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A b s t r a c t .  The use of layered architectures for modeling autonomous 
agents has become popular over the past few years. In this paper, dif- 
ferent approaches how these architectures can be build are discussed. A 
special case, namely vertically layered architectures is discussed by the 
example of the INTERRAP agent model. The paper focusses on the lower 
levels of the architecture which provide reactivity, incorporate procedural 
knowledge, and which connect the cooperation and planning layers with 
the outside world. We claim that the lower system layers are likely to 
become a control bottleneck in vertically layered architectures, and that 
very careful modeling is required to produce the desired agent behaviour. 

1 I n t r o d u c t i o n  

Over the past few years, several different architectures for autonomous systems 
have been proposed in the (D)AI literature (e.g. [2, 8, 3, 14, 4, 7, 10, 5, 16, 15]). 
An important class of approaches to modeling systems that  have to behave in 
a goal-directed manner in a complex, changing environment are layered archi- 
tectures. This approach regards an agent as consisting of several hierarchical 
functional modules, representing the different requirements on an agent, such 
as reactivity, efficiency, goal-directed behaviour, and coordination with others, 
as well as representing different qualities and levels of abstraction concerning 
the agent's knowledge (e.g. from raw sensor data  to the description of complex, 
rather abstract situations). Basically all these approaches are somehow linking 
the input into an agent (its perception) into a kind of output from the agent 
(normally regarded as the actions the agent performs). Most of them define an 
agent cycle using perception in order to update the agent's internal state, i.e. its 
beliefs about the world, then use this world model as a basis to do some kind 
of decision-making (planning), possibly taking into account other agents, finally 
leading to a decision as to what to do next, i.e. to the actions to be performed in 
the next agent cycle. Possible layers of these agent models incorporate percep- 
tion and action, reactivity (behaviour-based layer), local planning, cooperation, 
modeling, intentions, and learning. 

In this paper, we identify and describe several basic classes of layered ar- 
chitectures. We focus on a specific class, namely vertically layered architectures, 
and describe a concrete instance, the agent architecture INTERFtAP. INTERRAP 
consists of two basic units, the agent control unit and the agent knowledge base, 
which both share a hierarchical structure. The four control layers are (from low- 
er to upper): the agents' world interface definition (WIF); the behaviour-based 
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component (BBC); the plan-based component (PBC); and the cooperation com- 
ponent (CC). The agent knowledge base is designed as a hierarchical blackboard 
system which is basically splitted into four layers corresponding to the structure 
of the control component. It is not the purpose of this paper to give a thor- 
ough description of the agent architecture; this has been done elsewhere [13]. 
Rather we argue that the way the lower layers are modelled is of special im- 
portance in vertically layered architectures since every piece of information and 
any control discussion has to pass them. Therefore, we focus on the design of 
the behaviour-based component of the INTERRAP model. Several aspects will 
be discussed that have to be taken into account and problems which have to 
be solved when dealing with this problem. As an example, we will look at the 
world interface and behaviour-based component used to implement KHEPERA 
miniature forklift robots. The different functionalities defined at the BBC layer 
and the basic control structures used to schedule the patterns of behaviour will 
be described. Different mechanisms for pattern selection will be discussed in the 
light of this example, such as static and dynamic priorities between patterns, 
the use of genetic algorithms, suppression mechanisms, and knowledge-based 
methods. 

2 L a y e r e d  A r c h i t e c t u r e s  

Among the many instances of layered architectures mentioned in the intro- 
duction, we can distinguish between two fundamental classes: horizontally lay- 
ered architectures (such as the ones developed by Brooks 112], Kaelbling[8], and 
Ferguson [4]) and vertically layered architectures (such as MECCA[15] and 
INTERRAP[13]). Whereas all the layers of an agent have access both to the 
perception and action components in horizontal architectures, only one (and 
normally: the lowest) layer has a direct interface to these facilities in the vertical 
approach. This is illustrated by figure 1. Ferguson's Touring Machines archi- 
tecture [4] is a very good example of a horizontally layered architecture (figure 
la). It consists of three control layers, the reactive layer, the planning layer, and 
the modeling layer. All the layers work concurrently, have access to the agent ' s  
perception and may propose actions. In order to achieve coherence, Ferguson's 
agents employ a set of global control rules which may suppress the input to a 
certain layer (suppressors) and which may censor the output of a layer. Brooks 
[2] employs similar mechanisms (suppression and inhibition) in order to enable 
higher layers to suppress inputs to and to inhibit output from lower layers. 

