cooperation 
between the different companies. A truck has some knowledge to find out weak 
points in his plan, e.g. empty rides or orders that lead to large detours. By 
telling its company agents about this he can initiate initiate different cooperation 
mechanisms by which the plans can be improved due to an exchange of orders 
between the agents. 
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3.2 Cooperation Settings 

In the previous subsection, the local algorithms used by the truck agents were 
described. In order to coordinate the local activities, and in order to achieve a 
coherent global behaviour of the system, the agents have to cooperate. In this 
subsection, we define three basic cooperation settings, namely vertical coopera- 
tion, horizontal cooperation, and enhanced cooperation, which we implemented 
in the MARS domain. 

Vert ical  Coope ra t ion  (VC) Vertical cooperation describes the process of task 
decomposition and task allocation between a shipping company and its trucks. 
This relation is hierarchical; the trucks are obliged to give their best to carry out 
orders given by their company, and they are obliged to provide the company with 
important information upon request. We use a slight variation of the contract 
net [8] in order to model this kind of interaction. 

More precisely the procedure is as follows: The shipping company partitions 
orders into cargos that can be transported by single trucks. These cargos are 
offered to the trucks of the company. The bid of a truck describes the costs that 
will arise for it when carrying out this order. According to local decision functions 
and the incoming bids of the trucks the company allocates the subtasks to some 
of the trucks. This basic solution closely corresponds to the centralised model of 
task decomposition which is described in section 3.3. An advanced release of the 
protocol allows the trucks to bid also for only a part of an order; this is one step 
towards a decentralisation of task decomposition. 

Hor izon ta l  Coope ra t i on  (HC) Horizontal cooperation means cooperation 
among a group of autonomous shipping companies. Companies can exchange 
orders and information about free loading capacity. This exchange, however, is 
not performed hierarchically; rather, it reveals all aspects of conflict, competition 
and cooperation which we find in human societies. The underlying model of 
cooperation has been described in [15, 19]. Agents are able to recognise so- 
called patterns of cooperation which describe situations where certain types of 
cooperation are both applicable and suitable. The execution of these patterns is 
described by cooperation protocols based on speech-acts. Agreements between 
companies (for example as to the price for delivering an order) are reached by 

negotiation. 
If we try to describe the HC setting in terms of task decomposition, it im- 

plements a decentralised model of task decomposition: the transportation com- 
panies negotiate on how they might decompose the transportation orders. In a 
certain sense, task allocation is decentralised, too, since the companies generate 
proposals how to allocate the orders among their group. 

E n h a n c e d  Coope ra t i on  (EC) In the enhanced cooperation setting, the rela- 
tionship among the companies is the same as in HC in a sense that they can 
exchange orders and information about free capacities. What is new is that it 
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extends the vertical cooperation. Trucks are assigned the ability to reflect on 
their plans. If a truck agent realises that it has a poor plan, it can cancel the 
contract made with its company for a specific order, i.e. it may give back its 
part of that order to its company. In this case, the order is offered again to the 
agent society. This procedure makes sure that the order will be executed in any 
case: if the society does not find a better way to process the order, the order 
automatically falls back to the truck (here, of course, infinite loops and cycles 
must be avoided by checking appropriate conditions). Thus, there is some risk 
in following the EC strategy: if no other company can do the task better, the 
truck has gained nothing, but only lost time. 

EC can be regarded as a decentralisation of the hierarchical task allocation 
implemented by the VC setting. According to EC, the trucks do not always and 
unconditionally have to accept a task allocation proposed by their company, but 
can undo this decision in certain cases. 

3.3 Task Decompos i t ion  and  Task Al loca t ion  in M A R S  

The development of multi-agent systems like MARS is motivated by the goM 
of providing a special purpose system that is able to accomplish a certain set 
of tasks. In the transportation domain these tasks are the transportation orders 
given by the users. An important question for the modelling of this domain is 
how these orders are allocated to the local resources of the companies, namely 
to their trucks. 

In section 2.1, it was already mentioned that the complexity of an order may 
exceed the capacity of a single shipping company. Therefore, the handling of an 
order consists of two phases: the task decomposition phase and the task allocation 
phase. During the former phase, a decomposition of a task (or an order) into a 
set of subtasks is computed recursively, until every subtask is small enough to 
be directly given to some truck. In the latter phase, particular agents have to be 
determined who will commit themselves to accomplishing the task. In general, 
each of these phases can be implemented in either a centralised or a decentralised 
manner, yielding four possible methods for task handling. 

Within our current implementation of the scenario at least three of these 
possible approaches may be found on different levels of the task handling process: 
the centralised task decomposition model (contract-net model), the decentralised 
task decomposition model, and the completely decentralised model. The first one, 
which is characterised by centralised decomposition and centralised allocation, 
is mainly used between a shipping company and its truck. It is implemented 
according to a contract net protocol (cf. [8]) as described in chapter 3.1. 

