
Modeling Reactive Behaviour in Vertically
Layered Agent Architectures

Jhrg P. Mfiller, Markus Pischel, Michael Thiel

DFKI, Stuhlsatzenhausweg 3, D-66123 Saarbriicken

A b s t r a c t . The use of layered architectures for modeling autonomous
agents has become popular over the past few years. In this paper, dif-
ferent approaches how these architectures can be build are discussed. A
special case, namely vertically layered architectures is discussed by the
example of the INTERRAP agent model. The paper focusses on the lower
levels of the architecture which provide reactivity, incorporate procedural
knowledge, and which connect the cooperation and planning layers with
the outside world. We claim that the lower system layers are likely to
become a control bottleneck in vertically layered architectures, and that
very careful modeling is required to produce the desired agent behaviour.

1 I n t r o d u c t i o n

Over the past few years, several different architectures for autonomous systems
have been proposed in the (D)AI literature (e.g. [2, 8, 3, 14, 4, 7, 10, 5, 16, 15]).
An important class of approaches to modeling systems that have to behave in
a goal-directed manner in a complex, changing environment are layered archi-
tectures. This approach regards an agent as consisting of several hierarchical
functional modules, representing the different requirements on an agent, such
as reactivity, efficiency, goal-directed behaviour, and coordination with others,
as well as representing different qualities and levels of abstraction concerning
the agent's knowledge (e.g. from raw sensor data to the description of complex,
rather abstract situations). Basically all these approaches are somehow linking
the input into an agent (its perception) into a kind of output from the agent
(normally regarded as the actions the agent performs). Most of them define an
agent cycle using perception in order to update the agent's internal state, i.e. its
beliefs about the world, then use this world model as a basis to do some kind
of decision-making (planning), possibly taking into account other agents, finally
leading to a decision as to what to do next, i.e. to the actions to be performed in
the next agent cycle. Possible layers of these agent models incorporate percep-
tion and action, reactivity (behaviour-based layer), local planning, cooperation,
modeling, intentions, and learning.

In this paper, we identify and describe several basic classes of layered ar-
chitectures. We focus on a specific class, namely vertically layered architectures,
and describe a concrete instance, the agent architecture INTERFtAP. INTERRAP
consists of two basic units, the agent control unit and the agent knowledge base,
which both share a hierarchical structure. The four control layers are (from low-
er to upper): the agents' world interface definition (WIF); the behaviour-based

262

component (BBC); the plan-based component (PBC); and the cooperation com-
ponent (CC). The agent knowledge base is designed as a hierarchical blackboard
system which is basically splitted into four layers corresponding to the structure
of the control component. It is not the purpose of this paper to give a thor-
ough description of the agent architecture; this has been done elsewhere [13].
Rather we argue that the way the lower layers are modelled is of special im-
portance in vertically layered architectures since every piece of information and
any control discussion has to pass them. Therefore, we focus on the design of
the behaviour-based component of the INTERRAP model. Several aspects will
be discussed that have to be taken into account and problems which have to
be solved when dealing with this problem. As an example, we will look at the
world interface and behaviour-based component used to implement KHEPERA
miniature forklift robots. The different functionalities defined at the BBC layer
and the basic control structures used to schedule the patterns of behaviour will
be described. Different mechanisms for pattern selection will be discussed in the
light of this example, such as static and dynamic priorities between patterns,
the use of genetic algorithms, suppression mechanisms, and knowledge-based
methods.

2 L a y e r e d A r c h i t e c t u r e s

Among the many instances of layered architectures mentioned in the intro-
duction, we can distinguish between two fundamental classes: horizontally lay-
ered architectures (such as the ones developed by Brooks 112], Kaelbling[8], and
Ferguson [4]) and vertically layered architectures (such as MECCA[15] and
INTERRAP[13]). Whereas all the layers of an agent have access both to the
perception and action components in horizontal architectures, only one (and
normally: the lowest) layer has a direct interface to these facilities in the vertical
approach. This is illustrated by figure 1. Ferguson's Touring Machines archi-
tecture [4] is a very good example of a horizontally layered architecture (figure
la). It consists of three control layers, the reactive layer, the planning layer, and
the modeling layer. All the layers work concurrently, have access to the agent ' s
perception and may propose actions. In order to achieve coherence, Ferguson's
agents employ a set of global control rules which may suppress the input to a
certain layer (suppressors) and which may censor the output of a layer. Brooks
[2] employs similar mechanisms (suppression and inhibition) in order to enable
higher layers to suppress inputs to and to inhibit output from lower layers.

The need for a centralized control authority and the complexity of its design
seems to be one of the key problem with horizonatally layered architecture. In
an architecture consisting of n layers, even if we restrict ourselves to bilateral
interactions between layers, each layer may theoretically interact with each other

1 Note that Brooks' approach is often referred to as vertical decomposition approach,
since it divides up the functionality of an agent in a hierarchical manner; this should
not be confounded with the fact that the access to perception and action is possible
for each layer, and that it therefore describes a vertical architecture in our notation.