The need for a centralized control authority and the complexity of its design 
seems to be one of the key problem with horizonatally layered architecture. In 
an architecture consisting of n layers, even if we restrict ourselves to  bilateral 
interactions between layers, each layer may theoretically interact with each other 

1 Note that Brooks' approach is often referred to as vertical decomposition approach, 
since it divides up the functionality of an agent in a hierarchical manner; this should 
not be confounded with the fact that the access to perception and action is possible 
for each layer, and that it therefore describes a vertical architecture in our notation. 
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Fig. 1. Vertical and Horizontal Agent Architectures 

layer, leading to ~ bilateral cases to be described, each of which can be very 2 
complex itself. Thus, in horizontal approaches, the bottleneck is control. This 
observation has led to the development of vertically layered architectures, which 
impose certain restrictions on the possible interactions among different layers. 
An example for vertically layered architectures (figure lc) is the INTERRAP 
agent architecture [13]. which is the model underlying our work. INTERRAP 
describes an agent as consisting of trhee hierarchical layers, the behaviour-based 
component,  the plan-based component, and the cooperation component.  The 
basic concepts of INTERRAP are described in section 3. 

The MECCA architecture proposed by Steiner et al. [15] can be regarded as 
a variation of a vertically layered architecture (figure lb).  Reasoning within an 
agent is regarded as running in four phases which are represented by four mod- 
ules: goal activation, planning, scheduling, and execution. The main difference 
between INTERRAP and MECCA is that the modularization in the latter archi- 
tecture is functional, whereas it is conceptual in the former; the MECCA modules 
correspond to different functionalities of an agent whereas the INTERRAP layers 
rather constitute different levels of abstraction of similar functionalities. 

Due to the nature of the flow of Control in vertical agent architectures, the way 
the lower layers are modeled are crucial for these class of agent models. On the 
one hand, using vertical architectures such as INTERRAP saves one from having 
to define the sort of global control knowledge that  is specified in horizontally 
layered architectures: the only thing that  needs to be done for an architecture 
with layers 1 . . . n  is to define n -  1 interfaces between directly neighbouring 
modules. On the other hand, there is a price to pay for this convenience: anything 
the agent does must pass its lowest layer. In the case of the INTERRAP agent, 
the behaviour-based layer is the critical layer: this layer firstly has to react to 
unforeseen events, secondly monitors the execution of what we call the agent's 
abstract actions based upon commands from the local planning layer, thirdly 
must maintain constraints imposed by the local planning context, and, last but  
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not least, may be affected with commitments obtained by cooperative activities. 
Thus it is the task of the behaviour-based component to maintain and to 

schedule a set of possibly concurrent patterns of behaviour, being activated by 
the recognition of certain situations and by decisions made at higher layers of 
the agent architecture. What should become clear from this discussion is that 
whether a vertical agent architecture can be used successfully for modeling agents 
in a specific domain is to a large extent influenced by a more or less careful 
modeling of the lower layers of the agent as well as their interface to higl~er 
layers. 

3 The  INTERRAP Agent  Model  

The main idea of INTERRAP is to define an agent by a set of functional layers, 
linked by a activation-based control structure and a shared hierarchical knowl- 
edge base. Figure 2 overviews the INTERRhP agent model. It consists of five 
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Fig. 2. The INTERRAP Agent Model 

basic parts: the world interface (WIF), the behaviour-based component (BBC), 
the plan-based component (PBC), the cooperation component (CC), and the 
agent knowledge-base. The WIF contains the agent's facilities for perception, 
action, and communication. The BBC implements and controls the basic reac- 
tive behaviour of the agent as well as its procedural knowledge (abstract actions). 
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It is based on the concept of patterns of behaviour. These allow an agent to re- 
act flexibly to its environment, and to perform routine tasks efficiently without 
requiring explicit symbolic planning. The  PBC contains a planning mechanism 
which is able to devise local single-agent plans. The plans are hierarchical skele- 
tal plans whose nodes may be either new subplans, or executable pat terns of 
behaviour, or primitive actions. Thus, the plan-based component may activate 
patterns of behaviour in order to achieve certain goals. Planning helps an agent 
to act in a goal-directed manner. Moreover, in a multi-agent context, planning 
is necessary to coordinate actions of agents. For instance, agents should be able 
to devise joint plans ([9]) to cope with special situations. This functionality is 
provided by the cooperation component CC. 

The agent knowledge base is designed as a hierarchical blackboard system 
which is basically splitted into three layers corresponding to the structure of 
the control component: the agents' world model containing its object-level be- 
liefs about the world; the mental model holding autoepistemic knowledge, and 
knowledge about the agent's mental state (goals, plans, intentions); finally, the 
social model representing what an agent believes about other agents, as well as 
information about joint goals, plans, and intentions Information access is possi- 
ble only from lower layers to higher layers of the knowledge base. For example, 
the PBC can access information about the world model, whereas the PBC does 
not have access to planning or cooperation information. 

