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Abstract. We present a unifying perspective of the individual control layers 
of the agent architecture INTERRAP. INTERRAP aims at modeling autonomous 
resource-bounded agents that interact with each other in dynamic multiagent 
environments. INTERRAP implements a pragmatic Belief-Desire-Intention (BDI) 
architecture, where the agent's mental state is distributed over a set of layers. 
Based on the processes of situation recognition and planning and scheduling, a 
uniform description for each control layer - the behavior-based layer, the local 
planning layer, and the cooperative planning layer - is provided. We demonstrate 
various options for the design of interacting agents within this framework in 
an interacting robots application. The performance of different agent types in a 
multiagent environment is experimentally evaluated. 

1 Introduction 

The design of intelligent agents is an important research direction within multiagent 
systems (MAS) [6], where the behavior of a society of agents is described by modeling 
the individuals and their interactions from a local, agent-based perspective. Thus, finding 
appropriate architectures for these individuals is one of the fundamental research issues 
within agent design. 

There are at least two reasons for dealing with agent architectures: One is to explain 
and to predict agent behavior; this means to describe how an agent's decisions are 
derived from its internal (mental) state and how this mental state is affected by the 
agent's perception. The other reason is to actually support the design of MAS. It deals 
with providing tools and methodologies for designing computational agents and their 
interactions in an implemented system. 

A prominent example for architectures that are primarily driven by the former reason 
are BDI architectures [3, 15], describing the internal state of an agent by the mental 
attitudes of beliefs, goals, and intentions. BDI theories provide a clear conceptual model 
of the knowledge, the goals, and the commitments of an agent. However, they offer little 
guidance to the modeling of motivation and intention formation; thus, they have to be 
extended to actually support the design of resource-bounded and goal-directed agents 
for practical applications. 

Another important direction in intelligent agent design are layered architectures (see 
Section 7). Layering is a powerful concept for the design of resource-bounded agents. 
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It supports a natural modeling of different levels of abstraction, responsiveness, and 
complexity of knowledge representation and reasoning. However, a recent criticism of 
layered architectures has been that they are mainly motivated by intuition, and that they 
are too complex to allow the formal investigation of properties of agents and multiagent 
systems [19]. 

The agent architecture INTERRAP which is described in this paper aims at combining 
the advantages of BDI-style architectures with those of layered ones. Thus, our goal 
is to provide an architecture that serves both to explain agent behavior and to support 
system design. INTERRAP adopts the mental categories used in BDI theory to describe 
an agent's knowledge, goals, and state of processing. It extends the work of [15, 16] 
by organizing an agent's state and control within a layered architecture. The problem- 
solving capabilities of an agent are described hierarchically by a behavior-based layer, 
a local planning layer, and a cooperative planning layer. INTERRAP adopts the BDI- 
model rather in a conceptual than in a strictly theoretical sense. Thus, this paper does 
not provide a new theory for beliefs, desires, and intentions, but takes a pragmatic 
perspective. 

Previous work [12, 13] has described the basic layered structure of the INTERRAP 
architecture and a first simple concept and implementation of the individual control 
layers. In this paper, we present a redesign of INTERRAP aimed to make the architecture 
easier to describe and to make agents easier to analyze by providing a clear control 
methodology. Using the FORKS application describing an automated loading dock as 
an example, we then show how different agent types can be described using the control 
framework and we provide empirical results comparing their behavior in the loading 
dock. 

2 T h e  INTERRAP Agent Architecture 

INTERRAP is an approach to modeling resource-bounded, interacting agents by com- 
bining reactivity with deliberation and cooperation capabilities. This section illustrates 
the basic concepts of the architecture. Due to space limitations, the discussion is kept 
somewhat superficial. We refer to [12] for more details. 

