
A Markovian Model for Interaction among
Behavior-Based Agents

J6rg R MOiler*

DFKI GmbH, Stuhlsatzenhausweg 3, D-66123 Saarbriicken

Abstract. This paper addresses the question of the effects of the local modeling
of agents and their decision-making on the behavior and the performance of these
agents in a multiagent environment. Using the example of a particular architecture,
the INTERRAP agent model, and a specific application, the loading-dock domain
of interacting robots, a general model is presented that allows to predict the
problem-solving and interaction performance of a specific type of INTERRAP
agents, namely those controlled by local behavior-based decision functions. The
analysis of the model provides evidence for the necessity of explicit mechanisms
for coordination based on communication in many cases.

1 Introduction

Agents that interact in dynamic multiagent environments need to be equipped with a
set of vital capabilities, such as reactivity, the ability to act in a goal-directed manner
(e.g., by planning their tasks), to efficiently perform routine tasks, to learn and to be
adaptive, and to interact and to coordinate their activities with others. The task of building
architectures that allow designers of agents to integrate these functionalities into one
agent coherently has recently attracted a variety of research work, parts of which can be
read about in this volume (e.g., [2, 9, 4, 5, 7, 20, 12, 17, 1]).

So far, most approaches have concentrated on the definition and the structure of
the individual agent and have neglected the question how different design decisions at
the layer of agent modeling influence their problem solving behavior in a multiagent
environment 2. On the other hand, researchers that have analyzed distributed systems
(e.g., [8]) have not provided adequate operational models of the individual agents.

This paper addresses this question for the case of a specific agent architecture, namely
the INTERRAP model (see [13, 14] and [6] in this volume). INTERRAP provides tools
for modeling different types of agents within a layered framework. Previous research
work primarily dealt with how to combine reactivity with local deliberation and with
the ability to interact with other agents by negotiating and executing cooperative plans.
In this work, we are concerned with questions of agent interaction that go beyond the
scope of an individual agent. The goal of this work is to advance towards the problem
of the evaluation of agent models and the agent behavior they bring about.

* email: jpm@dfki.uni-sb.de, phone: ++49 681 302 5331, fax: ++49 681 3025341
2 This l~act is not meant to be a criticism: rather it is a very natural phenomenon since research

on agent architectures is still at an initial stage, and various problems occurring at the layer of
internally describing one agent have not yet been resolved.

377

The application under consideration is FORKS, the simulation of an automated
loading dock; the agents are robots which perform local transportation tasks in an
automated loading dock using behavior-based or plan-based decision algorithms (see
[15]). Interaction among robots originates from different conflict situations, such as
potential collisions and blockings (see Figure 4 for an example). Similar to decision-
making in local task planning, coordination can be achieved by applying different
mechanisms, which may be either local (for example: trying to dodge the other robot!) or
communicative (for instance: trying to find out about the other's goals and generate a joint
plan for resolving the conflict!). Figure 1 classifies instances and techniques addressed
by different combinations of the dimensions of decision-making and interaction.

COORDINATION

through
ctlmmunication

local

communicative cooperative planning;
patterns; partner models;
signals negotiation

.

reactive systems; goal and plan recognition;
swarm intelligence;; partner models;

emerging functionality heuristics

behaviour-based deliberative

D

DECISION-
MAKING

Fig. 1. Dimensions of interactive agent behavior

In the following, we present two probabilistic models based on finite Markov chains
that allow to predict the performance of agents acting according to a specific class
of local and behavior-based decision methods implemented for agents in the FORKS
application. We show that the global implications of local agent design require careful
analysis, as seemingly intuitive and reasonable local algorithms in some cases lead to
pathological global behavior.

2 The Architectural Framework

The architecture which is under consideration for the local design of agents is INTERRAP.
The main idea of INTERRAP is to define an agent by a set of hierarchical functional
layers, linked by a activation-based control structure and a shared hierarchical knowledge
base. It consists of three basic parts: the control unit, the world interface (WIF), and the
knowledge base (KB). The WIF contains the agent's facilities for perception, action,
and communication. The control unit consists of three layers: The behavior-based layer

378

(BBL), the local planning layer (LPL), and the cooperative planning layer (CPL).
The BBL implements and controls the basic reactive behavior of the agent as well
as its procedural knowledge (abstract actions). It is based on the concept of patterns
of behavior (PoBs). These allow an agent to react flexibly to its environment, and to
perform routine tasks efficiently without requiring explicit symbolic planning. The LPL
controls a single-agent planning mechanism. Currently, a planner based on a plan library
is provided where plans are hierarchical skeletal structures whose nodes may be either
new subplans, or executable PoBs. The CPL extends the agent's planning abilities to
joint plans to cope with special situations.

For a detailed description of the architecture, we refer to [6] in this volume and
to [13]. In the following, we would like to clarify the scope of our work by providing
an example of how a task is processed by an INTERRAP agent. The example is taken
from the FORKS application (see Section 4). Assume a forklift agent receives an order
l o a d _ t r u c k (~1, b23 to load the trucktl with box b23. In this case, control is shifted
upward to the local planning layer, where a corresponding goal is created. Now, a
hierarchical plan is created by dividing the goal into subgoals using the plan library.
Figure 2 shows an example for a goal hierarchy. At a certain depth in the hierarchy,

Fig. 2. Hierarchical planning and intelligent execution in INTERRAP

explicit planning stops, and procedure PoBs are activated in the behavior-based layer. In
the case of robot navigation, an appropriate abstraction level to start procedure execution
are landmarks. The advantage of using a procedure is that it provides a means for
intelligent execution, i.e., for dealing with certain unforeseen events without explicitly
causing replanning at the local planning layer.