The overall control behaviour of an INTERRAP agent emerges from the com- 
munication among the different modules. Based on interesting events happening 
in the world (situations) recognized by the agent, control is shifted upward until 
the appropriate layer to deal with the situation. There are three generic exe- 
cution paths describing general classes of problem-solving: the reactive path, the 
local planning path, and the cooperative planning path. The reactive path treats a 
situation by direct execution of a pattern of behaviour, without involving explicit 
planning. The local planning path makes use of the local planning resources of 
the agents: control is shifted upward from the BBC to the PBC where a plan is 
devised. Finally, the cooperative planning path is selected if a situation cannot 
be satisfactorily solved by local planning. Except these generic paths, there exist 
other, more complex interactions, especially between the PBC and CC. For ex- 
ample, in order to make a decision in a negotiation protocol, it can be necessary 
to determine the possibility and the cost of locally solving a specific subproblem. 

In the rest of this paper and for the reasons motivated in the introduction, 
we will focus on the BBC and WIF components. We refer to [13, 12] for a more 
detailed description of the planning and cooperation layer and of the control 
aspects of the architecture. 

4 B e h a v i o u r - B a s e d  M o d e l i n g  

In this section, the lower layers of the INTERRAP model are described in detail. 
Subsection 4.1 discusses the agent's world interface. In subsection 4.2, we present 
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our concept of patterns of behaviour. Subsection 4.3 describes the basic control 
cycle of the behaviour-based component. 

4.1 The  Wor ld  In ter face  

As stated above, the world interface implements the basic facilities of an agent for 
performing actions, handling messages, and perceiving its environment. Defin- 
ing the interface between the behaviour-based layer and the world interface layer 
is an important design decision. For many applications, an obvious possibility 
to define the world interface is by using the primitives given by the applica- 
tion itself. This can be the case for example in a robot application, where the 
designer's possibility to model the behaviour of its robots is based on the ex- 
isting hardware. Therefore, we call this interface the hardware interface (HI). 
The advantage of this approach is that the separation is clear and given in ad- 
vance. Moreover, the behaviour-based component may directly access all the 
functionality of the system; thus, control is maximized. On the other hand, the 
behaviour-based component becomes machine-dependent, and is based on a low 
degree of abstraction. 

Different approaches to separating WIF and BBC are what we call the sym- 
bolic//subsymbolic interface (SSI) and the abstraction interface (AbI); according 
to the former, the quality of reasoning (symbolic or subsymbolic) is the criterion 
for dividing between WlF and BBC. That means, subsymbolic reasoning is done 
in the WlF, the BBC starts where information is stated explicitly at a symbolic 
layer. The advantage of the SSI approach is that it can be defined more flexi- 
bly than HI and increases abstraction and hardware independence. However, it 
offers only little help in deciding what should be represented at a symbolic and 
at a subsymbolic layer, respectively. The latter approach, the abstraction inter- 
face, can overcome this weakness: the main idea behind it is to define logically 
primitive actions for a given application. Experience has shown that it is easy 
to specify this interface for many applications. 

In the simulation of the loading dock, for example, it turned out to be rea- 
sonable to specify the actoric world interface of the forklifts by primitive actions 
such as walk_ahead, turn_left, turn_right, grasp_box, put_box. Thus, a pattern 
of behaviour goto_landmark may call walk_ahead as a primitive action having 
the agent move to the field in front of it. In the KHEPERA implementation 
with real robots, moving one field ahead is by no means primitive for a robot. 
Rather, it is a complex action, implying following the guiding line, controlling 
speed and avoiding collisions. The functionality offered by the hardware interface 
of the robots such as read_speed(<right-motor, left-motor>), set_speed(<right- 
motor, left-motor>}, read_proximity_sensors, read_floor_sensors, is partially too 
low-level. Therefore, the WlF-definition in the KHEPERA implementation lies 
somewhere in between and consists of a set of functions such as go(speed), 
right_curve(intensity), left_curve(intensity), which are more abstract than e.g. 
set_speed, but more specific than walk_ahead.. 
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4.2 P a t t e r n s  o f  B e h a v i o u r  

Patterns of behaviour are the essential structural primitives of the behaviour- 
based component.  They incorporate the reactive abilities and the procedural 
knowledge of an agent. The former allow an agent to react quickly, flexibly, 
and often avoiding explicit replanning, to certain unexpected events, the latter 
provide the primitives for the plan-based component of an INTERRAP agent 