2.1 Overview 

Figure 1 illustrates the overall structure of the architecture. INTERRAP describes an 
agent by a world interface, a control unit, and a knowledge base (KB). The control unit 
consists of three layers: the behavior-based layer (BBL), the local planning layer (LPL), 
and the cooperative planning layer (CPL). The agent knowledge base is structured 
correspondingly in a world model, a mental model, and a social model. The different 
layers correspond to different functional levels of the agent. The purpose of the BBL is 
to allow the agent to react to certain critical situations (by so-called reactor patterns of 
behavior (PoBs)), and to deal with routine situations (using procedure PoBs). Reactors 
are triggered by events recognized from the world model that incorporates the agent's 
object-level knowledge about its environment. The LPL gives the agent the ability of 
longer-term deliberation. It builds on world model information, but additionally uses 
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Fig. 1. The INTERRAP agent architecture 

the agent's current goals and local intentions maintained in the mental model part of 
the knowledge base, as well as domain-dependent planning mechanisms available. The 
CPL finally extends the planning functionality of an agent to j o in t  plans,  i.e., plans by 
or for multiple agents that allow to resolve conflicts and to cooperate. Apart from world 
model and mental model knowledge, the CPL uses information about other agents' 
goals, skills, and commitments stored in the social model of the knowledge base. The 
internal structure of the control components is explained in more detail in the following 
sections of this paper. 

In the following, let B, g, 27 denote the beliefs, goals, and intentions of an agent, 
respectively, and let 7 9 denote a set of perceived propositions. The INTERRAP agent 
architecture implements three basic functions: 

- BR(79,13)  - 13 is a belief revision and knowledge abstraction function, mapping 
an agent's current perception 7 9 and its old beliefs B into a set of new beliefs B ~. 

- SG(13, ~) -- ~t is a situation recognition and goal activation function, deriving new 
goals 9~ from the agent's beliefs B and its current goals ~. 

- PS(13,  ~ ,  Z)  = Z ~ is a planning and scheduling function, deriving a set Z ~ of new 
intentions (commitments to courses of action) based on the beliefs B, the goals 
selected by S G ,  and the current intentional structure 27 of the agent, 

Table 1 shows how the functions defined above are distributed over the individual 
layers. In this paper, we focus on the functions S G  and P S .  For issues of knowledge 
representation and belief revision, we refer to [9]. 
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Layer 
Function 

B R  

S G  

P S  

BBL LPL CPL 

generation and 
revision of beliefs 

(world model) 

abstraction of 
local beliefs 

(mental model) 

maintaining models 
of other agents 
(social model) 

activation recognition of recognition of 
of situations requirin~ situations requiring 

reactor patterns local planning cooperative planning 
reactor PoB: direct modifyinglocal modifying joint 
link from situations intentions; intentions; 
to action sequences local planning cooperativep!anning 

Table 1. The basic functions in the INTERRAP control hierarchy 

2.2 The control layers 

The processes implemented at the different layers of the INTERRAP architecture have 
many similarities in that they describe different instantiations of the basic functions 
SG and PS. Based on this observation, we present a uniform structure shared by each 
layer. Figure 2 shows the internal structure of an INTERRAP control layer. Each layer 
i E {BBL, LPL, CPL} consists of two processes implementing the functions SG and 
PS; these interact with each other and with processes from neighbor layers: 

- The situation recognition and goal activation process S;Gi recognizes situations 
that are of interest for the respective layer; it results in the activation of a goal. 

- The planning and scheduling process PSi implements the mapping from goals 
to intentions and thus, to actions. It receives as input goal-situation pairs created 
by the SG component of the layer; it determines the plans to achieve the goals, 
schedules them into the current intention structure of the agent, and monitors the 
execution of plan steps. 

The implementation of the two functions in INTERRAP is explained in more detail in 
Sections 3 and 4. 

2.3 The flow of control 

The control flow and thus the behavior of an INTERRAP agent emerges from the inter- 
action among the individual modules as illustrated in Figure 2. The model provides two 
basic protocols specifying the global flow of control 3. 

Upward Activation Requests: If PSi is not competent for a situation S, it sends an 
activation request containing the corresponding situation-goal pair to SGi+l ; there, the 
situation description is enhanced by additional knowledge available to this component 
in order to produce a suitable goal description. The result of processing S is reported 
back to PSi. This mechanism implements a competence-based control mechanism. 