A further advantage is that certain conflict resolution strategies may be built in into
the procedures, thus often avoiding explicit conflict recognition effort and reducing
the communication overhead. E.g., one source of conflicts in the loading dock are

379

~ymmetrical blocking situations (see Figure 4). One way to break this symmetry and to
avoid conflicts at system design time is by locally programming the navigational PoBs
such as goto_landmark as probabilistic decision functions:

Definition 1 Probabilistic Decision Function (PDF). Let S be a set of world states.
Let .4 be a non-empty set of actions, G C S a set of goals; letf(s , .4, 9) E [0, 1] be
a probability distribution on .4 given state s E S, and goal 9 E ~. Then a PDF is a
function ~Y (s, .4, 9) : a~ with probability f (s , al, 9) for each ai E .4. We omit the
superscript f for .T in cases it is obvious.

The decision function .T is used in the control cycle of the behavior-based layer to
determine the next action to perform in executing a PoB (see [6] in this book).

Now, given a set of agents locally selecting their navigational actions according to
PDFs, and assuming that these agents operate in a shared environment, the question is
how is the global performance of the system as a whole? In the following, we define
two probabilistic models which allow us to predict the behavior of a multiagent system
consisting of a set of agents each of which uses a PDF for its local low-level decision
making. Note that the scope of this model are not the decisions made at the planning or
the cooperation layer of INTERRAP, but rather those made at the procedural, behavior-
based layer. This restriction is discussed in Section 5.

3 A Mode l for Behavior-based Dec i s ion-Making

The main idea we propose in this paper is to use the model of finite Markov chains
to approximately predict the collective behavior of interacting robots whose individual
decisions have the Markov property. This property can be assumed to hold for decision
processes implemented at the behavior-based layer of the INTERRAP architecture. This
holds true because taking into account only the current state of the world for making
decisions is suitable for achieving reactive and situated behavior, which is the main
purpose of the BBL.

3.1 Finite Markov chains

Finite Markov chains (see [10] for an introduction) have been used as a model for
describing dynamic uncertain environments in the planning literature (see [3, 19]).
In these approaches, encoding planning problems into an absorbing Markov chain
with transient states and absorbing states (the goal states) allows to draw quantitative
conclusions on the behavior of the system.

The way we are using Markov chains is not primarily to cover the uncertain outcome
of actions (although this will play a role in coping with the presence of multiple agents)
but to quantify properties of the class of decision algorithms defined above which
describe the choice of an action as a stochastic process.

A finite Markov process is a finite stochastic process describing probability tran-
sitions trough a set of states whose conditional probability distribution satisfies the
Markovproperty: the transition probabilitypij from state si+l held at time ti+l depends
only on the state si at time ti, but not on previous states. A finite Markov chain is a finite

380

Markov process whose transition probability pij is independent from how often state si
has been reached in the past. A Markov chain whose probability does not change over
t ime is called stationary. An absorbing chain is defined by two disjoint sets of states:
transient states and absorbing states. Absorbing states are states that are never left once
entered.

The transition matrix Mij of a finite absorbing Markov chain M has the form

where Q are the transitions among transient states, R are transitions from transient to
absorbing states, 0 contains only zeros, and I is the identity. The following theorem
recalls results from Markov chain theory.

Theorem2. Le tM=(QoRl)bea f i n i t e s ta t i onaryMarkovcha in . Then.�9

- N de f (I - Q)- I = ~ = o Q t always exists," Nij is the average number of times
state sj (which is transient) is entered before an absorbing state is reached if the
initial state is si. N is called the fundamental matrix.

- V : N . (2- N d - 1) - N 2 describes the variance for N, i.e., ~ j is the variance
of the total number of times the process is in transient state sj if the chain started
in si. N 2 is computed by squaring each entry of N; N d results from N by setting
each off-diagonal entry of N to zero.

3.2 A probabilistic model for agent interaction

In the following, we will procede in three steps; first, we provide the necessary formal
framework by adopting the general Markov model to our settings; second, we show how
this setting can be used to predict the behavior of an indidivual decision-making and
acting agent; third, we discuss two ways of representing the effects of agent interaction
into the model.

Formal framework We define a finite absorbing Markov chain as a tuple M dej-
(S, A, P) where S = St U So, St n So = ~ is a finite set of world states, St rep-
resent transient world states and So represent absorbing world states given by the set
jC of goal states (throughout the paper, we will mostly deal with the case where So is
singleton; this, however, is not a general restriction); .4 : { a l , . . . , ak} is a finite set of
actions; P : S • S ~+ [0; 1] is a probabilistic transition function of the environment:
P(si , sj) denotes the probability of getting from state si to state sj. In order to express
that P depends on the set of goal states So, we write pS~ or simply Pg if So : {g}.