L a y e r n

Laye r n - I

L a y e r 2

L a y e r 1

a) Horizontal architecmx, e

263

b)

t Laye r n t
] ~ L a y e r n- I

t. L a y e r 2 .t
I v L a y e r I T

p L a y e r n

p L a y e r n - l |

t

*Layer 2 *
~Laye r 1

b) and c) different kinds of vertical architectures

Fig. 1. Vertical and Horizontal Agent Architectures

layer, leading to ~ bilateral cases to be described, each of which can be very 2
complex itself. Thus, in horizontal approaches, the bottleneck is control. This
observation has led to the development of vertically layered architectures, which
impose certain restrictions on the possible interactions among different layers.
An example for vertically layered architectures (figure lc) is the INTERRAP
agent architecture [13]. which is the model underlying our work. INTERRAP
describes an agent as consisting of trhee hierarchical layers, the behaviour-based
component, the plan-based component, and the cooperation component. The
basic concepts of INTERRAP are described in section 3.

The MECCA architecture proposed by Steiner et al. [15] can be regarded as
a variation of a vertically layered architecture (figure lb). Reasoning within an
agent is regarded as running in four phases which are represented by four mod-
ules: goal activation, planning, scheduling, and execution. The main difference
between INTERRAP and MECCA is that the modularization in the latter archi-
tecture is functional, whereas it is conceptual in the former; the MECCA modules
correspond to different functionalities of an agent whereas the INTERRAP layers
rather constitute different levels of abstraction of similar functionalities.

Due to the nature of the flow of Control in vertical agent architectures, the way
the lower layers are modeled are crucial for these class of agent models. On the
one hand, using vertical architectures such as INTERRAP saves one from having
to define the sort of global control knowledge that is specified in horizontally
layered architectures: the only thing that needs to be done for an architecture
with layers 1 . . . n is to define n - 1 interfaces between directly neighbouring
modules. On the other hand, there is a price to pay for this convenience: anything
the agent does must pass its lowest layer. In the case of the INTERRAP agent,
the behaviour-based layer is the critical layer: this layer firstly has to react to
unforeseen events, secondly monitors the execution of what we call the agent's
abstract actions based upon commands from the local planning layer, thirdly
must maintain constraints imposed by the local planning context, and, last but

264

not least, may be affected with commitments obtained by cooperative activities.
Thus it is the task of the behaviour-based component to maintain and to

schedule a set of possibly concurrent patterns of behaviour, being activated by
the recognition of certain situations and by decisions made at higher layers of
the agent architecture. What should become clear from this discussion is that
whether a vertical agent architecture can be used successfully for modeling agents
in a specific domain is to a large extent influenced by a more or less careful
modeling of the lower layers of the agent as well as their interface to higl~er
layers.

3 The INTERRAP Agent Model

The main idea of INTERRAP is to define an agent by a set of functional layers,
linked by a activation-based control structure and a shared hierarchical knowl-
edge base. Figure 2 overviews the INTERRhP agent model. It consists of five

HIv~r~hl~d
Agvet ~B

~q~m~n Knowte~
(r a~tsxt)

Joint Goahl I Plans

(metal context)
Local Goals I Plans

Wodcl Model
(situational context)

PsttermJ of BeluvJour

A ~ n g

w o r I d

Communica~on I Perception

l a t v r f Q a ~ (W I F)

E N V I R O N M E N T
control flow

. information access

Fig. 2. The INTERRAP Agent Model

basic parts: the world interface (WIF), the behaviour-based component (BBC),
the plan-based component (PBC), the cooperation component (CC), and the
agent knowledge-base. The WIF contains the agent's facilities for perception,
action, and communication. The BBC implements and controls the basic reac-
tive behaviour of the agent as well as its procedural knowledge (abstract actions).

265

It is based on the concept of patterns of behaviour. These allow an agent to re-
act flexibly to its environment, and to perform routine tasks efficiently without
requiring explicit symbolic planning. The PBC contains a planning mechanism
which is able to devise local single-agent plans. The plans are hierarchical skele-
tal plans whose nodes may be either new subplans, or executable pat terns of
behaviour, or primitive actions. Thus, the plan-based component may activate
patterns of behaviour in order to achieve certain goals. Planning helps an agent
to act in a goal-directed manner. Moreover, in a multi-agent context, planning
is necessary to coordinate actions of agents. For instance, agents should be able
to devise joint plans ([9]) to cope with special situations. This functionality is
provided by the cooperation component CC.

