
A Pragmatic BDI Architecture*

Klaus Fischer, J~rg P. Miiller**, Markus Pischel

DFKI GmbH, Stuhlsatzenhausweg 3, D-66123 Saarbrticken

Abstract. We present a unifying perspective of the individual control layers
of the agent architecture INTERRAP. INTERRAP aims at modeling autonomous
resource-bounded agents that interact with each other in dynamic multiagent
environments. INTERRAP implements a pragmatic Belief-Desire-Intention (BDI)
architecture, where the agent's mental state is distributed over a set of layers.
Based on the processes of situation recognition and planning and scheduling, a
uniform description for each control layer - the behavior-based layer, the local
planning layer, and the cooperative planning layer - is provided. We demonstrate
various options for the design of interacting agents within this framework in
an interacting robots application. The performance of different agent types in a
multiagent environment is experimentally evaluated.

1 Introduction

The design of intelligent agents is an important research direction within multiagent
systems (MAS) [6], where the behavior of a society of agents is described by modeling
the individuals and their interactions from a local, agent-based perspective. Thus, finding
appropriate architectures for these individuals is one of the fundamental research issues
within agent design.

There are at least two reasons for dealing with agent architectures: One is to explain
and to predict agent behavior; this means to describe how an agent's decisions are
derived from its internal (mental) state and how this mental state is affected by the
agent's perception. The other reason is to actually support the design of MAS. It deals
with providing tools and methodologies for designing computational agents and their
interactions in an implemented system.

A prominent example for architectures that are primarily driven by the former reason
are BDI architectures [3, 15], describing the internal state of an agent by the mental
attitudes of beliefs, goals, and intentions. BDI theories provide a clear conceptual model
of the knowledge, the goals, and the commitments of an agent. However, they offer little
guidance to the modeling of motivation and intention formation; thus, they have to be
extended to actually support the design of resource-bounded and goal-directed agents
for practical applications.

Another important direction in intelligent agent design are layered architectures (see
Section 7). Layering is a powerful concept for the design of resource-bounded agents.

* The work presented in this paper has been supported by the German Ministry of Research and
Technology under grant ITW9104

** email: jpm@dfki.uni-sb.de, phone: ++49 681 302 5331, fax: ++49 681 3025341

204

It supports a natural modeling of different levels of abstraction, responsiveness, and
complexity of knowledge representation and reasoning. However, a recent criticism of
layered architectures has been that they are mainly motivated by intuition, and that they
are too complex to allow the formal investigation of properties of agents and multiagent
systems [19].

The agent architecture INTERRAP which is described in this paper aims at combining
the advantages of BDI-style architectures with those of layered ones. Thus, our goal
is to provide an architecture that serves both to explain agent behavior and to support
system design. INTERRAP adopts the mental categories used in BDI theory to describe
an agent's knowledge, goals, and state of processing. It extends the work of [15, 16]
by organizing an agent's state and control within a layered architecture. The problem-
solving capabilities of an agent are described hierarchically by a behavior-based layer,
a local planning layer, and a cooperative planning layer. INTERRAP adopts the BDI-
model rather in a conceptual than in a strictly theoretical sense. Thus, this paper does
not provide a new theory for beliefs, desires, and intentions, but takes a pragmatic
perspective.

Previous work [12, 13] has described the basic layered structure of the INTERRAP
architecture and a first simple concept and implementation of the individual control
layers. In this paper, we present a redesign of INTERRAP aimed to make the architecture
easier to describe and to make agents easier to analyze by providing a clear control
methodology. Using the FORKS application describing an automated loading dock as
an example, we then show how different agent types can be described using the control
framework and we provide empirical results comparing their behavior in the loading
dock.

2 T h e INTERRAP Agent Architecture

INTERRAP is an approach to modeling resource-bounded, interacting agents by com-
bining reactivity with deliberation and cooperation capabilities. This section illustrates
the basic concepts of the architecture. Due to space limitations, the discussion is kept
somewhat superficial. We refer to [12] for more details.

2.1 Overview

Figure 1 illustrates the overall structure of the architecture. INTERRAP describes an
agent by a world interface, a control unit, and a knowledge base (KB). The control unit
consists of three layers: the behavior-based layer (BBL), the local planning layer (LPL),
and the cooperative planning layer (CPL). The agent knowledge base is structured
correspondingly in a world model, a mental model, and a social model. The different
layers correspond to different functional levels of the agent. The purpose of the BBL is
to allow the agent to react to certain critical situations (by so-called reactor patterns of
behavior (PoBs)), and to deal with routine situations (using procedure PoBs). Reactors
are triggered by events recognized from the world model that incorporates the agent's
object-level knowledge about its environment. The LPL gives the agent the ability of
longer-term deliberation. It builds on world model information, but additionally uses

205

E N V I R O N M E N T I information access

contro f ow

Fig. 1. The INTERRAP agent architecture

the agent's current goals and local intentions maintained in the mental model part of
the knowledge base, as well as domain-dependent planning mechanisms available. The
CPL finally extends the planning functionality of an agent to j o in t plans, i.e., plans by
or for multiple agents that allow to resolve conflicts and to cooperate. Apart from world
model and mental model knowledge, the CPL uses information about other agents'
goals, skills, and commitments stored in the social model of the knowledge base. The
internal structure of the control components is explained in more detail in the following
sections of this paper.