In our application, the function P is composed by two probability distributions:
the probability distribution f over possible action selections in s a situation, and the
distriution e over the possible outcomes of executing an action, f : S • .4 • Sa ~-+ [0; 1]
is the function underlying the actual decision function .T of an agent (see Definition 1).
For s C S, a E .4, g ~ Sa,f(s, a, g) denotes the probability a is selected for execution

381

by an agent in state s given the agent's current goal is g. e : S x ,,4 x S ~ [0; 1] describes
a probability distribution over the possible outcomes of actions: for Sl, s2 E S, a E .4,
e (s l, a, s2) is the probability of reaching s2 by executing a given the initial state s l.

Behavior-based decision-Making Given an agent that makes its decisions using a PDF
.TY, the above framework can be used as a model to predict the agent's behavior. For
this purpose, we define the transition function P :

Definition 3. Given the initial world state so and a goal state g, the transition function
P : S x $ ~-4 [0; 1] is given by the transition matrix Pij as the transition probability
from state si to state sj with P/} = SakeA(e(s i ,ak ,s j) lak has been selected in
si) = EakeA f (s i ,ak ,g) e(si ,ak,sj)

By dividing the set of states into two subsets St and Sa, where Sa = G and St = S - ~,
P/} can be written in the form according to Definition 1 By computing the fundamental
matrix N and its variance matrix V in accordance with Definition 2, we can determine
e.g., the expected number of actions ni the agent will perform before she reaches a

�9 r ~ - - I �9 . �9

state g E G starting from state si, which is ni = ~ j = l Nij l fS~ is singleton. See the
example in Section 4.

Interaction by local behavior So far, we can draw quantitative conclusions about
the performance of a problem-solving agent that is alone in the world. Since we are
interested in the multiagent case, we will extend our framework to be able to deal with
the presence of multiple agents�9 In the following, we will discuss two ways of integrating
the presence of other agents into our framework: a probabilistic one and an exact one
taking into account the current situation�9

A naive model: For the probabilistic model, we make use of the observation that at the
level of local behavior-based decision-making, the main effect of the presence of others
is that it increases the likelihood of failure of domain actions�9 A probabilistic extension
of the above model is proposed that allows to predict the approximate performance of
an agent given the size of its environment and the number of other agents being around.

Given a Markov chain model M = (S, .4, P (f , e)) as defined above, the main idea
is to incorporate knowledge about the effects of the presence of other agents into the
transition function P . For the scope of this paper, we restrict ourselves to a basic type
of interaction which occurs in the domain we are looking at: the probability of an action
to fail increases linearly with the number of other agents being present: for k agents, the
probability for an action a by an individual agent to fail in state s is p (fails (a, s)) = k@
for a constant c > k - 1. In order to cover the notion of execution failure which occurs
if an action is carried out whose precondition is not satisfied, we make the following
assumption3:

Definition 4 Execution failure. Let s C S be a state of the world, a E A be an action.
Let prec(a), exec(a, s) be formulae denoting the preconditions of a, and the execution

3 This restriction is made for simplicity, it could be weakened by assuming a probability distri-
bution over different possible states.

382

of a in state s, respectively; let eft(a, s) the state resulting from executing a in state s,
and let holds(p, s) be a metapredicate evaluating to true if predicate p holds in state s.
Then, -~holds(prec(a), s) A ezec(a, s) ~ eff(a, s) = s.

The implication for the transition function P is that the failure of the execution of an
action will result in an unchanged state, i,e., a transition s -+ s. This is covered by the
following definition:

DefinitionS. Given the local n x n transition matrix P = p1 for one agent. Then the
k-agent transition matrix pk, k >__ 2, is defined by

k-1 .~'.~n= Pi,~ i f i = j c V _ T , 1,
(1 - --7-) " Pij otherwise

Now, we are able to define the naive model as a Markov chain.

Defini t ion6 Naive model. Let M = (S, .d, P) be a finite absorbing Markov chain
for an individual agent; let k be the number of agents. Then M k = (S, .A, P~) is the
Markov chain denoting the naive model of interaction.

Theorem '7. Let M be a finite absorbing Markov chain. Then M k is a finite absorbing
Markov chain.

In Section 4, we will provide an example how the naive model can be used to derive
quantities of the process.

An exact modeh The main problem of the approach based on approximation is that
it does not allow good predictions of the performance of agents given specific initial
situations, such as conflicts (see Figure 4). Therefore, we provide an alternative approach,
which models the system consisting of several agents by one Markov chain. The Markov
transition matrix for the system can be computed from the transition matrices of the
individual agents. It is important to note that in constructing the exact model we raise our
view from the perspective of the individual agent to a global perspective of the system.
We start from a multiagent system with k agents, in the sequel denoted by indices
1 < i < k, where the local behavior of each agent is described by a finite absorbing
Markov chain.