S t r u c t u r e  According to their activation/effect functionality, we distinguish be- 
tween four basic types of patterns: reactors, control modifiers, knowledge modi- 
fiers, and procedures. Reactor patterns are triggered by external events and cause 
the agent to perform some sort of action. For example, stopping when facing an 
obstacle in front of it should be implemented as a reactor pattern.  Knowledge 
modifiers are patterns that change the internal state of the agent (e.g. its knowl- 
edge). They are activated by changes in the world perceived by the agent (i.e. by 
changes in the agent's world model). In our approach, they are used to imple- 
ment the recognition and classification of situations and world model abstraction. 
Similar to knowledge sources in a blackboard system, there are patterns that  rec- 
ognize and abstract specific situations (e.g. another agent ahead, standing in a 
narrow corridor). Other patterns recognize more complex pat tern based on the 
results of the lower-level knowledge modifiers. Control modifiers are patterns 
that  expand control to the planner by calling the PBC. For example, a pat tern 
t r e a t _ o r d e r _ b e h  will activate the PBC with the goal of planning an order as 
so on as the agent has received a transportation order. Finally, procedure pat- 
terns implement what is viewed as abstract actions by the planner. For example, 
moving straight ahead to a landmark is likely to be implemented as a procedure 
in a robot application, i.e. is atomic from the perspective of the PBC. These 
patterns can be compiled down from plans. Since we assume that  the planner 
basically plans actions, our classification does not take into account patterns 
that  are triggered internally and yield only a modification of the agent's world 
model or an activation of the planner. Based on this classification, patterns of 
behaviour are abstractly defined as frame structures as shown in figure 3. The 
definition of a PoB consists of a description part and an execution part.  The  
description part  contains meta-information describing the pat tern of behaviour 
which is needed for the control mechanism, such as the activation condition and 
several monitoring conditions. The execution part contains the executable body 
of the pattern,  which is started if the pattern is selected by the control mech- 
anism. In the following, the elements of both parts will be described in more 
detail. 

T h e  D e s c r i p t i o n  P a r t  The basic elements of the description part  of a PoB are 
its activation condition and a set of monitoring conditions. All these conditions 
describe situations which are relevant for the selection and/or  execution of the 
pat tern and thus provide meta-information about the pattern.  The activation 
condition is a formula which whose satisfaction in a certain state of the world 
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( PoB 
: name 
:type 
:args 
:activation 
:monitor 
:failure 
:success 
:holding 
:exceptions 

:post 
:exec.body 

/* /lame of p a t t e r n  */  
/* r e a c t o r ,  mod i f i e r ,  procedure */ 
/* arguments */  
/* a c t i v a t i o n  condi t ion  */ 
/* condi t ions monitoring execut ion */ 
/* f a i l u r e  condi t ion:  s t o p  e x e c u t i o n  */ 
/* condi t ion f o r  successfu l  te rminat ion  */  
/* condi t ions  tha t  must h o l d  d u r i n g  e x e c u t i o n  */  
/* use r -def inab le  exceptions */  
/* condi t ion t h a t  must  h o l d  a f t e r  e x e c u t i o n  */ 
/* executable body;e .g ,  con t ro l  program */ ) 

Fig. 3. Patterns of Behaviour 

is a precondition for the PoB to be applicable in this world state. Thus, in each 
state of the world, there is a set of active patterns. Once one of the active pat- 
terns has been selected by the control mechanism (see below), its execution is 
monitored by a set of monitoring conditions. These conditions describe excep- 
tions which may occur during the execution of a pattern. An exception is a tuple 
(Cond, Act), where Cond is a state formula, and Act is an action description. 
The operational semantics is that  if Cond becomes satisfied by the current state 
of the world, Act is executed. Apart from a set of user-defined exceptions, there 
are some exceptions whose action parts possess a fixed semantics: For example, 
if the failure condition becomes satisfied during the execution of the pattern,  
execution is aborted with a failure; if the termination condition becomes sat- 
isfied, the pattern is terminated successfully. This allows to deal with the case 
that  the purpose of a pattern is reached by coincidence. Failure and termination 
conditions are of the form (Cond, Clean-Up) where Cond specifies the actual 
condition and Clean-Up specifies certain activities which have to be performed 
in order to ensure consistent termination/fai lure of the PoD. The necessity of 
the Clean-Up part will become obvious by the example in section 5. The condi- 
tions of an active pattern are monitored by so-called guards, which are basically 
knowledge modifiers, i.e. patterns of behaviour which become active when the 
respective condition (e.g. the termination condition of the parent pattern) be- 
comes true. For example, the termination condition for a PoB for moving to a 
landmark is satisfied when the agent has reached the landmark. This again is 
monitored by a guard pattern. 