In the following, let B, g, 27 denote the beliefs, goals, and intentions of an agent,
respectively, and let 7 9 denote a set of perceived propositions. The INTERRAP agent
architecture implements three basic functions:

- BR(79,13) - 13 is a belief revision and knowledge abstraction function, mapping
an agent's current perception 7 9 and its old beliefs B into a set of new beliefs B ~.

- SG(13, ~) -- ~t is a situation recognition and goal activation function, deriving new
goals 9~ from the agent's beliefs B and its current goals ~.

- PS(13, ~ , Z) = Z ~ is a planning and scheduling function, deriving a set Z ~ of new
intentions (commitments to courses of action) based on the beliefs B, the goals
selected by S G , and the current intentional structure 27 of the agent,

Table 1 shows how the functions defined above are distributed over the individual
layers. In this paper, we focus on the functions S G and P S . For issues of knowledge
representation and belief revision, we refer to [9].

206

Layer
Function

B R

S G

P S

BBL LPL CPL

generation and
revision of beliefs

(world model)

abstraction of
local beliefs

(mental model)

maintaining models
of other agents
(social model)

activation recognition of recognition of
of situations requirin~ situations requiring

reactor patterns local planning cooperative planning
reactor PoB: direct modifyinglocal modifying joint
link from situations intentions; intentions;
to action sequences local planning cooperativep!anning

Table 1. The basic functions in the INTERRAP control hierarchy

2.2 The control layers

The processes implemented at the different layers of the INTERRAP architecture have
many similarities in that they describe different instantiations of the basic functions
SG and PS. Based on this observation, we present a uniform structure shared by each
layer. Figure 2 shows the internal structure of an INTERRAP control layer. Each layer
i E {BBL, LPL, CPL} consists of two processes implementing the functions SG and
PS; these interact with each other and with processes from neighbor layers:

- The situation recognition and goal activation process S;Gi recognizes situations
that are of interest for the respective layer; it results in the activation of a goal.

- The planning and scheduling process PSi implements the mapping from goals
to intentions and thus, to actions. It receives as input goal-situation pairs created
by the SG component of the layer; it determines the plans to achieve the goals,
schedules them into the current intention structure of the agent, and monitors the
execution of plan steps.

The implementation of the two functions in INTERRAP is explained in more detail in
Sections 3 and 4.

2.3 The flow of control

The control flow and thus the behavior of an INTERRAP agent emerges from the inter-
action among the individual modules as illustrated in Figure 2. The model provides two
basic protocols specifying the global flow of control 3.

Upward Activation Requests: If PSi is not competent for a situation S, it sends an
activation request containing the corresponding situation-goal pair to SGi+l ; there, the
situation description is enhanced by additional knowledge available to this component
in order to produce a suitable goal description. The result of processing S is reported
back to PSi. This mechanism implements a competence-based control mechanism.

3 Additional, more specific protocols cannot be discussed here due to space restrictions.

207

~ I - - - - . I~ in format ion flOW

main contro l f low

. i~ addi t ional contro! flows

Fig. 2. Structure of an INTERRAP control layer

Downward Commitment Posting: Planning and scheduling processes at different layers
coordinate their activities by communicating commitments. For example, this allows
the local planning component both to integrate partial plans devised by the CPL layer
in the course of a joint plan negotiation and to take into account certain commitments
made by the upper layer (integrity constraints). Also the interface between the LPL and
BBL component is designed by the higher layer posting activation requests for patterns
of behaviors.

2.4 Coherence

The coherence problem results from the concurrent access to actions, perception, and
knowledge by a set of layers, possibly leading to different results of situation recognition,
to inconsistent decisions, and thus, to an incoherent behavior of the agent. Thus, the
question is how coherent agent behavior can be achieved, i.e., how to coordinate situation
recognition and the authority to perform actions.

The hierarchical control regime of INTERRAP allows to simplify some of these
problems by restricting concurrency in activation and by restricting the concurrent
access to the actuators. It allows us to deal without global control rules as in [7]. The
main idea for coordination between reactive and plan-based layers is to give priority to
the actions proposed by the BBL, and to allow a posteriori correction by the LPL [5].
In order to avoid foreseeable harmful interactions between the LPL and the BBL, there
is the possibility of explicit suppression [4] which allows the LPL to enable or disable

208

PoB in certain situations by sending appropriate messages to the BBL. Moreover, PoB
that are no longer useful from the planner's point of view can be cancelled.