3 Additional, more specific protocols cannot be discussed here due to space restrictions. 
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Fig. 2. Structure of an INTERRAP control layer 

Downward Commitment Posting: Planning and scheduling processes at different layers 
coordinate their activities by communicating commitments. For example, this allows 
the local planning component both to integrate partial plans devised by the CPL layer 
in the course of a joint plan negotiation and to take into account certain commitments 
made by the upper layer (integrity constraints). Also the interface between the LPL and 
BBL component is designed by the higher layer posting activation requests for patterns 
of behaviors. 

2.4 Coherence 

The coherence problem results from the concurrent access to actions, perception, and 
knowledge by a set of layers, possibly leading to different results of situation recognition, 
to inconsistent decisions, and thus, to an incoherent behavior of the agent. Thus, the 
question is how coherent agent behavior can be achieved, i.e., how to coordinate situation 
recognition and the authority to perform actions. 

The hierarchical control regime of INTERRAP allows to simplify some of these 
problems by restricting concurrency in activation and by restricting the concurrent 
access to the actuators. It allows us to deal without global control rules as in [7]. The 
main idea for coordination between reactive and plan-based layers is to give priority to 
the actions proposed by the BBL, and to allow a posteriori correction by the LPL [5]. 
In order to avoid foreseeable harmful interactions between the LPL and the BBL, there 
is the possibility of explicit suppression [4] which allows the LPL to enable or disable 
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PoB in certain situations by sending appropriate messages to the BBL. Moreover, PoB 
that are no longer useful from the planner's point of view can be cancelled. 

3 Situation Recognition 

Situations are described from the view of an individual agent. A situation S is a set 
of formulae S - SB U SL U Sc  with SB C_ W M ,  SL CC_ M M ,  and Sc  C_ S M  4. It 
describes a portion of the agent KB containing parts of its world model, mental model, 
and social model. The world model part (external context) of a situation is a set of 
ground atomic formulae; the mental model part (mental context) describes parts of the 
local intention structure of the agent, i.e., goals and intentions; the social model part 
(social context) describes belief about other agents characterizing a specific situation. 

Classes of situations are denoted by formulae in a first-order language s so-called 
situation descriptions. Situation descriptions provide patterns that can be instantiated to 
situations. For each layer i within the INTERRAP hierarchy, a set Di C_ 2 L of situation 
descriptions is defined that are recognized by this layer. Let 7- denote a set of time points. 
The semantics of the function SGi is defined by a function OCCi : 2 ~ • 2 c • T ~+ 2 c �9 
OCC~ (B~, Di, t) = S' returns the subset 8 '  of instantiations of a situation description 
D~ E Di which occur at time t, i.e., which can be derived from the set of beliefs/3~ at 
time t. At layer i, situations are mapped to goals by a function/3i : & ,-+ Gi, where the 
function SG~ : 2 ~ • 7- • 2 2c x 2 ~ ~+ 2 2cx2c is defined as 

SOl (B{, t, Z~;, G~) %f {(S, G)I3D e V~3G ~ G~.S ~ OCC~(B~, D, t )A G : 9~ (S)}. 

Thus, given the beliefs, the situation descriptions to be monitored, and the potential 
goals the agent may adopt at time t, the output of function CoG is a set of situation-goal 
pairs, namely the pairs (S, G) where situation S instantiates one of the input situation 
descriptions, and where situation S is mapped to goal G by the goal activation function. 

Differences between the control layers result from restrictions on the admissible 
form of the set B t and from the implementation of OCCi. For the BBL, we have 
BtB C_ W M .  For the LPL, we have Btr C_ W M  U M M .  Situation recognition in the 
CPL may access the whole knowledge base: Btc C_ W M U M M U S M. 

OCCB is defined by OCCB(BtB, DB, t) = S iff S = DB 0 for a ground substitution 
0. This maw-pattern, maw-objects matching problem can be solved e.g., by the RETE 
algorithm, allowing fast recognition of situations that have to dealt with quickly at the 
behavior-based layer. On the other hand, OCCL and O C C c  include checking whether 
the agent itself has a specific goal or an intention, or even if other agents have certain 
goals or intentions. For OCCL we assume that local goals are also represented as ground 
formulae; moreover, we require that an agent explicitly knows all its goals and intentions. 
In the case of OCCc,  however, more complex, time-consuming deduction may be 
necessary e.g., in order to recognize other agents' goals, either through communication, 
or through explicit goal recognition techniques. 