Definit ion8. Let Ag = { 1 , . . . , k} be a set of agents. For each i C Ag, let M i =
(S i .Ai p i) be the Markov chain describing the local behavior of i. Let 79 be a set of
first-order formulae denoting a domain theory. Then, M = (S, A, P) is the Markov
chain denoting the exact model, with $ = S I x . . . x S k A = A 1 x . . . x A k

P = 7(~9, F ~ , . . . , P~)

States are defined by the Cartesian product of the states of the individual agents; states
change due to simultaneous actions of the agents. The transition probabilities are com-
puted by the probabilities of the individual agents using a function 7. A naive way to
derive the probability of a transition among two states s, 8' C S, s = (81.. �9 sk) and

. . . . ----- 1 - I i = 1 Pi(Si, 8~). However, we have to exclude .s' (st1 s~.) is to define P(s, J) k

383

inconsistent state transitions using a domain theory 7) representing a set of domain
constraints. 79 partitions the set S of states into two disjoint subsets, the admissible and
the inconsistent state transitions:

Definition9. Let M = (S, ..4, P) be a finite absorbing Markov chain for k agents.
Let 79 be a domain theory. Let s,s ' E S, s = (s~ . . .sk) ' ,s ' = (s~ . . . s~) . Then the
set of admissible state transitions AS is defined as {s --+ s' E SIPi(si --+ s~) >
0 A consistent(79, s --+ sl)}. The set of inconsistent state transitions is 1S = S - AS.

I.e., for a state transition to be admissible we require both the feasibility of the local state
transitions and consistency of the global state transition with the domain constraints.
In case the global transition achieved by the set of simultaneous local transitions is
inconsistent, the system as a whole is still required to end up in a well-defined state.
Therefore, we define a set C S of compromise state transitions whose purpose is to
replace inconsistent state transitions. CS characterizes the set of alternative states which
can be taken by the k-agent system whenever the simultaneous local decisions of the
agents would lead to a globally inconsistent state g E 1S. CS is required to be consistent
with 7?; however, for s --+ s ~ E CS we do not require that Pi(si , s~) > O. I.e., the result
of a compromise state transition for an individual agent can be one the agent herself
would never have selected if it was the only agent in the world.

Algori thm 1 Algorithm for computing P = 7 (P 1 , . . . , pk):

1. Compute the Cartesian product of allpossible state transitions: S ~ := S 1 • x S k.
2. Vs, s ' E S ' , s = (s ~ , . . . , s k) , s ' = (s ~ , . . . , 4) : pl(s ,s ,) := rI~=, Pi(s , s').
3. Compute A S and I S from S I. Set CS := 9.
4. V(s, s') E AS: PAS(S, s 1) := p'(s, s').
5. V(s, s') E IS: CS := CS U T(s, s'), where r(s, s') is the set of all consistent

subsequent states of s when trying to reach state s ~.
p'(s,~')

6. Foral l(s ,s ') E IS andforallg E r (s , s ') " Pcs(s ,g) :=p'(s,g) + [,(,,,')l"

Z Forall(s ,s ') E [S s e t P i s (s , s ') : = 0.
8. P = PAs U Pcs U Pts

Theorem 10. Let A9, M i, 79, and M = (S, ~4, P) be as in Definition 8 andAlgorithm
1. Let M i describe a finite absorbing Markov chain for each i E A9. Then M describes
a finite absorbing Markov chain.

Theorem 10 guarantees us that, having computed P, the model M = (S, .4, P) can be
used in the standard way by applying the tools of Markov chains to derive quantitative
properties of the MAS. For an example, we refer to Section 4.

Whilst the exact model allows to make detailed predictions on the future behavior of
the system, this analysis is not for free. Whereas space and time complexity of the naive
model are polynomial (space complexity in O(n2), time complexity in O(n3)), the space
requirement for the exact model for n agents with rn local states is in O(n2m). The
complexity of computing the fundamental matrix is in O (n 3"~) and thus exponential in
the number of agents.

However, in many domains (in particular in the one investigated here), many inter-
esting situations (such as the conflicts described in Section 4) can be described by rather

384

simple settings and do not involve a prohibitive number of states. In these cases, as we
will see in Section 4, the exact model is tractable and useful to analyze global effects of
local decision algorithms in specific situations. Thus, it can help the system designer to
avoid certain dangerous pitfalls.

4 Behavior-based Interaction among Interacting Robots

4.1 FORKS: the loading dock application

FORKS describes autonomous forklifts as agents in a multiagent system that have to
carry out transportation tasks in a loading dock. FORKS has been implemented both as
a computer simulation running and in a real robot scenario using KHEPERA miniature
robots.

Figure 3 illustrates the structure of the loading dock. It is represented as a grid; each
square ((x, y), t, r) has coordinates (z, y), a type t ~ {grnd, truck, shelf}, and can be
within a region r E {parking-zone, hallway, truck_region, shelf_region}. Squares of
types truck and shelf can additionally contain at most one box. The forklifts themselves

 :il,
Q1

(b) ./q

Q3~Q2
Q~

goal((Xl, YI)),
same_qoadrant((Xl, Vl), (~ V2)),
nei~h~r_qt~rant((X'~, YI), (X3, V3)).

Fig. 3. (a) The loading dock (b) Quadrants

occupy one square at a time; they have a certain range of perception (one square in front
is realistic), can communicate with other agents and can perform actions that change
the world. The actions a forklift can perform are to move to a neighbor field, to turn to
a certain direction, to grasp a box standing in front of it, and to put a box it currently
holds.