3 Situation Recognition

Situations are described from the view of an individual agent. A situation S is a set
of formulae S - SB U SL U Sc with SB C_ W M , SL CC_ M M , and Sc C_ S M 4. It
describes a portion of the agent KB containing parts of its world model, mental model,
and social model. The world model part (external context) of a situation is a set of
ground atomic formulae; the mental model part (mental context) describes parts of the
local intention structure of the agent, i.e., goals and intentions; the social model part
(social context) describes belief about other agents characterizing a specific situation.

Classes of situations are denoted by formulae in a first-order language s so-called
situation descriptions. Situation descriptions provide patterns that can be instantiated to
situations. For each layer i within the INTERRAP hierarchy, a set Di C_ 2 L of situation
descriptions is defined that are recognized by this layer. Let 7- denote a set of time points.
The semantics of the function SGi is defined by a function OCCi : 2 ~ • 2 c • T ~+ 2 c �9
OCC~ (B~, Di, t) = S' returns the subset 8 ' of instantiations of a situation description
D~ E Di which occur at time t, i.e., which can be derived from the set of beliefs/3~ at
time t. At layer i, situations are mapped to goals by a function/3i : & ,-+ Gi, where the
function SG~ : 2 ~ • 7- • 2 2c x 2 ~ ~+ 2 2cx2c is defined as

SOl (B{, t, Z~;, G~) %f {(S, G)I3D e V~3G ~ G~.S ~ OCC~(B~, D, t)A G : 9~ (S)}.

Thus, given the beliefs, the situation descriptions to be monitored, and the potential
goals the agent may adopt at time t, the output of function CoG is a set of situation-goal
pairs, namely the pairs (S, G) where situation S instantiates one of the input situation
descriptions, and where situation S is mapped to goal G by the goal activation function.

Differences between the control layers result from restrictions on the admissible
form of the set B t and from the implementation of OCCi. For the BBL, we have
BtB C_ W M . For the LPL, we have Btr C_ W M U M M . Situation recognition in the
CPL may access the whole knowledge base: Btc C_ W M U M M U S M.

OCCB is defined by OCCB(BtB, DB, t) = S iff S = DB 0 for a ground substitution
0. This maw-pattern, maw-objects matching problem can be solved e.g., by the RETE
algorithm, allowing fast recognition of situations that have to dealt with quickly at the
behavior-based layer. On the other hand, OCCL and O C C c include checking whether
the agent itself has a specific goal or an intention, or even if other agents have certain
goals or intentions. For OCCL we assume that local goals are also represented as ground
formulae; moreover, we require that an agent explicitly knows all its goals and intentions.
In the case of OCCc, however, more complex, time-consuming deduction may be
necessary e.g., in order to recognize other agents' goals, either through communication,
or through explicit goal recognition techniques.

Situation recognition is an incremental process, i.e., partial situations may be rec-
ognized at lower layers and complemented at higher layers. The SGi process outputs

4 We use the subscripts B for BBL, L for LPL, and C for CPL.

209

pairs (S, G). A goal G is associated to each situation S recognized by SGi. This pair
characterizes a new option to be pursued by the agent. It serves as an input to the
planning and scheduling process described in the sequel.

4 P l a n n i n g a n d S c h e d u l i n g

According to Figure 2, at any point in time, the planning and scheduling process PSi of
layer i may receive input from two possible sources: situation-goal pairs from the SGi
process and commitment messages from the planning and scheduling process PSi+I at
the next higher layer. The output of PSi are situation-goal pairs which are sent to SGi+I
and commitments to PSi- 1. PSi maintains an intention structure which informally can
be looked upon as the agent's runtime stack, holding the agent's current goals Gi and
its intentions Zi, denoting its state of planning and plan execution. Each situation-goal
pair (S, G) received from SGi at time t is processed according to the following steps:

1. If layer i is competent for (S, G), continue with step 2; otherwise send an upward activation
request r e q u e s t (do (S, G)) to SGi+I; RETURN

2. Add G to the set ~,.
3. Select an subset 9~ E ~i for being pursued next and devise a partial plan P ' for achieving

the goals 5 in ~' given the current intention structure Zi.
4. Compute the modified intention structure Z~ and thus, the next commitment.

This procedure is basically the same for the planning and scheduling modules at any
layer; however, as is outlined in the sequel, the individual steps are implemented in a
different manner.