The agent knowledge base is designed as a hierarchical blackboard system
which is basically splitted into three layers corresponding to the structure of
the control component: the agents' world model containing its object-level be-
liefs about the world; the mental model holding autoepistemic knowledge, and
knowledge about the agent's mental state (goals, plans, intentions); finally, the
social model representing what an agent believes about other agents, as well as
information about joint goals, plans, and intentions Information access is possi-
ble only from lower layers to higher layers of the knowledge base. For example,
the PBC can access information about the world model, whereas the PBC does
not have access to planning or cooperation information.

The overall control behaviour of an INTERRAP agent emerges from the com-
munication among the different modules. Based on interesting events happening
in the world (situations) recognized by the agent, control is shifted upward until
the appropriate layer to deal with the situation. There are three generic exe-
cution paths describing general classes of problem-solving: the reactive path, the
local planning path, and the cooperative planning path. The reactive path treats a
situation by direct execution of a pattern of behaviour, without involving explicit
planning. The local planning path makes use of the local planning resources of
the agents: control is shifted upward from the BBC to the PBC where a plan is
devised. Finally, the cooperative planning path is selected if a situation cannot
be satisfactorily solved by local planning. Except these generic paths, there exist
other, more complex interactions, especially between the PBC and CC. For ex-
ample, in order to make a decision in a negotiation protocol, it can be necessary
to determine the possibility and the cost of locally solving a specific subproblem.

In the rest of this paper and for the reasons motivated in the introduction,
we will focus on the BBC and WIF components. We refer to [13, 12] for a more
detailed description of the planning and cooperation layer and of the control
aspects of the architecture.

4 B e h a v i o u r - B a s e d M o d e l i n g

In this section, the lower layers of the INTERRAP model are described in detail.
Subsection 4.1 discusses the agent's world interface. In subsection 4.2, we present

266

our concept of patterns of behaviour. Subsection 4.3 describes the basic control
cycle of the behaviour-based component.

4.1 The Wor ld In ter face

As stated above, the world interface implements the basic facilities of an agent for
performing actions, handling messages, and perceiving its environment. Defin-
ing the interface between the behaviour-based layer and the world interface layer
is an important design decision. For many applications, an obvious possibility
to define the world interface is by using the primitives given by the applica-
tion itself. This can be the case for example in a robot application, where the
designer's possibility to model the behaviour of its robots is based on the ex-
isting hardware. Therefore, we call this interface the hardware interface (HI).
The advantage of this approach is that the separation is clear and given in ad-
vance. Moreover, the behaviour-based component may directly access all the
functionality of the system; thus, control is maximized. On the other hand, the
behaviour-based component becomes machine-dependent, and is based on a low
degree of abstraction.

Different approaches to separating WIF and BBC are what we call the sym-
bolic//subsymbolic interface (SSI) and the abstraction interface (AbI); according
to the former, the quality of reasoning (symbolic or subsymbolic) is the criterion
for dividing between WlF and BBC. That means, subsymbolic reasoning is done
in the WlF, the BBC starts where information is stated explicitly at a symbolic
layer. The advantage of the SSI approach is that it can be defined more flexi-
bly than HI and increases abstraction and hardware independence. However, it
offers only little help in deciding what should be represented at a symbolic and
at a subsymbolic layer, respectively. The latter approach, the abstraction inter-
face, can overcome this weakness: the main idea behind it is to define logically
primitive actions for a given application. Experience has shown that it is easy
to specify this interface for many applications.

In the simulation of the loading dock, for example, it turned out to be rea-
sonable to specify the actoric world interface of the forklifts by primitive actions
such as walk_ahead, turn_left, turn_right, grasp_box, put_box. Thus, a pattern
of behaviour goto_landmark may call walk_ahead as a primitive action having
the agent move to the field in front of it. In the KHEPERA implementation
with real robots, moving one field ahead is by no means primitive for a robot.
Rather, it is a complex action, implying following the guiding line, controlling
speed and avoiding collisions. The functionality offered by the hardware interface
of the robots such as read_speed(<right-motor, left-motor>), set_speed(<right-
motor, left-motor>}, read_proximity_sensors, read_floor_sensors, is partially too
low-level. Therefore, the WlF-definition in the KHEPERA implementation lies
somewhere in between and consists of a set of functions such as go(speed),
right_curve(intensity), left_curve(intensity), which are more abstract than e.g.
set_speed, but more specific than walk_ahead..