4.2 The model

In this Section, we show how the domain is represented using the framework developed
in Section 3. A Markov chain is built by defining states, actions, and state transitions.
Due to space limitations, we will restrict the model to a specific portion of the domain,
namely to coordinated movement of the agents through the loading dock. Conflicts are

385

investigated by the example of blocking situations (see Figure 4). Other parts of the
domain, e.g., those describing the search and manipulation of boxes can be modeled as
independent Markov subchains in a way similar to the one we describe here; they can
be composed to describe the overall behavior of the agent (see [3] for a discussion of
this subject in the context of restricting the search space for planning). In the framework
of INTERRAP this assumption makes sense, since the higher-level behavior of an agent
is maintained by a planner that represents the goals of an agent in a hierarchical tree
structure (See Section 2). Only the leaf nodes of this tree are achieved by patterns
of behavior such as goto_landmark or search_box which are described by the model
presented in this paper. Hence, the independence assumption between the different
patterns of behavior is justified.

States: The state of a forklift is defined as a 3-tuple ((x, y), o, b) where (x, y) de-
notes the current location of the forklift, o E {s, n, e, w} its direction, and b E
{boxdeseription, ni l) denotes whether the forklift is currently holding a box or not.
For the movement task considered in this paper, the only relevant variable identifying
the state of a forklift is its location. Therefore, we will restrict the description of the
local state of a forklift by constructing an envelope [3] consisting of the possible tuples
(x, y).

Actions: The action which is relevant for studying coordination of movement is the
moveto action which makes the forklift move to a direction specified as an argument to
the action. The operational semantics is as follows:

Name: moveto(Dir)
Effects: s = ((x, y), o, b) ~4 ((x', y'), o', b) with

o' --- Dir
(x', y') = switch(Dir)
{

case 'n' : (x, y + I);
case 'e ' : (x + 1, y);
case 's' : (x, y - 1);
case'w' : (x - 1,y)

}
Preeond:type((x', y')) ~ {truck, shelf} A

status((x', y')) # occupied.

/* case distinction */

Here, status is a unary function that receives as argument a square and returns occupied
if the square is occupied by an agent. Type is the accessor function to the type t of a
square ((x, y), t, r). Note that this definition describes the intended effects of the action
rather than the actual effects at the time of execution.

Transitions: Transitions among local states that correspond to movements of the fork-
lifts through the scenario are achieved by the execution of actions. The incentive to act
is given by goals. In our example, a goal is given by a location the robot is to reach.
Thus, there is a natural mapping from goals to states.

386

The local transition function P i of agent i is given by instantiations of the functions
f i and ei: The function e i that represents the outcome of an action is assumed to
be deterministic. I.e., for the one-agent case we assume that actions bring about the
expected effects, f i defines the probabilities of the robot to move to some direction
depending on the relative position of the goal wrt. to the robot 's current position. The
underlying decision function .Tf is based on the notion of quadrants (see Figure (3.b)).
Given the current position s and a goal 9, the world is divided into four quadrants ql
- q4. ql is the quadrant where the goal field is located, q4 is the quadrant which is
directed away from the goal; q2 and q3 are orthogonal to the goal. Given a state s and
a goal state g, qi (8, g) returns the state (square) which is directly reachable from 8 and
which is in quadrant qi wrt. g. Thus, the square qi(s, 9) is selected with a probability
of f (s , qi, g). In the following, let qi denote the action which will result in the state of
the agent being qi (s, g). f (s , qi, 9) can be equal to zero if the agent cannot move to this
direction because there is an obstacle there. For this case, we include a dummy operator
qo(s, g) = s. Function P i can now be defined as follows:

D e f i n i t i o n l l . Let 5 vf be a PDF; let el, c2 > 1, Let .,4 i = {qj]0 < j < 4}. L e t f b e
constrained by the following conditions: For all s, g, we have:

(1) ~ = , , f (. % q ~ , 9) = 1
(2) f (s , q l , g) > O A f (s , q 2 , 9) > O = e z (s , q i , g) = c l . f (s , q 2 , g)
(3) f (s , ql,9) > OA f(s , q3,9) > O=> f(s , qb9) =c , . f (s , q3,9)
(4) f (s , qz,g) > O A f (s , q 3 , 9) > 0=> f(s , q2,9) = f (s , q3,9)
(5) f (s , q2, 9) > 0 A f (s , q4, g) > 0 =~ f (s , q2, g) = c2. f (s , ('14, g)
(6) f(.s, q3, g) > 0 A f(s , q4, g) > 0 =:} f(.s, q3, g) = CZ" f (s , q4, 9)
(7) f (s , qo,9) > O cee ~ = l f (s ,q i ,9) = O

Furthermore, let e i : S • A • S ~-+ [0; 1],ei(s, q i ,q i (s ,g)) = 1. Then, p i : S • S
[0; 1] is defined by Pi'g(s, s') = ~ q c A fi (s, q, 9) . ei (s, q, s') = ~qe .a fi (s, q, g).

I f cl = c2 = 1, we obtain a random walk strategy, where the agent selects each
direction with the same equality. By choosing cl, c2 > 1 we obtain a weighted strategy
that makes the agent move towards its goal with a higher probability.