4.1 Competence

The competence-based control flow is a central feature of INTERRAP. Each layer can
deal with a set of situations, and is able to achieve a set of goals. The competence of
layer i for a situation-goal pair (S, G) is decided by a predicate XB : S x ~ ~-+ {0, 1}.
The competence predicates for the individual layers are defined as follows:

xB(S, G) = 1 iff ex. a reactor PoB whose activation condition matches G.
XL (S, G) = 1 iff ex. a single-agent plan p~ that achieves G given start situation S.
xc(S, {GI , . . . , G,~}) = 1 iffex, a joint planpj that achieves U~=l Gi given S.

If XI(S, G) = 0 for a situation S and goal G, the layer is not competent for this
situation/goal; then, an activation request containing (S, G) is sent to SGi+I, notifying
this layer of the new situation. XB can be computed by a simple matching; thus, it is
possible to make decisions quickly at the reactive layer. However, constructing a plan
may be necessary in order to determine XL and Xc. These functions can be augmented
by not only requiring the existence of a plan, but also requiring a minimal quality of
the plan based on a utility function u : PLANS ~- R. This is useful for an agent in
order to decide whether to start a cooperation in a certain situation because there is only
a poor local solution.

5 Here, we assume that the goals in ~' can be achieved independently of each other.

210

4.2 Deciding what to do

After a layer has decided to be competent for a situation, the planning process starts
resulting in a commitment, e.g., a decision to perform a certain action. This planning
process differs throughout the INTERRAP layers: At the BBL, patterns of behavior
provide direct hard-wired links from situations to compiled executable procedures;
thus, they ensure high responsiveness of the system to emergency situations. At the
LPL, a single-agent planner is used to determine a sequence of actions to achieve the
goal. For example, the forklift robots in the loading dock application (see Section 5) use
a library with domain plans. Multiagent planning situations at the CPL are described
by an initial situation and by the goals of the agents involved in the planning process.
Cooperative planning therefore involves agreeing on a joint plan that satisfies the goals
of the agents ([13] describe such a mechanism for the loading-dock).

4.3 Execution

The execution of an action a by the PSi process of a layer i is done by posting
a commitment r e q u e s t (c ommi t (a)) down to the process PSi_ 1. Commitments
made by PSc to PSL are partial single-agent plans which are local projections of
the joint plan negotiated among the agents. This partial plan is scheduled into the
current local plan of the agent. Commitments made at the LPL, i.e., from PSL to
PSB, are activations of procedure PoB determined to be executed. Finally, at the
BBL, commitments result from the actual execution of procedures. Procedures describe
sequences of activations of primitive actions (or the sending of messages) which are
available in the agent's world interface. Procedures are processed by a stepwise execution
mechanism. Each execution step is a commitment to the execution of a primitive action
in the world interface.

5 Des igning Mult iagent Systems wi th INTERRAP

In this section, we present the FORKS application, a MAS developed according to the
INTERRAP architecture. After describing the domain, the models for situation recog-
nition and planning and scheduling defined above are instantiated by the example of
recognizing and handling conflict situations.

5.1 The domain

The FORKS simulation system describes a MAS of interacting robots, automated fork-
lifts that have to carry out transportation tasks in a loading dock. Figure 3 illustrates
the structure of the loading dock. It is represented as a grid of size m x n; each
square ((i, j) , t, r) can be of type t 6 {ground, truck, shelf} and can be within region
r 6 {parking_zone, hallway, truck_region, shelf_region}. Squares of type truck
and shelf can additionally contain at most one box.

Forklift agents occupy one square at a time; they have a range of perception (e.g.:
one square in front), can communicate with other forklifts and perform actions a C

(a) i ii iii!ii ii iiiii iiiiiiii! ii

iiiii i i iii i ii ii

211

(b)
01

~ (X1,Y1) /
i

03 (x3,~ Q2

/
Q4

goal((X1, Y1)).
same_quadrant((X1, Y1), (X2, Y2)).
neighbor_quadrant((X1, Y1), (X3, Y3)).

Fig. 3. (a) The loading dock (b) Quadrants

{moveto(dir), turnto(dir), grasp_box, put_box}, dir 6 {n, e, s, w}. Agents receive
orders to load or unload trucks; while performing their tasks, they may run into conflicts
with other agents. E.g., agents may block each other, i.e., one agent may have the goal
to move to a square occupied by another one, or two agents may try to move to one
square by the same time.

5.2 Situation recognition and goal activation

The situation recognition capability of an agent is distributed over the three layers
BBL, LPL, and CPL, allowing fast recognition of emergency situations, and a thorough
classification of other situations, when more time is available.