Situation recognition is an incremental process, i.e., partial situations may be rec- 
ognized at lower layers and complemented at higher layers. The SGi process outputs 

4 We use the subscripts B for BBL, L for LPL, and C for CPL. 
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pairs (S, G). A goal G is associated to each situation S recognized by SGi. This pair 
characterizes a new option to be pursued by the agent. It serves as an input to the 
planning and scheduling process described in the sequel. 

4 P l a n n i n g  a n d  S c h e d u l i n g  

According to Figure 2, at any point in time, the planning and scheduling process PSi of 
layer i may receive input from two possible sources: situation-goal pairs from the SGi 
process and commitment messages from the planning and scheduling process PSi+I at 
the next higher layer. The output of PSi are situation-goal pairs which are sent to SGi+I 
and commitments to PSi- 1. PSi maintains an intention structure which informally can 
be looked upon as the agent's runtime stack, holding the agent's current goals Gi and 
its intentions Zi, denoting its state of planning and plan execution. Each situation-goal 
pair (S, G) received from SGi at time t is processed according to the following steps: 

1. If layer i is competent for (S, G), continue with step 2; otherwise send an upward activation 
request r e q u e s t  (do (S, G) ) to SGi+I; RETURN 

2. Add G to the set ~,. 
3. Select an subset 9~ E ~i for being pursued next and devise a partial plan P '  for achieving 

the goals 5 in ~'  given the current intention structure Zi. 
4. Compute the modified intention structure Z~ and thus, the next commitment. 

This procedure is basically the same for the planning and scheduling modules at any 
layer; however, as is outlined in the sequel, the individual steps are implemented in a 
different manner. 

4.1 Competence 

The competence-based control flow is a central feature of INTERRAP. Each layer can 
deal with a set of situations, and is able to achieve a set of goals. The competence of 
layer i for a situation-goal pair (S, G) is decided by a predicate XB : S x ~ ~-+ {0, 1}. 
The competence predicates for the individual layers are defined as follows: 

xB(S, G) = 1 iff ex. a reactor PoB whose activation condition matches G. 
XL (S, G) = 1 iff ex. a single-agent plan p~ that achieves G given start situation S. 
xc(S, {GI , . . . ,  G,~}) = 1 iffex, a joint planpj that achieves U~=l Gi given S. 

If  XI(S, G) = 0 for a situation S and goal G, the layer is not competent for this 
situation/goal; then, an activation request containing (S, G) is sent to SGi+I, notifying 
this layer of the new situation. XB can be computed by a simple matching; thus, it is 
possible to make decisions quickly at the reactive layer. However, constructing a plan 
may be necessary in order to determine XL and Xc. These functions can be augmented 
by not only requiring the existence of a plan, but also requiring a minimal quality of 
the plan based on a utility function u : PLANS ~- R. This is useful for an agent in 
order to decide whether to start a cooperation in a certain situation because there is only 
a poor local solution. 

5 Here, we assume that the goals in ~'  can be achieved independently of each other. 
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4.2 Deciding what to do 

After a layer has decided to be competent for a situation, the planning process starts 
resulting in a commitment, e.g., a decision to perform a certain action. This planning 
process differs throughout the INTERRAP layers: At the BBL, patterns of behavior 
provide direct hard-wired links from situations to compiled executable procedures; 
thus, they ensure high responsiveness of the system to emergency situations. At the 
LPL, a single-agent planner is used to determine a sequence of actions to achieve the 
goal. For example, the forklift robots in the loading dock application (see Section 5) use 
a library with domain plans. Multiagent planning situations at the CPL are described 
by an initial situation and by the goals of the agents involved in the planning process. 
Cooperative planning therefore involves agreeing on a joint plan that satisfies the goals 
of the agents ([13] describe such a mechanism for the loading-dock). 