267

4.2 P a t t e r n s o f B e h a v i o u r

Patterns of behaviour are the essential structural primitives of the behaviour-
based component. They incorporate the reactive abilities and the procedural
knowledge of an agent. The former allow an agent to react quickly, flexibly,
and often avoiding explicit replanning, to certain unexpected events, the latter
provide the primitives for the plan-based component of an INTERRAP agent

S t r u c t u r e According to their activation/effect functionality, we distinguish be-
tween four basic types of patterns: reactors, control modifiers, knowledge modi-
fiers, and procedures. Reactor patterns are triggered by external events and cause
the agent to perform some sort of action. For example, stopping when facing an
obstacle in front of it should be implemented as a reactor pattern. Knowledge
modifiers are patterns that change the internal state of the agent (e.g. its knowl-
edge). They are activated by changes in the world perceived by the agent (i.e. by
changes in the agent's world model). In our approach, they are used to imple-
ment the recognition and classification of situations and world model abstraction.
Similar to knowledge sources in a blackboard system, there are patterns that rec-
ognize and abstract specific situations (e.g. another agent ahead, standing in a
narrow corridor). Other patterns recognize more complex pat tern based on the
results of the lower-level knowledge modifiers. Control modifiers are patterns
that expand control to the planner by calling the PBC. For example, a pat tern
t r e a t _ o r d e r _ b e h will activate the PBC with the goal of planning an order as
so on as the agent has received a transportation order. Finally, procedure pat-
terns implement what is viewed as abstract actions by the planner. For example,
moving straight ahead to a landmark is likely to be implemented as a procedure
in a robot application, i.e. is atomic from the perspective of the PBC. These
patterns can be compiled down from plans. Since we assume that the planner
basically plans actions, our classification does not take into account patterns
that are triggered internally and yield only a modification of the agent's world
model or an activation of the planner. Based on this classification, patterns of
behaviour are abstractly defined as frame structures as shown in figure 3. The
definition of a PoB consists of a description part and an execution part. The
description part contains meta-information describing the pat tern of behaviour
which is needed for the control mechanism, such as the activation condition and
several monitoring conditions. The execution part contains the executable body
of the pattern, which is started if the pattern is selected by the control mech-
anism. In the following, the elements of both parts will be described in more
detail.

T h e D e s c r i p t i o n P a r t The basic elements of the description part of a PoB are
its activation condition and a set of monitoring conditions. All these conditions
describe situations which are relevant for the selection and/or execution of the
pat tern and thus provide meta-information about the pattern. The activation
condition is a formula which whose satisfaction in a certain state of the world

268

(PoB
: name
:type
:args
:activation
:monitor
:failure
:success
:holding
:exceptions

:post
:exec.body

/* /lame of p a t t e r n */
/* r e a c t o r , mod i f i e r , procedure */
/* arguments */
/* a c t i v a t i o n condi t ion */
/* condi t ions monitoring execut ion */
/* f a i l u r e condi t ion: s t o p e x e c u t i o n */
/* condi t ion f o r successfu l te rminat ion */
/* condi t ions tha t must h o l d d u r i n g e x e c u t i o n */
/* use r -def inab le exceptions */
/* condi t ion t h a t must h o l d a f t e r e x e c u t i o n */
/* executable body;e .g , con t ro l program */)

Fig. 3. Patterns of Behaviour

is a precondition for the PoB to be applicable in this world state. Thus, in each
state of the world, there is a set of active patterns. Once one of the active pat-
terns has been selected by the control mechanism (see below), its execution is
monitored by a set of monitoring conditions. These conditions describe excep-
tions which may occur during the execution of a pattern. An exception is a tuple
(Cond, Act), where Cond is a state formula, and Act is an action description.
The operational semantics is that if Cond becomes satisfied by the current state
of the world, Act is executed. Apart from a set of user-defined exceptions, there
are some exceptions whose action parts possess a fixed semantics: For example,
if the failure condition becomes satisfied during the execution of the pattern,
execution is aborted with a failure; if the termination condition becomes sat-
isfied, the pattern is terminated successfully. This allows to deal with the case
that the purpose of a pattern is reached by coincidence. Failure and termination
conditions are of the form (Cond, Clean-Up) where Cond specifies the actual
condition and Clean-Up specifies certain activities which have to be performed
in order to ensure consistent termination/fai lure of the PoD. The necessity of
the Clean-Up part will become obvious by the example in section 5. The condi-
tions of an active pattern are monitored by so-called guards, which are basically
knowledge modifiers, i.e. patterns of behaviour which become active when the
respective condition (e.g. the termination condition of the parent pattern) be-
comes true. For example, the termination condition for a PoB for moving to a
landmark is satisfied when the agent has reached the landmark. This again is
monitored by a guard pattern.

Finally, a post condition may be specified which describes the essential prop-
erties of the world after the execution of the pattern. Unlike the termination
condition, the post condition is not monitored during execution. However, it
may be accessed by the control mechanism in order to determine the degree of
satisfaction for a PoB, that can be used as a means for determining the priority
of a pat tern (see also subsection 4.3 and [6]).

269

T h e E x e c u t i o n Part The execution of a pattern of behaviour will cause the
agent to perform actions in the world, to read its sensors, or in specific situations
will lead to calling the plan-based component. The execution procedure of a
PoB is specified in its execution part. Since the bodies of patterns of behaviour
may be complex (for example: goto_landmark), and since several pat terns of
behaviour may be active at a time, the granularity of execution is a critical
topic: a scheduling mechanism is required that allows stepwise execution which
may alternate between different PoB. Execution granularity must not be too
coarse in order to keep reactivity of the BBC, nor must it be too fine in order
to reduce the overhead for changing between the execution frames of different
PoB's too often. In the sequel, a language for describing the bodies of PoB is
defined.