In general, the division of a task into a set of subtasks will be done by some 
heuristic that is available to the decomposition process. But as we are going 
to deal with open systems in the sense of [13], the heuristics cannot take care 
of the situation of all the agents that are currently part of the system. More- 
over, in [16] we presented an example that the decomposition using a heuristic 
that is not adequate at the moment may fail to compute a solution to a de- 
composition problem, although an appropriate decomposition is obvious from a 
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more global point of view. To overcome this, we proposed a decentralisation of 
the task decomposition process: Instead of offering subtasks to the trucks, the 
whole transportation order is offered to them. Their bids now consist of two 
parts: firstly, a part of the order they are able to accomplish, and secondly, an 
estimation of the cost associated with this partial order. The shipping company 
collects the proposals given by the trucks and uses this information to allocate 
the subtasks. 

In the completely decentralised model, task decomposition as well as task 
allocation phase are implemented as decentralised processes. It is used e.g. to 
describe cooperation between autonomous shipping companies, e.g. for dealing 
with a transportation order that exceeds the capacities of a single company. 
A company announces its interest in such an order to other companies and 
specifies a possible subtask of the order she would like to accomplish. The other 
companies may respond in the same manner, i.e. by announcing their interest 
in another possible subtask of this order, or they may respond by proposing a 
modification of the actual state of task decomposition and task allocation. The 
central technique for achieving a task decomposition and a task allocation that 
is commonly accepted is the negotiation of the different proposals among the 
companies that are involved in this process. This process was described in more 
detail in [16]. 

In the following section, we present an example and discuss how these differ- 
ent methods can influence the final solution. 

4 C o o p e r a t i o n  S e t t i n g s :  a n  E x a m p l e  

In this section, by means of the example shown in figure 1, we explain how 
vertical (VC), horizontal (HC), and enhanced (EC) cooperation work in practice: 
we consider two shipping companies, $1 and Sz. $1 resides in city B and $2 in 
city D. Each shipping company controls a set of two trucks each of which has 
a capacity of 40 units. The map contains 6 cities, named A, B, C, D, E, and F. 
The distances between the cities are given by the table shown in figure 1. Let us 
assume that the system receives a set of orders in the following sequence: 

O1 : 50 units from city A to city E; offered to $1 
02 : 10 units from city D to city E; offered to $1 
03 : 20 units from city D to city F; offered to $2 
O4 : 20 units from city E to city C; offered to $1 
05 : 20 units from city E to city C; offered to $1 

Example 1: Vertical Cooperation: In this first example, the shipping companies 
try to solve the problems on their own. The solution in this example is produced 
using purely vertical cooperation (VC) between the companies and their trucks. 
In doing so, truck T1 sl of shipping company $1 starts from city B to city A to 
collect 40 units of order O1, it then goes down to city E to drop 40 units of order 
Ox. It collects the orders 04 and 05 to bring them to city C. Another truck T2 s'  
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S 1 

C 

A $2 

J / / . / ' ~ o ~ - - l O /  Distances: 

E 03 =20 A 

/ C 18 
D 35 
E 24 

F F 41 

B C D E F 
22 18 35 24 41 
0 26 48 43 59 
26 0 22 34 51 
48 22 0 43 56 
43 34 43 0 16 
59 51 56 16 0 

Fig. 1. Example Scenario. 

starts from city B to city A to collect the 10 units which were left by truck T s~ . 
It then heads for city D to collect 02 and goes to city E to drop the 20 units of 
orders O1 and order Oz. Truck T1 s2 transports order Os from city D to city F.  

Let l(T) denote the length of the plan which was executed by truck T. l(T) 
specifies the costs which were necessary for truck T to fulfil its task. We get 
l(T s ')  = 22 + 24 + 34 = 80, I(T2 s') = 22 + 35 + 43 = 100, and l(T1 s2) = 56. 
Therefore, total costs of 236 were necessary to fulfil the whole set of orders. It it 
easy to see that, from a global point of view, this solution is not very good. But 
in fact, it is an optimal solution from the local point of view of each shipping 
company. 

Example 2: Horizontal Cooperation In this example everything remains the same 
as in example 1 except that the shipping companies do cooperate by offering 
orders to each other (see section 3.2). In our example, an offer made by another 
company is accepted if it is better than the offers made by the own trucks. If the 
shipping companies do behave like this, the solution for truck T1 st is the same as 
in example 1. Also, truck T s l  still starts from city B to city A to collect the 10 
units of order O1 which were left by T s~ . This time, however, it heads directly 
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to city E, because order O2 is passed from shipping company $1 to w 
company $2. 

In this example, I(T1 s ')  = 22 + 24 + 34 = 80, l(T~') = 22 + 24 = 46 and 
l(T1 s2) = 43 + 16 = 59 holds. Therefore, total costs of 185 result from fulfilling 
the whole set of orders. 