Finally, a post condition may be specified which describes the essential prop- 
erties of the world after the execution of the pattern. Unlike the termination 
condition, the post condition is not monitored during execution. However, it 
may be accessed by the control mechanism in order to determine the degree of 
satisfaction for a PoB, that  can be used as a means for determining the priority 
of a pat tern (see also subsection 4.3 and [6]). 
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T h e  E x e c u t i o n  Part  The execution of a pattern of behaviour will cause the 
agent to perform actions in the world, to read its sensors, or in specific situations 
will lead to calling the plan-based component.  The execution procedure of  a 
PoB is specified in its execution part. Since the bodies of patterns of behaviour 
may be complex (for example: goto_landmark), and since several pat terns of 
behaviour may be active at a time, the granularity of execution is a critical 
topic: a scheduling mechanism is required that  allows stepwise execution which 
may alternate between different PoB. Execution granularity must not be too 
coarse in order to keep reactivity of the BBC, nor must it be too fine in order 
to reduce the overhead for changing between the execution frames of different 
PoB's  too often. In the sequel, a language for describing the bodies of PoB is 
defined. 

An Execution Language for PoB An execution language for PoB needs to satisfy 
the following requirements: 

- It has to allow stepwise execution providing reasonable stepwidths and al- 
lowing to specify atomic activities that must not be interrupted. 

- Its primitives should be the activation of WIF primitives, such as actions 
and sensors, and calls to the plan-based component.  

- It shall offer language constructs such as composition, tests, and iteration. 
For determining the values of test and iteration predicates, access to the 
knowledge base is needed. 

- Since patterns of behaviour may be compiled down from plans, they will ac- 
tivate other patterns of behaviour; sequential and parallel activation should 
be supported. 

Figure 4 shows the EBNF syntax of a language fulfilling these requirements. 
Keywords (e.g. whi le ,  if) appear in bold face, primitives in italics. Dots denote 
incomplete definitions. In the sequel, we will define the semantics of the execution 
language. 

Semantics The operational semantics of the language presented above is defined 
by an interpretation function step which takes as argument a language expres- 
sion. Step can be recursively defined as follows: 

step({ P }) de=f set block = true; step(P) ; set block = false 

step(P1; P2) aej step(P1); step(P2) 

step(while c do Pod)  de_j if c then step(P; while c do P) else true fi 

step(if c then Pl else P2 fi) de_j if c then step(P1) else step(P2) 
step(ex(P)) dej ex(P) 

step(call(pbc, X)) de..f call(pbc, X) 

step(activate([P[Rest])) de_f activate(P); step(activate(Rest)); 

step(activate(D) ) at, = true 
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program ::-- 
block ::= 
block-content ::= 

primitive-instr ::= 
condition ::= 
wif-execution ::= 
pbc-call ::= 
pob-activation ::= 
wif-primitive ::= 

goal-specification::= 
pob-spec-list ::= 
pob-specification ::= 
modifier ::-- 

block [';' program] 
'{' block-content '}' I primitive-instr 
while condition do block-content od I 
if  condition then  block-content else block-content fl I 
primitive-instr 
wif-execution I pbc-call I pob-activation I modifier 
atomic formula 
e x  '(' wif-primitive ')' 
call '(' pbc  ',' do  '(' goal-specification ')' ')' I . . .  
a c t i v a t e  '(' pob-spec-list ')' 
turn_left[ turn_right I ' go(' integer')' t 'right-curve(' integer')' l 
'left_curve(' integer ')'1 read_sensors I . . .  
formula 
'[' { pob-specification }+ ']' ')' 
pobname '(' parameter-list ')' 
assert  ground formula I re t rac t  ground formula 

Fig. 4. EBNF-Syntax of the Execution Language 

The function step is described using a meta  language. Ex, call, activate denote 
the physical actions of executing a WIF primitive, calling the PBC, or activating 
a pat tern of behaviour. [HIT ] denotes a list with first element H and rest T. 
While do od and i f  then else fi are interpreted as usual. In order to distinguish 
the meta language constructs from their object-level counterparts,  we do not use 
bold type for the former ones. The reason for the t reatment  of blocks will become 
clear in subsection 4.3, where the stepwise execution mechanism is described. 

4.3 T h e  B B C  C o n t r o l  C y c l e  

Up to now, we have described patterns of behaviour. The BBC of an agent 
consists of a set of patterns of behaviour and of a pattern maintenance unit 
which implements the control mechanism of the BBC. Next, in this subsection, 
this control mechanism is described. 