4.3 Execution 

The execution of an action a by the PSi process of a layer i is done by posting 
a commitment r e q u e  s t ( c ommi t ( a ) ) down to the process PSi_ 1. Commitments 
made by PSc to PSL are partial single-agent plans which are local projections of 
the joint plan negotiated among the agents. This partial plan is scheduled into the 
current local plan of the agent. Commitments made at the LPL, i.e., from PSL to 
PSB, are activations of procedure PoB determined to be executed. Finally, at the 
BBL, commitments result from the actual execution of procedures. Procedures describe 
sequences of activations of primitive actions (or the sending of messages) which are 
available in the agent's world interface. Procedures are processed by a stepwise execution 
mechanism. Each execution step is a commitment to the execution of a primitive action 
in the world interface. 

5 Des igning  Mult iagent  Systems wi th  INTERRAP 

In this section, we present the FORKS application, a MAS developed according to the 
INTERRAP architecture. After describing the domain, the models for situation recog- 
nition and planning and scheduling defined above are instantiated by the example of 
recognizing and handling conflict situations. 

5.1 The domain 

The FORKS simulation system describes a MAS of interacting robots, automated fork- 
lifts that have to carry out transportation tasks in a loading dock. Figure 3 illustrates 
the structure of the loading dock. It is represented as a grid of size m x n; each 
square ((i, j ) ,  t, r) can be of type t 6 {ground, truck, shelf} and can be within region 
r 6 {parking_zone, hallway, truck_region, shelf_region}. Squares of type truck 
and shelf can additionally contain at most one box. 

Forklift agents occupy one square at a time; they have a range of perception (e.g.: 
one square in front), can communicate with other forklifts and perform actions a C 
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goal((X1, Y1)). 
same_quadrant((X1, Y1), (X2, Y2)). 
neighbor_quadrant((X1, Y1), (X3, Y3)). 

Fig. 3. (a) The loading dock (b) Quadrants 

{moveto(dir), turnto(dir), grasp_box, put_box}, dir 6 {n, e, s, w}. Agents receive 
orders to load or unload trucks; while performing their tasks, they may run into conflicts 
with other agents. E.g., agents may block each other, i.e., one agent may have the goal 
to move to a square occupied by another one, or two agents may try to move to one 
square by the same time. 

5.2 Situation recognition and goal activation 

The situation recognition capability of an agent is distributed over the three layers 
BBL, LPL, and CPL, allowing fast recognition of emergency situations, and a thorough 
classification of other situations, when more time is available. 

An example for an emergency situation to be recognized in the SGB module is a 
threatening collision. It can be modeled by a situation description sdl : 

sdl = { location(self, ( X s, Ys ), O s ), status(self, moving), 
perception(self, Os, ( ( X, Y), T, R), -,frce( ( X, Y))} 

Note that sd] is defined merely by the external context, i.e., without taking into 
consideration knowledge about the agent's goals. A second type of conflict are blocking 
conflicts, which are defined by the fact that the agent is not moving, but intends to move 
to a square that is occupied by another agent. A situation description sd2 for a mutual 
blocking conflict is: 

sd2  = 

{location(self, (X~, Ys), 0~), location(A, ((Xa, Y~), 0~) /*  e x t e r n a l  c o n t e x t  * / 
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opposed((X~, Y~, 0~), (X~, Y., Oa))}U 
{intends(self, gotoJandmark(Xa, Ya)) } u 
{bel( sel f , intends(A, gotoJandmark( X~, Y.))} 

/* mental context */ 

/* social context */ 

5.3 Planning and scheduling 

Once recognized, there are several different possibilities to deal with a conflict situation. 
These possible reactions are implemented in the agents' P S  processes. We draw a 
distinction between three basic classes of  mechanisms which can be directly associated to 
the different INTERRAP control layers: behavior-based, local planning, and cooperative 
planning mechanisms. 

Behavior-based mechanisms: This class of  mechanisms has the Markov property: the 
decision of  an agent at an instant ti only depends on the state of  the world at time 
t l -1.  One important class of  decision functions having this property are probabilistic 
decision functions (PDFs). Let ,,4 be a non-empty set of  actions, ~ a set of  goals; let 
f : S • `4 • ~ ~4 [0, 1] be a conditional probability distribution on .4 given s 6 S, g E ~. 
Then a PDF is F I (s, `4, g) = ai with probability f (s ,  ai, g) for each a~ E ,.4. We omit 
the superscript f for )r  in cases it is irrelevant. 