An Execution Language for PoB An execution language for PoB needs to satisfy
the following requirements:

- It has to allow stepwise execution providing reasonable stepwidths and al-
lowing to specify atomic activities that must not be interrupted.

- Its primitives should be the activation of WIF primitives, such as actions
and sensors, and calls to the plan-based component.

- It shall offer language constructs such as composition, tests, and iteration.
For determining the values of test and iteration predicates, access to the
knowledge base is needed.

- Since patterns of behaviour may be compiled down from plans, they will ac-
tivate other patterns of behaviour; sequential and parallel activation should
be supported.

Figure 4 shows the EBNF syntax of a language fulfilling these requirements.
Keywords (e.g. whi le , if) appear in bold face, primitives in italics. Dots denote
incomplete definitions. In the sequel, we will define the semantics of the execution
language.

Semantics The operational semantics of the language presented above is defined
by an interpretation function step which takes as argument a language expres-
sion. Step can be recursively defined as follows:

step({ P }) de=f set block = true; step(P) ; set block = false

step(P1; P2) aej step(P1); step(P2)

step(while c do Pod) de_j if c then step(P; while c do P) else true fi

step(if c then Pl else P2 fi) de_j if c then step(P1) else step(P2)
step(ex(P)) dej ex(P)

step(call(pbc, X)) de..f call(pbc, X)

step(activate([P[Rest])) de_f activate(P); step(activate(Rest));

step(activate(D)) at, = true

270

program ::--
block ::=
block-content ::=

primitive-instr ::=
condition ::=
wif-execution ::=
pbc-call ::=
pob-activation ::=
wif-primitive ::=

goal-specification::=
pob-spec-list ::=
pob-specification ::=
modifier ::--

block [';' program]
'{' block-content '}' I primitive-instr
while condition do block-content od I
if condition then block-content else block-content fl I
primitive-instr
wif-execution I pbc-call I pob-activation I modifier
atomic formula
e x '(' wif-primitive ')'
call '(' pbc ',' do '(' goal-specification ')' ')' I . . .
a c t i v a t e '(' pob-spec-list ')'
turn_left[turn_right I ' go(' integer')' t 'right-curve(' integer')' l
'left_curve(' integer ')'1 read_sensors I . . .
formula
'[' { pob-specification }+ ']' ')'
pobname '(' parameter-list ')'
assert ground formula I re t rac t ground formula

Fig. 4. EBNF-Syntax of the Execution Language

The function step is described using a meta language. Ex, call, activate denote
the physical actions of executing a WIF primitive, calling the PBC, or activating
a pat tern of behaviour. [HIT] denotes a list with first element H and rest T.
While do od and i f then else fi are interpreted as usual. In order to distinguish
the meta language constructs from their object-level counterparts, we do not use
bold type for the former ones. The reason for the t reatment of blocks will become
clear in subsection 4.3, where the stepwise execution mechanism is described.

4.3 T h e B B C C o n t r o l C y c l e

Up to now, we have described patterns of behaviour. The BBC of an agent
consists of a set of patterns of behaviour and of a pattern maintenance unit
which implements the control mechanism of the BBC. Next, in this subsection,
this control mechanism is described.

O v e r v i e w In order to achieve the requirement of reactivity, the BBC control is
implemented in a processing cycle: in each loop, it monitors changes in the world
model caused by perception and commands received from the plan-based com-
ponents. According to the new world state, several PoB may be active because
their activation conditions are satisfied or because they have become active in
an earlier world state and have not yet been finished. The basic task of the BBC
cycle is to determine the active patterns based on the updated world model,
then to select one PoB for execution in the current cycle, and to execute it one
step further. The control cycle algorithm is shown in figure 5. At the beginning
of each cycle, the agent updates its world model based on its current percep-
tion and based on activation messages from the PBC and from other patterns

271

r* Variables:
t* POBSET:
t* ACTi:
r* INACTi:
t* PERCi:
t* ACT-REQi:
t* PoBi:
t* WMi:

*/
set of all patterns of behaviour */
set of PoB which are active by the end of cycle i */
set of PoB which are not active by the end of cycle i */
perception at the beginning of cycle i */
PoB activation requests at beginning of cycle i */
pattern of behaviour selected for execution in cycle i */
world model in cycle i

bbc-cycle(POBSET)
{ i : = 0 ;

ACTi := 0;
WMi := init_kb;
INACTi := POBSET;
repeat

WMi+ i := update-state(WMi, PERCI+I, ACT-REQi+ 1);
ACTi+I := det_active_pob(ACTi, INACTI, WMi+I);
PoBi+l := select_pattern(ACTi+l, WMI+I);
WMi+I := execute_pob(PoBi+l, WMir

INACTI+I := POBSET - ACTi+I;
i : = i + 1

forever }

Fig. 5. The BBC Control Algorithm

of behaviour. The actual processing of the cycle runs in three phases, which are
discussed in more detail in the following subsections.