O v e r v i e w  In order to achieve the requirement of reactivity, the BBC control is 
implemented in a processing cycle: in each loop, it monitors changes in the world 
model caused by perception and commands received from the plan-based com- 
ponents. According to the new world state, several PoB may be active because 
their activation conditions are satisfied or because they have become active in 
an earlier world state and have not yet been finished. The basic task of the BBC 
cycle is to determine the active patterns based on the updated world model, 
then to select one PoB for execution in the current cycle, and to execute it one 
step further. The control cycle algorithm is shown in figure 5. At the beginning 
of each cycle, the agent updates its world model based on its current percep- 
tion and based on activation messages from the PBC and from other patterns 
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r* Variables: 
t* POBSET: 
t* ACTi: 
r* INACTi: 
t* PERCi: 
t* ACT-REQi: 
t* PoBi: 
t* WMi: 

*/ 
set of all patterns of behaviour */ 
set of PoB which are active by the end of cycle i */ 
set of PoB which are not active by the end of cycle i */ 
perception at the beginning of cycle i */ 
PoB activation requests at beginning of cycle i */ 
pattern of behaviour selected for execution in cycle i */ 
world model in cycle i 

bbc-cycle(POBSET) 
{ i : = 0 ;  

ACTi := 0; 
WMi := init_kb; 
INACTi := POBSET; 
repeat 

WMi+ i := update-state(WMi, PERCI+I, ACT-REQi+ 1); 
ACTi+I := det_active_pob(ACTi, INACTI, WMi+I); 
PoBi+l := select_pattern(ACTi+l, WMI+I); 
WMi+I := execute_pob(PoBi+l, WMir 

INACTI+I := POBSET - ACTi+I; 
i : = i + 1  

forever } 

Fig. 5. The BBC Control Algorithm 

of behaviour. The actual processing of the cycle runs in three phases, which are 
discussed in more detail in the following subsections. 

D e t e r m i n i n g  A c t i v e  P a t t e r n s  The function det_active_pob(Wll,  ACT, INACT) 
is used in each BBC cycle in order to determine the current set of active patterns 
of behaviour. In the following, let 7 ) denote a set of patterns of behaviour, and 
let L: denote a set of propositions (denoting e.g. an agent's world model). For a 
pattern p E 7)a let p.AC, p.TC, and p.FC denote p's activation, termination, 
and failure condition, respectively. A pattern is called active at a certain time if 
the activation condition of the pattern is satisfied at that time, or if the pattern 
has been activated at an earlier time and has not yet terminated or failed. Thus, 
det_active_pob is a function 5 : 2 ~ x 2 ~' x 2 ~' ~-~ 2 "p, where 

~ ( W Mi + I , Acti , InActl ) def: 

{p �9 InActilWMi+l ~ p.AC} U {p' �9 Actil3j.j  < iA  WMj  ~ p.ACA 
~3k. j  < k < i A (WMk ~ p.TC V WMk ~ p.FC)}. 

P a t t e r n  S e l e c t i o n  We see that different PoB may be active at a time. How- 
ever, our model assumes a sequential model of execution. That  means, only one 
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pattern may have the control to initiate an action at a certain time. It is a conse- 
quence of this fact that one pattern must be selected for execution in each BBC 
cycle. This selection is performed by the function s e l e e t _ p a t t e r n ( A e t P L i s t ) .  
It is defined as a function ~r : 2 7' • 2 c ~ 7~. It is the task of this function to 
select the most urgent, most important ,  or most useful PoB to be executed in 
a specific situation described by the second argument of ~,, the agent's current 
world model. Pat tern selection problem; it has turned out to be the core problem 
of behaviour-based modeling, and the way it is implemented is crucial for the 
behaviour of the agent, for its reactivity as well as for its capability to handle 
complex situations. In the following, we outline two approaches for modeling 
pattern selection, both of them based on a priority mechanism. 

Static Priorities: The Maslow Pyramid Very often, we can identify classes of 
patterns of behaviour that  are generally more urgent or more important  than 
others. Based on a hierarchical classification of human needs by the psychologist 
Maslow [11], we defined four hierarchical classes of patterns of behaviour: PoB 
corresponding to physical goals (e.g. remain unharmed, avoid collisions, ensure 
energy supply), to task-related goals (e.g. perform transportat ion tasks), to so- 
cial goals (e.g. help other agents), and PoB corresponding to optimization goals 
(explore regions, improve plans). Maslow claims that  the lower-level needs have 
higher priority than the higher-level needs, and that  the former must be satisfied 
before a human starts satisfying the latter. 