An important class of  PDFs are uniform decision functions, i.e., decision functions 
producing random behavior: A PDF ~'~ _= 5 ] is an UDF iff f ( s ,  a, g) = ~ for all 

a C .4 and for all s, g. 

proc PSB 
i =0; 
init([si, G/]); 
repeat 

i = i + l ;  
s~ = update_beliefs(si- 1, Perci); 
G/= update-goals(G/-h s0; 
g = select_unsatisfied_goal(Gi); 
A = compute~alternatives(A, g, si); 

next_action = ~-(si, A, g); 

try_execute(next_action); 
forever 

/* Perci = perception at time i */ 
/* determine new goals */ 
/* select one goal */ 
/* compute alternatives */ 

for the goal */ 
/* commit to next action */ 
using decision function F *! 

Fig. 4. The BBL control cycle 

The behavior-based layer of  INTERRAP is defined by a control cycle which, in each 
loop, computes a set of  alternative PoBs (in the following simply called alternatives that 
might be pursued; it then decides which one actually to pursue by means of  a PDE This 
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cycle is illustrated in Figure 4. In the loading dock, given a situation s, the probability 
function f can be defined e.g., as: 

1 : a = grasp_box(B) 
f(s,  a, grasp_box(B)) = 0 otherwise 

0.5 : same_quadrant( Dir, L) 
f ( s, moveto( Dir ), goto.landmark( L ) ) = 0.2 : neighbor_quadrant( Dir, L) 

0.1 : otherwise. 

Same_quadrant  and neighbor_quadrant are predicates relating different squares 
wrt. their relative location from the perspective of an agent (see Figure 3.b). Function 
f defines a variation of a potential field method where the agent is attracted by its 
goal region (in the example box B and landmark L), and prefers options that let it 
proceed towards its goal. In Section 5.4 we show how behavior-based agents can be 
modeled using PDF and UDF. For a more detailed analysis of decision functions for 
behavior-based reasoning, we refer to [11] in this volume. 

Local planning mechanisms: This class of mechanisms uses a planning formalism in 
order to determine the next action to be performed, taking into consideration the agent's 
current goals. For task planning, a hierarchical skeletal planner has been implemented 
in the FORKS system (see [12]). It decomposes goals into subgoals, until an executable 
procedure PoB is reached; in this case a commitment is posted to the BBL. In FORKS, 
a path planner 7 ) is used on a graph representation of the loading dock to determine the 
shortest paths between a given square and the goal square. If e.g., a blocking conflict is 
detected, 7 9 is run again to determine a new path to the agent's goal. 

Cooperative mechanisms: Local planning mechanisms run into trouble in two cases: 
Firstly, if the number of agents increases, blocking conflicts occur very often (see Section 
6); thus, the effort of replanning becomes too big. Secondly, given incomplete informa- 
tion, certain goal conflicts cannot be resolved by mere local replanning. Therefore, the 
P S c  process contains cooperative planning facilities. Joint plans for conflict resolution 
are negotiated among the agents and executed in a synchronized fashion (see Section 4 
and [13]). 

5.4 Agent design 

The different mechanisms described in the above subsections can be combined by 
the system designer to build a variety of agents having different types and different 
properties. Thus, controlled experimentation is supported aimed at investigating how 
the design of individual agents determines the behavior of the MAS. In the sequel, five 
exemplary agent types for the loading dock application are defined; they are analyzed 
empirically in Section 6. 

The random walker (RWK): RWK is an agent that chooses its actions randomly; i.e., 
it always uses an UDF ~-r. In the case of RWK, conflict resolution is done implicitly: 
if the agent selects an alternative that cannot be carried out, execution will fail and the 
agent will continue selecting alternatives randomly until it has found a solution (if one 
exists). 
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Behavior-basedagentwithrandomconflictresolution(BCR): BCR performs task plan- 
ning using a PDF Up as defined above. To resolve blocking conflicts, it shifts to random 
mode (using function 5r~) for n steps; after this, it uses function Up, again. The advan- 
tage of randomness is that it allows to get out of local optima; in practice, this has turned 
out useful to avoid livelocks. 