D e t e r m i n i n g A c t i v e P a t t e r n s The function det_active_pob(Wll, ACT, INACT)
is used in each BBC cycle in order to determine the current set of active patterns
of behaviour. In the following, let 7) denote a set of patterns of behaviour, and
let L: denote a set of propositions (denoting e.g. an agent's world model). For a
pattern p E 7)a let p.AC, p.TC, and p.FC denote p's activation, termination,
and failure condition, respectively. A pattern is called active at a certain time if
the activation condition of the pattern is satisfied at that time, or if the pattern
has been activated at an earlier time and has not yet terminated or failed. Thus,
det_active_pob is a function 5 : 2 ~ x 2 ~' x 2 ~' ~-~ 2 "p, where

~ (W Mi + I , Acti , InActl) def:

{p �9 InActilWMi+l ~ p.AC} U {p' �9 Actil3j.j < iA WMj ~ p.ACA
~3k. j < k < i A (WMk ~ p.TC V WMk ~ p.FC)}.

P a t t e r n S e l e c t i o n We see that different PoB may be active at a time. How-
ever, our model assumes a sequential model of execution. That means, only one

272

pattern may have the control to initiate an action at a certain time. It is a conse-
quence of this fact that one pattern must be selected for execution in each BBC
cycle. This selection is performed by the function s e l e e t _ p a t t e r n (A e t P L i s t) .
It is defined as a function ~r : 2 7' • 2 c ~ 7~. It is the task of this function to
select the most urgent, most important , or most useful PoB to be executed in
a specific situation described by the second argument of ~,, the agent's current
world model. Pat tern selection problem; it has turned out to be the core problem
of behaviour-based modeling, and the way it is implemented is crucial for the
behaviour of the agent, for its reactivity as well as for its capability to handle
complex situations. In the following, we outline two approaches for modeling
pattern selection, both of them based on a priority mechanism.

Static Priorities: The Maslow Pyramid Very often, we can identify classes of
patterns of behaviour that are generally more urgent or more important than
others. Based on a hierarchical classification of human needs by the psychologist
Maslow [11], we defined four hierarchical classes of patterns of behaviour: PoB
corresponding to physical goals (e.g. remain unharmed, avoid collisions, ensure
energy supply), to task-related goals (e.g. perform transportat ion tasks), to so-
cial goals (e.g. help other agents), and PoB corresponding to optimization goals
(explore regions, improve plans). Maslow claims that the lower-level needs have
higher priority than the higher-level needs, and that the former must be satisfied
before a human starts satisfying the latter.

This classification of patterns of behaviour in an application results in a static
preordering of the patterns, and allows to express e.g. that if an agent has a task
to fulfill and it detects a threatening collision, the collision avoidance pattern has
higher priority than the task-oriented pattern. In their DASEDIS architecture,
[3] pursue a similar approach by associating behaviours with intentions and by
defining a total ordering on the intentions.

Dynamic Priorities: Degree of Satisfaction (DOS) The static priority approach
has some serious drawbacks. Firstly, it provides no guidance to select between two
patterns classified at the same classification layer. Secondly, the relative priority
of a pattern often depends on the current situation. Thirdly, giving task-related
goals a higher priority than social goals does not support cooperative behaviour.
Strictly speaking, it would even imply that an agent only cooperates if it has
no local tasks to achieve - which is definitely not what is intended. A better
approach seems to be to compute the priority of a pattern dynamically based on
its degree of satisfaction (a similar idea has been proposed by [6] in the context
of decision-theoretic planning). The degree of satisfaction of a PoB is a function
of the amount of resources consumed by the pattern, and of how much of the
goal corresponding to the pat tern has already been achieved. For example, the
DoS of the pattern of behaviour goto_landmark can be expressed by

DoS(goto_landmark(Xa, Ya)) = 1 - dist((Xs, Yo), ((Xa, Ya))

273

where (X, , Ys), (Xc~rr, Yc~r~), (Xd, Yd) denote the s tar t position, the current po-
sition, and the destination position of the agent, respectively, dist (Pl, P2) denotes
the Euclidean distance between two points pl and p~. A general possibility to
compute the DoS is by comparing the actual s tate of the world with the post
condition of the pat tern. I f we allow only conjunctive, pairwise independent for-
mulae to define postconditions, and assume tha t we can evaluate the t ru th value
of the part ial formulae by simple matching against the world model, we can use
the percentage of satisfied subgoals as a coarse measure for the degree of sat-
isfaction. Another approach is to mainta in statistical or heuristic models about
the average (expected) t ime and resource consumption of pat terns of behaviour,
and to es t imate the degree of satisfaction based on these models.