An example for an emergency situation to be recognized in the SGB module is a
threatening collision. It can be modeled by a situation description sdl :

sdl = { location(self, (X s, Ys), O s), status(self, moving),
perception(self, Os, ((X, Y), T, R), -,frce((X, Y))}

Note that sd] is defined merely by the external context, i.e., without taking into
consideration knowledge about the agent's goals. A second type of conflict are blocking
conflicts, which are defined by the fact that the agent is not moving, but intends to move
to a square that is occupied by another agent. A situation description sd2 for a mutual
blocking conflict is:

sd2 =

{location(self, (X~, Ys), 0~), location(A, ((Xa, Y~), 0~) /* e x t e r n a l c o n t e x t * /

212

opposed((X~, Y~, 0~), (X~, Y., Oa))}U
{intends(self, gotoJandmark(Xa, Ya)) } u
{bel(sel f , intends(A, gotoJandmark(X~, Y.))}

/* mental context */

/* social context */

5.3 Planning and scheduling

Once recognized, there are several different possibilities to deal with a conflict situation.
These possible reactions are implemented in the agents' P S processes. We draw a
distinction between three basic classes of mechanisms which can be directly associated to
the different INTERRAP control layers: behavior-based, local planning, and cooperative
planning mechanisms.

Behavior-based mechanisms: This class of mechanisms has the Markov property: the
decision of an agent at an instant ti only depends on the state of the world at time
t l -1. One important class of decision functions having this property are probabilistic
decision functions (PDFs). Let ,,4 be a non-empty set of actions, ~ a set of goals; let
f : S • `4 • ~ ~4 [0, 1] be a conditional probability distribution on .4 given s 6 S, g E ~.
Then a PDF is F I (s, `4, g) = ai with probability f (s , ai, g) for each a~ E ,.4. We omit
the superscript f for)r in cases it is irrelevant.

An important class of PDFs are uniform decision functions, i.e., decision functions
producing random behavior: A PDF ~'~ _= 5] is an UDF iff f (s , a, g) = ~ for all

a C .4 and for all s, g.

proc PSB
i =0;
init([si, G/]);
repeat

i = i + l ;
s~ = update_beliefs(si- 1, Perci);
G/= update-goals(G/-h s0;
g = select_unsatisfied_goal(Gi);
A = compute~alternatives(A, g, si);

next_action = ~-(si, A, g);

try_execute(next_action);
forever

/* Perci = perception at time i */
/* determine new goals */
/* select one goal */
/* compute alternatives */

for the goal */
/* commit to next action */
using decision function F *!

Fig. 4. The BBL control cycle

The behavior-based layer of INTERRAP is defined by a control cycle which, in each
loop, computes a set of alternative PoBs (in the following simply called alternatives that
might be pursued; it then decides which one actually to pursue by means of a PDE This

213

cycle is illustrated in Figure 4. In the loading dock, given a situation s, the probability
function f can be defined e.g., as:

1 : a = grasp_box(B)
f(s, a, grasp_box(B)) = 0 otherwise

0.5 : same_quadrant(Dir, L)
f (s, moveto(Dir), goto.landmark(L)) = 0.2 : neighbor_quadrant(Dir, L)

0.1 : otherwise.

Same_quadrant and neighbor_quadrant are predicates relating different squares
wrt. their relative location from the perspective of an agent (see Figure 3.b). Function
f defines a variation of a potential field method where the agent is attracted by its
goal region (in the example box B and landmark L), and prefers options that let it
proceed towards its goal. In Section 5.4 we show how behavior-based agents can be
modeled using PDF and UDF. For a more detailed analysis of decision functions for
behavior-based reasoning, we refer to [11] in this volume.

Local planning mechanisms: This class of mechanisms uses a planning formalism in
order to determine the next action to be performed, taking into consideration the agent's
current goals. For task planning, a hierarchical skeletal planner has been implemented
in the FORKS system (see [12]). It decomposes goals into subgoals, until an executable
procedure PoB is reached; in this case a commitment is posted to the BBL. In FORKS,
a path planner 7) is used on a graph representation of the loading dock to determine the
shortest paths between a given square and the goal square. If e.g., a blocking conflict is
detected, 7 9 is run again to determine a new path to the agent's goal.

Cooperative mechanisms: Local planning mechanisms run into trouble in two cases:
Firstly, if the number of agents increases, blocking conflicts occur very often (see Section
6); thus, the effort of replanning becomes too big. Secondly, given incomplete informa-
tion, certain goal conflicts cannot be resolved by mere local replanning. Therefore, the
P S c process contains cooperative planning facilities. Joint plans for conflict resolution
are negotiated among the agents and executed in a synchronized fashion (see Section 4
and [13]).

5.4 Agent design

The different mechanisms described in the above subsections can be combined by
the system designer to build a variety of agents having different types and different
properties. Thus, controlled experimentation is supported aimed at investigating how
the design of individual agents determines the behavior of the MAS. In the sequel, five
exemplary agent types for the loading dock application are defined; they are analyzed
empirically in Section 6.