Example: Let us consider example (4.a). Assume that agent a who is at location (1,2)
has the goal to move to location (2, 2). Then, q l ((1,2), (2, 2)) = (2, 2), q2((1,2), (2, 2)) =
(1, 1), q3((1,2), (2, 2)) = (3, 1); q4 is not possible in the example. By choosing
cl = 4, c9_ = 1.5, we obtain the probabilities p((1 ,2) , (2, 2)) = 2, p((1 ,2) , (1,3)) =

1 p((1 ,2) , (1, 1)) = ~. Thus, the local transition matrices p a and pb for agents a and b
can be written as

111213212322 111321232212

| ~ ? ~ 0 2- 13 0 0 0 g l
g 4 3 pb 04 i 0 12 g t 21 0 0 ~ 0

e ~ = 2113 ?~)003 ~ 1 2 3 0~) 4

22 0 23 0 0 3 0 0 3
0 0 0 0 0 1] 0 0 0 0

Based on the single-agent Markov chains, in the next Section, we will provide
examples for the naive model and the exact model defined in Section 3.

(a)
a b

387

~ 3 4 5

a b

1 2

goal(a, goto_landmark((2,2)) go~(a, goto_landmark((6,1))
goal(b, goto_landmark((12)) goal(b, goto_landmark((1,t))

Fig. 4. Conflict situations in the loading dock

4.3 Analysis of system behavior

The naive model The transition matrix P~ for agent a in the example shown in Figure
(4.a) can be used to derive some quantities as regards the local problem-solving behavior
of agent a. The fundamental matrix N a for P~ has the form

11 12 13 21 23 total

213 { 1.24 0.26 0.05 0.99 0.04 2.59
N a 12 | 0.22 1.09 0.22 0.18 0.1811.881

= 13 /0 .050 .26 1 .240.040.992.60[
21 /0 .25 0.05 0.01 1.20 0.01 1.52~

\0 .01 0.05 0.25 0.01 1.20 1 .52/

Thus, for cl -- 4, c2 = 1.5, the expected number of steps needed to reach the
goal state (2, 2) when starting from state (1, 1) is equal to fi = 2.59, the variance is
equal to v -- 1.08. The optimal solution in this case is 2. Thus, the performance of agent
behavior can be improved by making it more goal-directed, i.e., by selecting other values
for ct, c2. For cl - c2 -+ ~ , the solution asymptotically approximates the optimum;
the variance decreases. E.g., for cl = 20, c2 = 4.5, we have h = 2.1l and v = 0.21.
However, as we will see, if we introduce multiple agents which all behave according to
this strategy, this is no longer the case.

Yet, first we provide an instantiation of the naive model defined above. For k agents
and a number of grids of n, we compute the k-agent matrix p k according to Definition
5, setting c = n - 1 and p (f a i l s (a , s)) = k-1 For Example (4.a) and k = 5, cl = 4, h-~-l"
c2 = 1.5, pk,a and N h,a can be computed as:

(ojoo o o16 o
0 3 0.8 0.03 0 0 0 3 N k'~

pk,a = 0.04 0.8 0 0.16 ; =
[0 .04 0 0 0.8 0 0 . 1 6 J
\ o 0 0.04 0 0.8 0 .16/

6 .181 .280 .234 .950 .181 :88 : /

0'96 5"38 0'96 0"77 0"77 17258: /
0.231.286.180.184.95
1.24 0.26 0.05 5.99 0.04
0.05 0.26 1.24 0.04 5.99 7158 /

For getting from (1, 1) to (2,2) in the above example, we have h = 12.28; the
variation v = 77.22. For Cl = 20, c2 -- 4.5, we obtain h -- 10.55 and v = 47.4. Thus,

388

in the naive model, goal-directed behavior of individuals improves the system efficiency
also in the multiagent case. The reason for this is the underlying assumption that other
agents will behave randomly. Using the exact model allows us to drop this assumption.

The exact model Assume now that agent a in Figure (4.a) has the goal to move to
square (2, 2), whereas agent b's goal is to move to square (1,2). We will analyze how
well this type of conflict can be resolved by using the local behavior-based decision
algorithms described above. The same question will be studied by the example shown in
Figure (4.b) which shows a conflict situation in a shelf corridor that seems (intuitively)
harder to resolve.

First, we will define the exact model according to Definition 8. In our example, S is
defined by tuples (sa, 8b), E.g., the initial state is encoded as 8 = ((1,2) , (2, 2) ~ 12224,
the goal state is g = 2212. Actions in A are pairs (qa, qb) denoting simultaneous moves
through the grid. Consequently, the transition matrix P defines the probabilities of
reaching one (compound) state from another one. The domain theory 7) is given by

D = { Yi, j e AgVt E T.loc(i, t) r loc(j, t),
Vi, j E AgVt~ C T.neighbor(loc{i, ti), loc(j, ti))

(Zoo(i, t~+,) # ~oc(j, t~) v toc(j, t~+~) # lo~(i, t~)}

where T is a set of t ime instants, Ag = { 1 , . . . , k} a set of agents, loc : T x Ag ~+ S,
loc(i, t) = s if the location of agent i at time t is s, and neighbor : S • $ ~-~ [0; 1],
neighbor(81, s2) = 1 iff Sl and s2 are neighbors. D expresses two domain constraints:
first, two agents are not allowed to be at the same location at a time; second, agents must
not move through each other. Hence, the direct transition from s = 1222 to 9 = 2221
is not admissible.