P a t t e r n E x e c u t i o n The execution of a pa t tern of behaviour which has been
chosen in the selection phase is monitored by the function e x e c u t e _ p a t t e r n (P o B ,
W~I). e x e c u t e _ p a t t e r n is a function c : ~ • 2 ~ ~-~ 2 z which determines the change
of an agent 's internal state by executing a pat tern of behaviour in a given state.
As stated above, the execution mechanism has to provide stepwise execution of
pat terns of behaviour. In the sequel, we will outline how an execution schedul-
ing mechanism can be achieved by slightly modifying the interpretation function
step defined in subsection 4.2.

The main idea behind the scheduling algorithm is to define one execution step
either as the (computat ion plus) execution of the next primitive instruction or as
the execution of a block defined by the p rogrammer of the pat tern. Tha t means,
we provide a high-level scheduling mechanism which allows the p rogrammer to
define the granulari ty of execution - and which also forces he r /h im to take the
responsibility for selecting an appropriate choice.

The function e x e c u t e _ p a t t e r n can be implemented by modifying the step
function for primitive instructions as follows:

step(ex(P))

step(call(pbc, X))

step (activate ([P]Rest]))

d e f

d e f

d e f

ex(P);
if block = false then store_execution_frame; exit fi

call(pbc, X);
if block = false then store_execution_frame; exit

else true fi

activate(P); step(activate(Rest);
if block = false then store_execution_frame; exit

else true fi
step(activate(D)) def true

b l o c k is a boolean variable which is set to true at each entrance into a block
structure defined by the user, and set to false again when leaving the block. If a
primit ive instruction is processed, it is tested whether it occurred inside a block.
If this is not the case, the current execution step is finished. Then, the execution
frame of the pat tern (which stores the local s tate of processing) is stored and
control returns to the BBC cycle.

274

5 A n E x a m p l e

The application that will be used to illustrate the model described in the previous
chapter is the FORKS system. FORKS describes a simulation of an automat-
ed loading-dock, where autonomous forklift agents have to load and to unload
trucks. In the loading dock, there are shelves which may contain different types
of goods. We use a grid-based representation of the loading-dock. The forklifts
can move from one square to the next, turn around, grasp and store goods, and
communicate with other agents. Each agent has a certain range of perception,
which it can observe. Currently, a physical implementation based on K HEP ERA
miniature robots has been initiated, which differs from the simulation mainly by
the definition of the world interface (see also section 4.1). The patterns of be-
haviour defined in the following refer to the KHEPERA implementation.

To give a better idea how the BBC works, we present some examples of PoB
in our FORKS system and trace some steps of the control cycle.

(PoB

)

(PoB

: name

:type
:args
:activation
:monitor

:success

:exception

:exec_body

gotoJandmark
procedure
(destX,destY)
msg(activate(goto~andmark(destX,destY)))

my_pos(destX,destY)
([(return~tatus(waXk.ahead) ffi f a i l u r e ,

enable(dodge))])

while true do
a~tivate(turn_to~ree_dir(destX,destY));
activate(walk.head);

od

:name dodge

:type reactor
:activation object~n-front
:exec_body activate(step_aside);

Fig. 6. Patterns of Behaviour goto_landmark, dodge

The name of the PoB illustrated in figure 6 is goto_landmark. It is a procedure
which is activated by a call (message) of the PBC or another PoB and it receives
the destination field as argument. The purpose of goto_landmavk is to move the
robot from its actual position to the destination field. There are no monitors
for failure, holding or other exceptions. Only successful termination is checked:

275

the PoB succeeds, if the robot stands on the destination field. In the body, two
further PoBs are called, turn_to_free_dir(x, y) turns the robot in a direction, where
the field in front of it is free and a step forward decreases the distance to the
destination field, if such a direction exists, walk_ahead makes the robot move one
field ahead.

When this PoB gets active (by a call from the PBC) and is selected to
be executed, the function step processes the body until it reaches the expres-
sion activate(turn_to_free_dirO). Now the PoB turn_to_free_dir becomes active
and goto_landmark is suspended until turn_to_free_dir is finished, i.e. the body
will not be executed furthermore, but the success-monitor keeps running. If
turn_to_free_dir succeeds, goto_landmark continues and on the next execution
step walk_ahead will be activated. If turn_to_free_dir fails, goto_landmark fails
too. The activation of walk_ahead behaves the same way, except that its failure
is handled by an exception: the reactor pattern dodge is enabled which tries to
move around the obstacle; walk_ahead fails only in case dodge also fails. If the
monitor reports success of the PoB, all child PoB are deactivated and the PoB
ends with success.

The reason why it is advantageous to implement the functionality of go-
to_landmark as a pattern of behaviour in our case is that it is only activated by
the planner in order to move the robot between places where there is no (static)
obstacle in between. The only unforeseen event that could happen is that anoth-
er agent crosses the way. This case can often be managed by the behaviour-based
component without doing explicit replanning by defining a reactor pat tern that
has the agent dodge as illustrated in figure 6.