The random walker (RWK): RWK is an agent that chooses its actions randomly; i.e.,
it always uses an UDF ~-r. In the case of RWK, conflict resolution is done implicitly:
if the agent selects an alternative that cannot be carried out, execution will fail and the
agent will continue selecting alternatives randomly until it has found a solution (if one
exists).

214

Behavior-basedagentwithrandomconflictresolution(BCR): BCR performs task plan-
ning using a PDF Up as defined above. To resolve blocking conflicts, it shifts to random
mode (using function 5r~) for n steps; after this, it uses function Up, again. The advan-
tage of randomness is that it allows to get out of local optima; in practice, this has turned
out useful to avoid livelocks.

Behavior-based agent with heuristic conflict resolution (BCH): Similar to BCR, BCH
uses decision function 5rp for task planning; however, to resolve blocking conflicts, it
employs a different strategy: if possible, it tries to dodge the other agent instead of just
moving randomly. Especially conflicts in the hallway region can be resolved efficiently
by this strategy.

Local plannerwith heuristic conflict resolution (LCH): LCH uses the hierarchical skele-
tal planner described in [12] for local task planning; it employs the same heuristic conflict
resolution strategy as BCH.

Localplannerwithcooperativeconflictresolution(LCC): This agent type has the same
local planning behavior as LCH; however, for resolving conflicts, it combines local
heuristics (for conflicts in hallway and truck regions) with coordination via joint plans
(for conflicts in shelf regions).

6 Experimental Results

In this section, the results of a series of experiments carried through for the loading dock
application are reported. The goal of these experiments was to evaluate the behavior
of different types of INTERRAP agents and how they depend on different internal and
environmental parameters.

6.1 Description of the experiments

The test series reported in this paper contains tests with homogeneous agent societies.
We ran experiments with four, eight, and twelve forklift agents. These agents had to carry
out randomly generated tasks in a loading dock of size 15 x 20 squares, with six shelves
and one truck. The topology of the loading dock (see Figure 3.a) ensures that any square
of type ground is reachable from any other. The number of tasks were 50 for four agents,
100 for eight agents, and 150 in the twelve-agent case. Each experiment was repeated
five times (for twelve agents) and ten times, respectively (for eight and four agents) with
the five agent types RWK, BCR, BCH, LCH, and LCC. The focus of the experiment was
to evaluate the system behavior wrt. the following questions: (i) Is one of the described
agent types or conflict resolution strategies dominant for the FORKS application? (ii)
How gracefully degrade the different types and strategies when the number of agents
is increased? How robust are they? (iii) How well do communication-based strategies
compared to local ones?

6.2 Results

The main results of the experiments are illustrated by the diagrams 5.a - 5.d.

215

a) Avg. #actions per task

1000

500

250
200
150
100
50

age,s

l j,j
4 8 12 4 8 12 4 8 12 4 8 12 4 8 12 4 8 12
RWK BCR BCH LCH LCC1 LCC2

c) Performance degradation with increased # of agents

7

6

5

4

3

2

#agents 4 8 12

RWK

4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2
BCR BCH LCH LCC

b) Percentage of Actions Spent for Conflict Resolution

0.7
0.65

O.6
0.55
0.5

0.45
0.4

0.38
0.3

0.25
0.2

0.1G
0.1

agents 4 8 12
BCR

4812 4812 4812 4812
BCH LCH LCCt LCC2

Legend:

I - - - I 4ag~
~ 8agml~

IIIII 12 agen~

d) Avg. success ratio (percentage of successfully performed tasks)

agents 1 8 1 2

RWK

100
99
98
97
96
95
94
93
92
91
90
89
88
87

I I

I I

II

I 8 12 4 8 12 4 8 12
BCR BCH LCH

8 12
LCC

Fig. 5. Experimental results for the FORKS application

Absolute performance: Diagram 5.a shows the absolute performance for each agent
type as the average number of actions needed per task. There are two entries for LCC:
LCC1 only accounts for the number of physical actions (moves, turns, gripper actions),
whereas LCC2 adds the number of messages sent (one message - one action). As
expected, RWK performs worst in all experiments. The best strategy is LCC; thus,
resolving conflicts by communication pays off as regards the absolute performance.
However, as LCC2 shows, the exact value depends on the cost of communication.

Conflict efficiency: Diagram 5.b displays the the ratio of actions needed for conflict
resolution to the total number of actions. Since RWK does not explicitly recognize
conflicts, it is not included in this statistics. The main result to be noted here is that
LCC performs very well for smaller agent societies; for larger ones, it actually does not
lead to a considerably higher conflict resolution efficiency, in comparison with local
methods.

216

Degradation: The factor of performance degradation 5 shown in Figure 5.c for z agents,
x E {4, 8, 12} is computed as 5(z) def ~ 1 : # a (a) . # t (x) " ~' where p is the success ratio (see
below), #a(z) denotes the total number of actions, and #t(z) denotes the total number
of tasks in the x-agent experiment.