Example 3: Enhanced Cooperation The last example shows the effect of enhanced 
cooperation (EC). Here, the behaviour of the trucks is altered with respect to 
example 2. In example 2, T2 sl has a very poor plan: It starts from city B to city 
A to collect 10 units of order Or. It then goes to city E using just a quarter of 
its capacity. In this example now trucks are able to reflect on the quality of their 
plans. This means that T s l  realises before it starts from city B that its plan is 
poor. It gives back its part of order O1 to shipping company $1. Because trucks 
will only start going when there is no new order announced for some amount 
of time, all orders are already known in the system. This means that truck T s~ 
already has its local plan. At this time T2 s~ is no longer the best one to transport 
the 10 units of order Or. Due to cooperation between the shipping companies 
the 10 units of order Ot will be passed over to truck T1 s~ . 

The result is that T s~ executes the same plan as in example 2. Truck T s~ 
picks up order O2 and O3 in D and starts for city A, where it collects the 
remaining 10 units of order O1. It goes down to city E and unloads the 20 units 
of orders O1 and 02. Finally, it visits city F to drop order O3. T s~ has no longer 
a local plan and therefore stays in city B. This time, l(T s '  ) = 22 + 24 + 34 = 80 
and l(T~ ~) = 35 + 24 + 16 = 75 holds and therefore total costs of 155 result from 
fulfilling the whole set of orders. With respect to the first example 34 % of the 
costs could be saved. 

The above examples can be. demonstrated by our implementation of a multi- 
agent system for the transportation domain. The question is whether these nice 
problem-solving strategies will work in practice, too. Section 5 describes a series 
of experiments, where examples of 50 and 400 orders are simulated and evaluated. 

5 E x p e r i m e n t a l  R e s u l t s  

In this section, we describe a number of experiments we have run with the 
MARS system. As mentioned before, the main question is how different kinds 
of cooperation bring about different solutions to the task decomposition problem, 
and thus, lead to different behaviour of the system as a whole. In the previous 
section, three interesting cooperation settings have been discussed, namely VC, 
HC, and EC. We have seen how these settings correspond to the models of task 
decomposition and allocation presented in section 3.3. In the following, we will 
evaluate the different settings by means of a series of experiments. 

5.1 Descr ip t ion  of  t he  E x p e r i m e n t  

In our experiment, three transportation companies with their trucks had to carry 
out a number of orders. The following parameters could be varied: 
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- The number of trucks per company varied from 1 to 20. 
- The number of orders varied: we tested the system with order loads of 50 

and of 400 orders. Moreover, in order to ensure general validity of the results, 
each experiment was repeated 10 times with randomly generated loads. 

- Each experiment was carried out for the VC, the HC, and the EC setting. 

The experiments were run on a network of SUN SPARC stations. For the biggest 
experiment, the agents were run on eight SUN workstations in parallel. What 
was measured in the experiments were the costs caused by the trucks for carrying 
out the orders, as well as the average percentage of capacity load of the trucks. 
The costs were computed by a simple cost model: the costs caused by a truck 
are proportional to tke distance covered while carrying out the orders. 

5.2 Resul t s  

Figure 2 shows the result of experiment 1 (which actually has been a series of 
experiments), which was run with an order load of 50 orders. Figure (2.1) dis- 
plays the cost caused for solving the scheduling problem. Figure (2.2) shows the 
average capacity load of the trucks. The x-axis denotes the number of trucks per 
company. The y-axis is labelled with the cost and the load percentage, respec- 
tively. The curves show the behaviour of the system for the three cooperation 
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settings defined in section 4. 
Experiment 2 is a reiteration of the former experiments with a bigger order 

load. This time, the society of transportation companies had to deliver a set of 
400 orders. Figure 3 reveals the results for this scenario. Again, in figure (3.1), 
the costs are displayed, whereas in figure (3.2), the average capacity load of the 
trucks is shown. 
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In figure 4, some statistical'indices characterising the solutions found by VC 
and HC for experiment one with a number of five trucks per company are shown. 
Note, that the standard deviation can be regarded as a measure for the stability 
of the different forms of cooperation, i.e. for how much the computed solutions 
depend on variations of the input. 

Coop. Setting 
VC 
HC 

Costa~g Costma~ Costing. Standard Deviation 
16,859 31,604 7,706 5677.6 
13,365 21,200 7,210 3560.0 

Fig. 4. Statistical Indices for Experiment One, Five Trucks per Company 

Finally, figure 5 displays a comparison of the estimated number of messages 
sent by the agents using the VC, HC, and EC settings for experiment 1. We 
will use this as a measure for the run-time efficiency. An interpretation of the 
experimental data is provided in the following subsection. 