Behavior-based agent with heuristic conflict resolution (BCH): Similar to BCR, BCH 
uses decision function 5rp for task planning; however, to resolve blocking conflicts, it 
employs a different strategy: if possible, it tries to dodge the other agent instead of just 
moving randomly. Especially conflicts in the hallway region can be resolved efficiently 
by this strategy. 

Local plannerwith heuristic conflict resolution (LCH): LCH uses the hierarchical skele- 
tal planner described in [ 12] for local task planning; it employs the same heuristic conflict 
resolution strategy as BCH. 

Localplannerwithcooperativeconflictresolution(LCC): This agent type has the same 
local planning behavior as LCH; however, for resolving conflicts, it combines local 
heuristics (for conflicts in hallway and truck regions) with coordination via joint plans 
(for conflicts in shelf regions). 

6 Experimental Results 

In this section, the results of a series of experiments carried through for the loading dock 
application are reported. The goal of these experiments was to evaluate the behavior 
of different types of INTERRAP agents and how they depend on different internal and 
environmental parameters. 

6.1 Description of the experiments 

The test series reported in this paper contains tests with homogeneous agent societies. 
We ran experiments with four, eight, and twelve forklift agents. These agents had to carry 
out randomly generated tasks in a loading dock of size 15 x 20 squares, with six shelves 
and one truck. The topology of the loading dock (see Figure 3.a) ensures that any square 
of type ground is reachable from any other. The number of tasks were 50 for four agents, 
100 for eight agents, and 150 in the twelve-agent case. Each experiment was repeated 
five times (for twelve agents) and ten times, respectively (for eight and four agents) with 
the five agent types RWK, BCR, BCH, LCH, and LCC. The focus of the experiment was 
to evaluate the system behavior wrt. the following questions: (i) Is one of the described 
agent types or conflict resolution strategies dominant for the FORKS application? (ii) 
How gracefully degrade the different types and strategies when the number of agents 
is increased? How robust are they? (iii) How well do communication-based strategies 
compared to local ones? 

6.2 Results 

The main results of the experiments are illustrated by the diagrams 5.a - 5.d. 
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Fig. 5. Experimental results for the FORKS application 

Absolute performance: Diagram 5.a shows the absolute performance for each agent 
type as the average number of actions needed per task. There are two entries for LCC: 
LCC1 only accounts for the number of physical actions (moves, turns, gripper actions), 
whereas LCC2 adds the number of messages sent (one message - one action). As 
expected, RWK performs worst in all experiments. The best strategy is LCC; thus, 
resolving conflicts by communication pays off as regards the absolute performance. 
However, as LCC2 shows, the exact value depends on the cost of communication. 

Conflict efficiency: Diagram 5.b displays the the ratio of actions needed for conflict 
resolution to the total number of actions. Since RWK does not explicitly recognize 
conflicts, it is not included in this statistics. The main result to be noted here is that 
LCC performs very well for smaller agent societies; for larger ones, it actually does not 
lead to a considerably higher conflict resolution efficiency, in comparison with local 
methods. 
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Degradation: The factor of performance degradation 5 shown in Figure 5.c for z agents, 
x E {4, 8, 12} is computed as 5(z) def ~ 1 : # a ( a ) . # t ( x )  " ~' where p is the success ratio (see 
below), #a(z) denotes the total number of actions, and #t(z) denotes the total number 
of tasks in the x-agent experiment. 

The performance of agent type RWK happens to be very insensitive to the size of the 
agent society, whereas the performance of all other agent types degrades considerably 
with a growing number of agents. A second interesting observation is that the agents 
employing simpler types of interaction show a more graceful degradation of performance 
than the more complex ones, especially the one based on communication. This is mainly 
due to the fact that the effort for communication and replanning outweighs the benefits 
of more elaborate strategies if the environment changes very rapidly. 