The performance of agent type RWK happens to be very insensitive to the size of the
agent society, whereas the performance of all other agent types degrades considerably
with a growing number of agents. A second interesting observation is that the agents
employing simpler types of interaction show a more graceful degradation of performance
than the more complex ones, especially the one based on communication. This is mainly
due to the fact that the effort for communication and replanning outweighs the benefits
of more elaborate strategies if the environment changes very rapidly.

Robustness: Robustness is measured by the success ratio p, which is the ratio of success-
fully finished tasks to the total number of tasks given to the agent. In our experiments,
there are three sources of failures. Failures due to local maxima, deadlock situations
caused by conflicts, and failures due to multiple conflicts that could not be adequately
recognized and handled by the agents. The main result concerning robustness is that
behavior-based strategies tend to be more robust than plan-based, cooperative strategies.

7 Related Work

Since the beginning of this decade, a considerable research effort has been devoted
to the development of architectures for autonomous agents in dynamic environments.
Only a few of these approaches can be discussed here; in particular, we focus on the
relationship between our work and that of others contained in this volume. For an survey
of developments in agent design, we refer to [19]. Layered approaches date back at least
to Brooks' hardwired subsumption architecture [4]; the approach has been extended and
refined by many other researchers, e.g., by adding planning capabilities to a reactive basis
layer (e.g., [8], [7]). A recent approach incorporating the idea of layering to reconcile
reaction and deliberation is 3 T (see [2] in this book). The three layers in 3 T are reactive
skills, sequencing, and deliberation. In INTERRAP, the skill layer is implemented by
reactor PoBs; sequencing tasks are running in all layers of INTERRAP, but particularly
correspond to the handling of procedures in the behavior-based layer. Deliberation in
INTERRAP is split up into local and cooperative deliberation; thus, while the focus in 3 T
still is on the case where we have a single agent acting in a dynamic world. INTERRAP
extends the classical reactor-planner view by the cooperative layer to agents living in
multiagent worlds, where dynamics is caused by the presence of other agents.

Another interesting approach to be read in this book is SIM_AGENT by Sloman
and Poll [18]. The architectural concept is similar to 3 T and to INTERRAP. An agent is
a layered entity consisting of (1) a level of automatic processes, (2) a level of resource-
bounded deliberation, and (3) a meta-level. Again, the main difference to INTERRAP is
that cooperation is not modeled as a generic capability in the SIM_AGENT architecture.
On the other hand, SIM_AGENT makes a conceptual distinction between meta- and

217

object-level process management, and it extends the current scope of INTERRAP by
providing various toolkit functionalities.

Various other contributions inside this volume deal with multiagent architectures
and testbeds (see e.g., [1], [14], [10]). The difference between this work and ours is that
our focus is on the design of the individual agent and defines cooperation mechanisms
viewed from this agent-centered perspective, whereas multiagent architectures rather
provide tools for designing multiagent systems.

Finally, we should comment on the BDI aspect of our work. Looking at Rao and
Georgeff's work, there is a development from a theoretical model [15] over an abstract
agent interpreter [16] to a complex agent programming system supporting the devel-
opment of real-world applications [17]. INTERRAP uses notion such as beliefs, goals,
and intentions as useful abstractions of the mental state of an agent, but focuses on
architectural issues, such as how reactivity and deliberation can be integrated within a
layered BDI framework, and how cooperation mechanisms can be integrated, i.e., issues
that have not yet been considered in depth by the researchers who have developed the
BDI paradigm.

8 Discussion

In this paper, we identified two basic functions explaining the transformation from
what an agent perceives to what it does: situation recognition and goal activation, and
planning and scheduling. The individual control layers of the INTERRAP architecture
were redefined according to a new uniform structure based upon these functions. The
implementation of these concepts was shown by the example of an interacting robots
application; empirical results were presented showing how different options to design
agents according to the INTERRAP model affect the behavior of the system as a whole.
The main contribution of the paper has been to provide a uniform control model allowing
to express reactivity, deliberation, and cooperation by defining different instantiations
of three general functions. The work reported in this paper has provided a basis for the
reimplementation of INTERRAP using the Oz programming language developed at the
DFKI. The FORKS system has been implemented both as a computer simulation and
on KHEPERA miniature robots.

This paper has necessarily focussed on aspects of the individual agent. Aspects of
cooperation and interaction have been treated very briefly. Future work will explore
more complex planning and cooperation mechanisms and lead to a richer model of the
LPL and the CPL than the one described in this paper.

References

1. M. Barbuceanu and M. S. Fox. The architecture of an agent building shell. In
M. Wooldridge, J. P. MOiler, and M. Tambe, editors, Intelligent Agents-- Proceedings of the
1995 Workshop on Agent Theories, Architectures, and Languages (ATAL-95), LNAI series.
Springer-Verlag, 1996. (In this volume).