5.3 Discussion 

Let us now have a closer look at the basic results of the experiments described 

in the previous section. 

Quality of the Solutions: If we compare the costs in figures (2.1) and (3.1), the 
most obvious result is that in both experiments, the average cost can be reduced 
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considerably by introducing horizontal cooperation. Moreover, as problems get 
more complex, using horizontal cooperation pays off more and more: if we look at 
the case of 20 trucks, using the HC setting in the experiment 1 reduces the cost 
by about 21% compared to the VC solution, whereas in the bigger experiment 2, 
cost are reduced by 28%. On the other hand, the EC strategy does not seem to 
yield considerably better results than HC. This is discussed below. 

As regards the average capacity load of the trucks, there are three remarkable 
points: Firstly, the VC strategy yields a slightly better load percentage than the 
HC strategy. Secondly, with the number of trucks increasing, the load percentage 
tends to decrease. Thirdly, the EC strategy yields the best capacity loads, on an 
average. What seems to be a bit confusing at a first glance is that the poor VC 
strategy results in better capacity loads than the sophisticated HC. Intuitively, 
we could think that lower costs and a better utilisation of capacity go hand 
in hand. In fact, the relationship is not as straightforward as it seems to be. A 
truck can go long ways - as long as it is fully loaded, the capacity load will be ok. 
Therefore, a single truck can reach a high capacity load by combining orders in a 
clever manner - this, however, does not automatically imply that the plan causes 
little costs. This is the main reason why VC results in a good capacity usage. On 
the other hand, EC combines the low cost of HC with the good capacity load of 
VC. 

Runtime Efficiency: Run-time efficiency was measured by the number of mes- 
sages which were sent by agents to other agents. Here, the results clearly con- 
firmed our assumptions: a higher communication overhead is the price to pay 
for the better solutions obtained by using the EC and HC settings. However, 
this overhead drastically depends both on the internal decision criteria of the 
companies and on the negotiation protocols used. In the example, each company 
offers each order to any acquainted other company. By using more intelligent 
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(heuristic) criteria for partner selection, the amount of messages can be drasti- 
cally reduced. In our experiments, we could not state considerable differences in 
run-time between VC and HC, whereas EC is considerably more time-consuming. 

Stability and Convergence: Obviously, the solution obtained by HC converges 
against a stable local state very quickly. For example, in experiment one, this 
stable state is reached with only five trucks, and the cost does not change when 
more trucks are used. Moreover, the behaviour of HC systems seems to be less 
sensitive to changing input data: figure 4 shows that both the difference between 
minimal and maximal cost values and the standard deviation is much smaller if 
HC is used than if VC is used." This, however, satisfies the evaluation criteria of 
graceful degradation and flexibility proposed by [24]. EC is both the least stable 
and the least predictable strategy, since trucks decide to drop their plans based 
solely on local quality criteria. EC produces cost comparable to HC, a capac- 
ity usage comparable to VC, but a very high computation and communication 
overhead. Thus, the experience is confirmed that modelling in the small requires 
one to be very careful, since locally reasonable decisions lead to factually no 

global improvement, or even to a decrease of the system behaviour, unless the 
design and the parameter setting are done in a very cautious way. Finding better 
decision criteria for EC is a subject of our future work. 

Optimal Solution Up to now, we have not said anything about optimal solu- 
tions to the scheduling problems solved by our system in the two experiments. 
Of course, it would be fine to know about the real optima. However, since the 
orders arrive asynchronously and are scheduled dynamically, and since message 
deliverance times have to be taken into consideration, such a reference solution 
cannot be obtained by using static OR methods like Branch and Bound algo- 
rithms (see e.g. [5]). Up to now, and as far as we know, no practicable approaches 
towards solving this problem exist. This corresponds to the fact that evaluation 
of large distributed systems is a big problem in general. 

6 C o n c l u s i o n  

The transportation domain was introduced as a multi agent application, The 
use of specific DAI techniques for the cooperation between the agents and for 
task decomposition and allocation were described. By means of a series of ex- 
periments, first results as regards the influence of local criteria to the emerging 
functionality of the system as a whole were reported. 

Thus, there are three main contributions of the paper: Firstly, we showed 
how different models and mechanisms of task decomposition, task allocation, 
and of cooperation can be used in order to model a real-world application and 
in order to solve hard real-world problems such as the scheduling problem by 
applying the paradigm of emergent functionality. Secondly, our empirical results 
confirm that the multi-agent approach is a suitable approach for modelling and 
solving this kind of problems. Thirdly, our experiments can be useful in a more 
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practical sense: cooperation among t ranspor ta t ion companies appears  to be an 
impor tan t  subject when it comes to solve today ' s  world-wide traffic problems. 
The reduction of costs which has been observed in our experiments can turn out 
to be a strong and convincing argument  in favour of this type of cooperation. 
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