Robustness: Robustness is measured by the success ratio p, which is the ratio of success- 
fully finished tasks to the total number of tasks given to the agent. In our experiments, 
there are three sources of failures. Failures due to local maxima, deadlock situations 
caused by conflicts, and failures due to multiple conflicts that could not be adequately 
recognized and handled by the agents. The main result concerning robustness is that 
behavior-based strategies tend to be more robust than plan-based, cooperative strategies. 

7 Related Work 

Since the beginning of this decade, a considerable research effort has been devoted 
to the development of architectures for autonomous agents in dynamic environments. 
Only a few of these approaches can be discussed here; in particular, we focus on the 
relationship between our work and that of others contained in this volume. For an survey 
of developments in agent design, we refer to [19]. Layered approaches date back at least 
to Brooks' hardwired subsumption architecture [4]; the approach has been extended and 
refined by many other researchers, e.g., by adding planning capabilities to a reactive basis 
layer (e.g., [8], [7]). A recent approach incorporating the idea of layering to reconcile 
reaction and deliberation is 3 T (see [2] in this book). The three layers in 3 T are reactive 
skills, sequencing, and deliberation. In INTERRAP, the skill layer is implemented by 
reactor PoBs; sequencing tasks are running in all layers of INTERRAP, but particularly 
correspond to the handling of procedures in the behavior-based layer. Deliberation in 
INTERRAP is split up into local and cooperative deliberation; thus, while the focus in 3 T 
still is on the case where we have a single agent acting in a dynamic world. INTERRAP 
extends the classical reactor-planner view by the cooperative layer to agents living in 
multiagent worlds, where dynamics is caused by the presence of other agents. 

Another interesting approach to be read in this book is SIM_AGENT by Sloman 
and Poll [18]. The architectural concept is similar to 3 T and to INTERRAP. An agent is 
a layered entity consisting of (1) a level of automatic processes, (2) a level of resource- 
bounded deliberation, and (3) a meta-level. Again, the main difference to INTERRAP is 
that cooperation is not modeled as a generic capability in the SIM_AGENT architecture. 
On the other hand, SIM_AGENT makes a conceptual distinction between meta- and 
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object-level process management, and it extends the current scope of INTERRAP by 
providing various toolkit functionalities. 

Various other contributions inside this volume deal with multiagent architectures 
and testbeds (see e.g., [1], [14], [10]). The difference between this work and ours is that 
our focus is on the design of the individual agent and defines cooperation mechanisms 
viewed from this agent-centered perspective, whereas multiagent architectures rather 
provide tools for designing multiagent systems. 

Finally, we should comment on the BDI aspect of our work. Looking at Rao and 
Georgeff's work, there is a development from a theoretical model [15] over an abstract 
agent interpreter [16] to a complex agent programming system supporting the devel- 
opment of real-world applications [17]. INTERRAP uses notion such as beliefs, goals, 
and intentions as useful abstractions of the mental state of an agent, but focuses on 
architectural issues, such as how reactivity and deliberation can be integrated within a 
layered BDI framework, and how cooperation mechanisms can be integrated, i.e., issues 
that have not yet been considered in depth by the researchers who have developed the 
BDI paradigm. 

8 Discussion 

In this paper, we identified two basic functions explaining the transformation from 
what an agent perceives to what it does: situation recognition and goal activation, and 
planning and scheduling. The individual control layers of the INTERRAP architecture 
were redefined according to a new uniform structure based upon these functions. The 
implementation of these concepts was shown by the example of an interacting robots 
application; empirical results were presented showing how different options to design 
agents according to the INTERRAP model affect the behavior of the system as a whole. 
The main contribution of the paper has been to provide a uniform control model allowing 
to express reactivity, deliberation, and cooperation by defining different instantiations 
of three general functions. The work reported in this paper has provided a basis for the 
reimplementation of INTERRAP using the Oz programming language developed at the 
DFKI. The FORKS system has been implemented both as a computer simulation and 
on KHEPERA miniature robots. 

This paper has necessarily focussed on aspects of the individual agent. Aspects of 
cooperation and interaction have been treated very briefly. Future work will explore 
more complex planning and cooperation mechanisms and lead to a richer model of the 
LPL and the CPL than the one described in this paper. 
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