2. R. P. Bonasso, D. Kortenkamp, D. P. Miller, and M. Slack. Experiences with an architecture
for intelligent, reactive agents. In M. Wooldridge, J. P. MUller, and M. Tambe, editors,

218

Intelligent Agents - - Proceedings of the 1995 Workshop on Agent Theories, Architectures,
and Languages (ATAL-95), LNAI series. Springer-Verlag, 1996. (In this volume).

3. M. E. Bratman, D. J. Israel, and M. E. Pollack. Toward an architecture for resource-bounded
agents. Technical Report CSLI-87-104, Center for the Study of Language and Information,
SRI and Stanford University, August 1987.

4. Rodney A. Brooks. A robust layered control system for a mobile robot. In IEEE Journal of
Robotics and Automation, volume RA-2 (1), pages 14-23, April 1986.

5. V. G. Dabija, Deciding Whether to Plan to React. PhD thesis, Stanford University, Depart-
ment of Computer Science, December 1993o

6. E. H. Durfee and J. Rosenschein. Distributed problem solving and multiagent systems:
Comparisons and examples. In M. Klein, editor, Proceedings of the 13th International
Workshop on DAL pages 94-104, Lake Quinalt, WA, 1994.

7. I. A. Ferguson. TouringMachines: An Architecture for Dynamic, Rational, Mobile Agents.
PhD thesis, Computer Laboratory, University of Cambridge, UK,, 1992.

8. R. James Firby. Adaptive Execution in Dynamic Domains. PhD thesis, Yale University, Com-
puter Science Department, 1989. Also published as Technical Report YALEU/CSD/RR#672.

9. K. Fischer, J. P. Mtiller, and M. Pischel. Unifying control in a layered agent architecture.
Technical Memo TM-94-05, DFKI GmbH, Saarbr0cken, January 1995.

10. C. A. Iglesias, J. C, Gonz~ilez, and J. R. Velasco. MIX: A general purpose multiagent
architecture. In M. Wooldridge, J. P. MOiler, and M. Tambe, editors, Intelligent Agents - -
Proceedings of the 1995 Workshop on Agent Theories, Architectures, and Languages (A TAL-
95), LNAI series. Springer-Verlag, 1996. (In this volume).

11. J.P. Mtiller. A markovian model for interaction among behavior-based agents. In
M. Wooldridge, J. P. MiJller, and M. Tambe, editors, Intelligent Agents-- Proceedings of the
1995 Workshop on Agent Theories, Architectures, and Languages (ATAL-95), LNAI series.
Springer-Verlag, 1996. (In this volume).

12. J. P. Mtiller and M. Pischel. An architecture for dynamically interacting agents. International
Journal of Intelligent and Cooperative Information Systems (IJICIS), 3(1):25-45, 1994.

13. J. P. MOiler and M. Pischel. Integrating agent interaction into a planner-reactor architecture.
In M. Klein. editor, Proceedings of the 13th International Workshop on Distributed Artificial
Intelligence, Seattle, WA, USA, July 1994.

14. S.-J. Pelletier and J.-E Arcand. Cognitive based multiagent architecture. In M. Wooldridge,
J. P. M011er, and M. Tambe, editors, Intelligent Agents-- Proceedings of the 1995 Workshop
on Agent Theories, Architectures, and Languages (ATAL-95), LNAI series. Springer-Verlag,
1996. (In this volume).

15. A. S. Rao and M. P. Georgeff. Modeling Agents Within a BDI-Architecture. In R. Fikes and
E. Sandewall, editors, Proc. of the 2rd International Conference on Principles of Knowledge
Representation and Reasoning (KR'91), pages 473-484, Cambridge, Mass., April 1991.
Morgan Kaufmann.

16. A. S, Rao and M. P. Georgeff. An abstract architecture for rational agents. In Proc. of the
3rd International Conference on Principles of Knowledge Representation and Reasoning
(KR'92), pages 439--449. Morgan Kaufmann, October 1992.

17. A. S. Rao and M. P. Georgeff. BDI-agents: from theory to practice. In Proceedings of the
First Intl. Conference on Multiagent Systems, San Francisco, 1995.

18. A. Sloman and R. Poli. SIM_AGENT: A toolkit for exploring agent designs. In
M. Wooldridge, J. R M011er, and M. Tambe, editors, IntelligentAgents-- Proceedings of the
1995 Workshop on Agent Theories, Architectures, and Languages (ATAL-95), LNAI series.
Springer-Verlag, 1996. (In this volume).

19. M. J. Wooldridge and N. R. Jennings, editors. Intelligent Agents- Theories, Architectures,
and Languages, volume 890 of LNAI series. Springer-Verlag, 1995.