This classification of patterns of behaviour in an application results in a static 
preordering of the patterns, and allows to express e.g. that  if an agent has a task 
to fulfill and it detects a threatening collision, the collision avoidance pattern has 
higher priority than the task-oriented pattern. In their DASEDIS architecture, 
[3] pursue a similar approach by associating behaviours with intentions and by 
defining a total ordering on the intentions. 

Dynamic Priorities: Degree of Satisfaction (DOS) The static priority approach 
has some serious drawbacks. Firstly, it provides no guidance to select between two 
patterns classified at the same classification layer. Secondly, the relative priority 
of a pattern often depends on the current situation. Thirdly, giving task-related 
goals a higher priority than social goals does not support cooperative behaviour. 
Strictly speaking, it would even imply that  an agent only cooperates if it has 
no local tasks to achieve - which is definitely not what is intended. A better  
approach seems to be to compute the priority of a pattern dynamically based on 
its degree of satisfaction (a similar idea has been proposed by [6] in the context 
of decision-theoretic planning). The degree of satisfaction of a PoB is a function 
of the amount  of resources consumed by the pattern,  and of how much of the 
goal corresponding to the pat tern has already been achieved. For example, the 
DoS of the pattern of behaviour goto_landmark can be expressed by 

DoS(goto_landmark(Xa, Ya)) = 1 - dist((Xs,  Yo), ((Xa, Ya)) 
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where (X, ,  Ys), (Xc~rr, Yc~r~), (Xd, Yd) denote the s tar t  position, the current po- 
sition, and the destination position of the agent, respectively, dist (Pl, P2) denotes 
the Euclidean distance between two points pl and p~. A general possibility to 
compute  the DoS is by comparing the actual s tate  of the world with the post  
condition of the pat tern.  I f  we allow only conjunctive, pairwise independent for- 
mulae to define postconditions, and assume tha t  we can evaluate the t ru th  value 
of the part ial  formulae by simple matching against the world model, we can use 
the percentage of satisfied subgoals as a coarse measure for the degree of sat- 
isfaction. Another  approach is to mainta in  statistical or heuristic models about  
the average (expected) t ime and resource consumption of pat terns  of behaviour,  
and to es t imate  the degree of satisfaction based on these models. 

P a t t e r n  E x e c u t i o n  The execution of a pa t tern  of behaviour which has been 
chosen in the selection phase is monitored by the function e x e c u t e _ p a t t e r n ( P o B ,  
W~I). e x e c u t e _ p a t t e r n  is a function c : ~ • 2 ~ ~-~ 2 z which determines the change 
of an agent 's  internal state by executing a pat tern  of behaviour in a given state. 
As stated above, the execution mechanism has to provide stepwise execution of 
pat terns  of behaviour. In the sequel, we will outline how an execution schedul- 
ing mechanism can be achieved by slightly modifying the interpretation function 
step defined in subsection 4.2. 

The main idea behind the scheduling algorithm is to define one execution step 
either as the (computat ion plus) execution of the next primitive instruction or as 
the execution of a block defined by the p rogrammer  of the pat tern.  Tha t  means,  
we provide a high-level scheduling mechanism which allows the p rogrammer  to 
define the granulari ty of execution - and which also forces he r /h im to take the 
responsibility for selecting an appropriate  choice. 

The function e x e c u t e _ p a t t e r n  can be implemented by modifying the step 
function for primitive instructions as follows: 

step(ex(P)) 

step(call(pbc, X)) 

step (activate ([P]Rest])) 

d e f  

d e f  

d e f  

ex(P); 
if block = false then store_execution_frame; exit fi 

call(pbc, X); 
if block = false then store_execution_frame; exit 

else true fi 

activate(P); step(activate(Rest); 
if block = false then store_execution_frame; exit 

else true fi 
step(activate(D) ) def true 

b l o c k  is a boolean variable which is set to true at each entrance into a block 
structure defined by the user, and set to false again when leaving the block. If a 
primit ive instruction is processed, it is tested whether it occurred inside a block. 
If this is not the case, the current execution step is finished. Then,  the execution 
frame of the pat tern  (which stores the local s tate  of processing) is stored and 
control returns to the BBC cycle. 
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5 A n  E x a m p l e  

The application that  will be used to illustrate the model described in the previous 
chapter is the FORKS system. FORKS describes a simulation of an automat-  
ed loading-dock, where autonomous forklift agents have to load and to unload 
trucks. In the loading dock, there are shelves which may contain different types 
of goods. We use a grid-based representation of the loading-dock. The forklifts 
can move from one square to the next, turn around, grasp and store goods, and 
communicate with other agents. Each agent has a certain range of perception, 
which it can observe. Currently, a physical implementation based on K HEP ERA  
miniature robots has been initiated, which differs from the simulation mainly by 
the definition of the world interface (see also section 4.1). The patterns of be- 
haviour defined in the following refer to the KHEPERA implementation. 