In the following, we will compute P using Algorithm 1 based on the individual
transition matrices P~ and pb and domain theory 7?. After computing the Cartesian
product S ~ of possible state transitions, the probabilities p~j for S ~ are initialized. At this
stage, we can restrict our attention to entries (8, s') with p ' (s , s ') > 0. For 8 = 1222,
we obtain

- ' p ' (1 2 2 2 , 1 1 2 1) = p ' (1 2 2 2 , 1 1 2 3) =
p'f1222,P'(1222' 1312)1112) = ~5 ~ p'(1222, 1321) = gg p'(1222, 1323) = gg

4 p ' (1222 ,2221)- i p'(1222,2223) = p'(1222, 2212) ~5 . --

Now, 5: ~ is divided in admissible and inconsistent states; the only successor of 1222
which is inconsistent with 7) is 2221: I S = {2221} and A S = S ~ - IS . Next, the
compromise states C S are computed from IS . In this example, the only consistent
subsequent state when trying to reach 2221 is the initial state 1222, i.e., the local state
transitions fail for both a and b. Thus, 7(1222, 2212) = {1222}, and C S = {1222}.
Pcs (1222 , 1222) = p'(1222,2212) 4 = -9" Now, the set of direct successors for 1222 and
the corresponding probabilities P are computed for all states. The resulting matrix is of
size 36 x 36. The fundamental matrix N is computed as usual; it can be used to derive
the expected number of steps needed to end in an absorbing state given any transient

4 We will use this compact notation throughout the example,

389

state. Table 1 shows the mean number of steps to get from the initial state 1222 to the
goal state 2122 for three different initial values for cl, c2 in comparison with the optimal
solution 5.

Example (3.a) Example (3.b)
mean # of opt. # of mean # of opt. # of

c~ ca state transitions state trans, state trans, state trans.

1 1 7.8 3 122.99 8
01.5 4.86 3 57.4 8

4.5 7.91 3 631.48 8

strategy

random
moderately goal-directed

strongly goal-directed

Table 1. Mean number of states needed to resolve the conflicts in Figure 3

Surprisingly, the highly goal-directed strategy performs worst for conflict resolution;
it is even worse than a random strategy. The moderately goal-directed behavior performs
considerably better; it might still be acceptable if we take into account the cost of
synchronization in the optimal solution.

Next we will analyze the conflict situation shown in Figure (4.b). Assuming the goal
of agent a is to move from square (2, 1) to (6, 1) and the goal of agent b is to move from
(3, 1) to (1~ 1), constructing the k-agent Markov chain according to Algorithm 1 yields
the results shown in Table 1. None of the strategies yields acceptable results 6. Again,
the moderately goal-directed strategy performs best; however, agents the highly goal-
directed strategy needs much longer to resolve the conflict than the random strategy.
The basic reason for this is that both agents follow a hill-climbing strategy. However,
resolving the conflict situation in Figure (4.b) requires agent b to make a number of
steps in the "wrong" direction, which becomes the more unlikely the more goal-directed
b acts.

The main result of this analysis is that there are dangerous pitfalls in the local
modeling of agents using even very intuitive strategies if these strategies are used in a
multiagent environment. One rash conclusion from this result would be to abolish these
strategies and to employ optimal strategies instead, e.g., by coordinating the behavior of
the agents globally. However, as Latombe [11] has shown for multi-robot path planning,
global modeling is not tractable in general. For this reason, it makes sense toprogram the
behavior-based layer of robots using simple and general algorithms, and then to provide
a control architecture that extends these local strategies with the ability to recognize
conflict situations as they occur and to employ other means of conflict resolution in
situations where necessary. For this purpose, our architecture allows the agent designer
to enable agents to resolve conflicts by synchronized plans for multiple agents where
synchronization is achieved by communication.

5 An optimal solution for the example is e.g., 1222 ~ 2221 --+ 2211 ~ 2212.
6 The state transitions 2131 --+ 3141 --+ 4151 -+ 5152 --+ 6151 --+ 6141 --+ 6131 --+ 6121 --+

6111 describe an optimal solution.

390

The results provided by this paper are complemented by empirical results (see [6]
inside this volume) comparing the performance of different agent types in the FORKS
system. Especially, the simple behavior-based decision strategies presented in this paper
were compared conflict resolution methods based on communication. The essence of
these experiments is that communication can yield a considerable gain in performance,
as is implied by the theoretical results developed in the paper at hand. However, the
actual benefit depends strongly on several factors such as on the number of agents.
If there are many agents and a rapidly changing environment, (cooperative) planning
tends to become obsolete before it comes to a result. Therefore, local modeling and
decision-making mechanisms have a justification for practical systems.

5 Discussion

We have addressed the effects of the local modeling of agents on the behavior of
these agents in a multiagent environment. For a specific agent architecture and a class of
applications, two views of a formal model have been provided that support the analysis of
agents, which use a particular class of behavior-based decision algorithms. The model
allows us to make quantitative predictions of the performance of different decision
algorithms using a strict mathematical framework and that it takes into account both
uncertainty in action selection and uncertainty in execution. Maybe the main question
concerns the adequateness of the model: Is it reasonable to assume the Markov property
for the decision-making of interacting agents? If asked in this generality, the answer is
certainly "no". Changes in the environment will force the agent to learn and to change
its behavior. However, the agent's decision behavior does not change arbitrarily often
over time. Thus, the model is still useful to explain the behavior of the agent in between
these changes. A second limitation of the model is that it is not able to cope with these
forms of agent interaction studied in DAI (see e.g., [18, 16]) that deal with negotiation
and require an agent to maintain a history of interactions with other agents. The point is,
however, that the model is not intended to cover these forms of interaction, since they
are modeled at the cooperation layer of INTERRAP. Future work will investigate models
and tools for evaluating agent interaction based on planning and communication.