6 C o n c l u s i o n a n d O u t l o o k

In this paper, we discussed problems occurring when modeling the lower layers
of a vertically layered architecture. We have used the example of the behaviour-
based layer of the agent architecture INTERRAP. The structure of and the pro-
cessing within this layer was described.

In a certain sense, describing an agent by a set of interacting layers makes
agent design itself a multi-agent problem. The benefits of decentralizing knowl-
edge, competence, and control within an agent have to be weighed against the
effort introduced by the coordination among the different layers. One conclu-
sion we draw from this observation is that there certainly is an upper bound
to a reasonable number of different layers, which may differ for certain applica-
tions. The second conclusion is that we might use coordination techniques from
multi-agent systems in order to solve the coherence problem within the agent,
i.e. the problem of make the different layers work together smoothly. An example
for an idea how the problem-solving power of the INTERRAP architecture can
be enhanced is to use the contract net protocol with t ime-out mechanisms for
controlling concurrent, t ime-dependent planning at different layers. This would
allow different layers to work on a given time-dependent task concurrently and
to choose the best solution found so far by the time of the deadline. These issues

276

are related to anyt ime planning (see also [1]) and are further interesting research
topics in agent design.

We thank Michael Wooldridge and Nick Jennings for valuable comments on
earlier versions of this paper. They greatly helped improving its quality. The
work presented in this paper has been supported by the German Ministry of
Research and Technology under grant ITW9104.

References

1. M. Boddy and T. L. Dean. Deliberation scheduling for problem solving in time-
constrained environments. Artificial Intelligence, 67:245-285, 1994.

2. Rodney A. Brooks. A robust layered control system for a mobile robot. In IEEE
Journal of Robotics and Automation, volume RA-2 (1), April 1986.

3. B. Burmeister and K. Sundermeyer. Cooperative problem-solving guided by in-
tentions and perception. In E. Werner and Y. Demazean, editors, Decentralized
A.L 3. North-Holland, 1992.

4. I. A. Ferguson. TouringMachines: An Architecture for Dynamic, Rational, Mobile
Agents. PhD thesis, Computer Laboratory, University of Cambridge, UK,, 1992.

5. R. James Firby. Building symbolic primitives with continuous control routines.
In J. Hendler, editor, Proc. of the First International Conference on A I Planning
Systems. Morgan Kaufmann Publishers, San Mateo, CA, 1992.

6. P. Haddawy and S. Hanks. Utility models for goal-directed decision-theoretic plan-
ners, 1994. Submitted to Artificial Intelligence journal.

7. N.R. Jermings. Joint Intentions as a Model o] Multi-Agent Cooperation. PhD
thesis, Queen Mary and Westfield College, London, August 1992.

8. L.P. Kaelbling. An architecture for intelligent reactive systems. In J. Allen,
J. Hendler, and A. Tare, editors, Readings in Planning, pages 713-728. Morgan
Kaufmarm, 1990.

9. 13. Kirmy, M. Ljungberg, A. Rao, E. Sonenberg, G. Tidhar, and E. Werner.
Planned team activity. In A. Cesta, R. Conte, and M. Miceli, editors, Pre-
Proceedings of MAAMAW'9~, July 1992.

10. D. M. Lyons and A. J. Hendriks. A practical approach to integrating reaction and
deliberation. In Proc. of the 1st International Conference on A I Planning Systems
(AIPS), pages 153-162, San Mateo, CA, June 1992. Morgan Kaufmann.

11. A. H. Maslow. A theory of human motivation. Psychological Review, 50:370-396,
1943.

12. J. P. Miiller. Evaluation of plans for multiple agents (preliminary report). In
K. Fischer and G. M. P. O'Hare, editors, Working Notes of the ECAI Workshop
on Decision Theory for DAI Applications, Amsterdam, NL, August 1994.

13. J. P. Miiller and M. Pischel. Integrating agent interaction into a planner-reactor
architecture. In M. Klein, editor, Proc. of the 13th International Workshop on
Distributed Artificial Intelligence, Seattle, WA, USA, July 1994.

14. A. S. Rao and M. P. Georgeff. Modeling Agents Within a BDI-Architecture. In
R. Fikes and E. Sandewall, editors, Proc. of KR'91, Cambridge, Mass., April 1991.
Morgan Kaufmann.

15. D. D. Steiner, A. Burt, M. Kolb, and Ch. Lerin. The conceptual framework of
mai21. In Pre-Proceedings of MAAMAW'93, Neuch5tel, Switzerland, August 1993.

16. M. Wooldridge. On the Logical Modelling of Computational Multi-Agent Systems.
PhD thesis, UMIST, Department of Computation, Manchester, UK, 1992.