To give a better  idea how the BBC works, we present some examples of PoB 
in our FORKS system and trace some steps of the control cycle. 

( PoB 

) 

( PoB 

: name 

:type 
:args 
:activation 
:monitor 

:success 

:exception 

:exec_body 

gotoJandmark 
procedure 
(destX,destY) 
msg(activate(goto~andmark(destX,destY))) 

my_pos(destX,destY) 
([(return~tatus(waXk.ahead) ffi f a i l u r e ,  

enable(dodge))]) 

while true do 
a~tivate(turn_to~ree_dir(destX,destY)); 
activate(walk.head); 

od 

:name dodge 

:type reactor 
:activation object~n-front 
:exec_body activate(step_aside); 

Fig. 6. Patterns of Behaviour goto_landmark, dodge 

The name of the PoB illustrated in figure 6 is goto_landmark. It is a procedure 
which is activated by a call (message) of the PBC or another PoB and it receives 
the destination field as argument. The purpose of goto_landmavk is to move the 
robot from its actual position to the destination field. There are no monitors 
for failure, holding or other exceptions. Only successful termination is checked: 
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the PoB succeeds, if the robot stands on the destination field. In the body, two 
further PoBs are called, turn_to_free_dir(x, y) turns the robot in a direction, where 
the field in front of it is free and a step forward decreases the distance to the 
destination field, if such a direction exists, walk_ahead makes the robot move one 
field ahead. 

When this PoB gets active (by a call from the PBC) and is selected to 
be executed, the function step processes the body until it reaches the expres- 
sion activate(turn_to_free_dirO). Now the PoB turn_to_free_dir becomes active 
and goto_landmark is suspended until turn_to_free_dir is finished, i.e. the body 
will not be executed furthermore, but  the success-monitor keeps running. If 
turn_to_free_dir succeeds, goto_landmark continues and on the next execution 
step walk_ahead will be activated. If turn_to_free_dir fails, goto_landmark fails 
too. The activation of walk_ahead behaves the same way, except that  its failure 
is handled by an exception: the reactor pattern dodge is enabled which tries to 
move around the obstacle; walk_ahead fails only in case dodge also fails. If the 
monitor  reports success of the PoB, all child PoB are deactivated and the PoB 
ends with success. 

The reason why it is advantageous to implement the functionality of go- 
to_landmark as a pattern of behaviour in our case is that  it is only activated by 
the planner in order to move the robot between places where there is no (static) 
obstacle in between. The only unforeseen event that  could happen is that  anoth- 
er agent crosses the way. This case can often be managed by the behaviour-based 
component  without doing explicit replanning by defining a reactor pat tern that  
has the agent dodge as illustrated in figure 6. 

6 C o n c l u s i o n  a n d  O u t l o o k  

In this paper, we discussed problems occurring when modeling the lower layers 
of a vertically layered architecture. We have used the example of the behaviour- 
based layer of the agent architecture INTERRAP. The structure of and the pro- 
cessing within this layer was described. 

In a certain sense, describing an agent by a set of interacting layers makes 
agent design itself a multi-agent problem. The benefits of decentralizing knowl- 
edge, competence, and control within an agent have to be weighed against the 
effort introduced by the coordination among the different layers. One conclu- 
sion we draw from this observation is that  there certainly is an upper bound 
to a reasonable number of different layers, which may differ for certain applica- 
tions. The second conclusion is that  we might use coordination techniques from 
multi-agent systems in order to solve the coherence problem within the agent, 
i.e. the problem of make the different layers work together smoothly. An example 
for an idea how the problem-solving power of the INTERRAP architecture can 
be enhanced is to use the contract net protocol with t ime-out mechanisms for 
controlling concurrent, t ime-dependent planning at different layers. This would 
allow different layers to work on a given time-dependent task concurrently and 
to choose the best solution found so far by the time of the deadline. These issues 
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are related to anyt ime planning (see also [1]) and are further interesting research 
topics in agent design. 

We thank Michael Wooldridge and Nick Jennings for valuable comments  on 
earlier versions of this paper.  They greatly helped improving its quality. The  
work presented in this paper  has been supported by the German  Ministry of 
Research and Technology under grant ITW9104. 
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