Acknowledgements

I thank Michael Beetz and Klaus Fischer for helpful discussions on earlier drafts of the
paper. The work presented in this paper has been supported by the German Ministry of
Education and Research under grant ITW9104.

References

1. R. R Bonasso, D. Kortenkamp, D. R Miller, and M. Slack. Experiences with an architecture
for intelligent, reactive agents. In M. Wooldridge, J. R Mtiller, and M. Tambe, editors,
Intelligent Agents - - Proceedings of the 1995 Workshop on Agent Theories, Architectures,
and Languages (ATAL-95), Lecture Notes in Artificial Intelligence. Springer-Verlag, 1996.
(In this volume).

391

2. Rodney A. Brooks. A robust layered control system for a mobile robot. In IEEE Journal of
Robotics and Automation, volume RA-2 (1), pages 14--23, April 1986.

3. T. Dean, L. P. Kaelbling, L. P. Kirman, and A. Nicholson. Planning with deadlines in
stochastic domains. In Proceedings of the Eleventh National Conference on Artificial Intel-
ligence, pages 574-579, 1993.

4. I. A. Ferguson. TouringMachines: An Architecture for Dynamic, Rational, Mobile Agents.
PhD thesis, Computer Laboratory, University of Cambridge, UK,, 1992.

5. R. James Firby. Building symbolic primitives with continuous control routines. In
J. Hendler, editor, Proceedings of the 1st International Conference on Artificial Intelligence
Planning Systems (AIPS-92). Morgan Kaufmann Publishers, San Mateo, CA, 1992.

6. K. Fischer, J. P. MOiler, and M. Pischel. A pragmatic BDI architecture. In M. Wooldridge.
J. P. Miiller, and M. Tambe, editors, Intelligent Agents-- Proceedings of the 1995 Workshop
on Agent Theories, Architectures, and Languages (ATAL-95), Lecture Notes in Artificial
Intelligence. Springer-Verlag, 1996. (In this volume).

7, E. Gat. Integrating planning and reacting in a heterogeneous asynchronous architecture for
controlling real-world mobile robots. In Proceedings ofAAAI'92, pages 809-815, 1992.

8. J. Y. Halpem and Y. Moses. Knowledge and common knowledge in a distributed environ-
ment. Journal of the ACM, 37(3):549-587, 1990.

9. L. P. Kaelbling. An architecture for intelligent reactive systems. In J. Allen, J. Hendler, and
A. Tate, editors, Readings in Planning, pages 713-728. Morgan Kaufmann, 1990.

10. J. Kemeny and L. Snell. Finite Markov Chains. van Nostrand, Princeton, NJ, 1960.
11. J. P. Latombe. How to move (physically speaking) in a multi-agent world. In Y. Demazeau

and E. Werner, editors, DecentralizedA.l., volume 3. North-Holland, 1992.
12. D. M. Lyons and A. J. Hendriks. A practical approach to integrating reaction and deliber-

ation. In Proceedings of the 1st International Conference on AI Planning Systems (A1PS),
pages 153-162, San Mateo, CA, June 1992. Morgan Kaufmann.

13. J. P. Mtiller and M. Pischel. An architecture for dynamically interacting agents. International
Journal of Intelligent and Cooperative Information Systems (IJICIS), 3(1):25-45, 1994.

14. J. P. Mtiller and M. Pischel. Integrating agent interaction into a planner-reactor architecture.
In M. Klein, editor, Proceedings of the 13th International Workshop on Distributed Ariificial
Intelligence, Seattle, WA, USA, July 1994.

15. J. P. Mtiller, M. Pischel, and M. Thiel. Modeling reactive behaviour in vertically layered
agent architectures. In M. J. Wooldridge and N. R. Jennings, editors, Intelligent Agents
- - Theories, Architectures, and Languages, volume 890 of Lecture Notes in AL Springer,
January 1995.

16. J. S. Rosenschein and G. Zlotkin. Rules of Encounter: Designing Conventions for Automated
Negotiation among Computers. MIT Press, 1994.

17. A. Sloman and R. Poll S1M_AGENT: A toolkit for exploring agent designs. In
M. Wooldridge, J. R Mttller, and M. Tambe, editors, lntelligentAgents-- Proceedings of the
1995 Workshop on Agent Theories, Architectures, and Languages (ATAL-95), Lecture Notes
in Artificial Intelligence. Springer-Verlag, 1996. (In this volume).

18. K. R Sycara. Resolving Adversarial Conflicts: An approach integrating case-based and
analytic methods. PhD thesis, Georgia Institute of Technology, Atlanta, Georgia, June 1987.

19. S. Thi6baux, J. Hertzberg, W. Shoaff, and M. Schneider. A stochastic model for actions and
plans for anytime planning under uncertainty. Intl. Journal of Intelligent Systems, 10(2): 155-
183, February 1995.

20. M. J. Wooldridge and N. R. Jennings, editors. Intelligent Agents - Theories, Architectures,
and Languages, volume 890 of Lecture Notes in Artificial Intelligence. Springer-Verlag,
1995.

