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Abstract. Academic and industrial system designers who consider using agent
technology to solve an application problem are faced with a wide variety of agent
paradigms: There are deliberative agents, reactive agents, interacting agents, hy-
brid agents, layered agents, believable agents, mobile agents, software agents,
softbots — the list could well be prolonged. Also, within each paradigm, the user
can select between different architectures and systems, making the actual choice
a complex and difficult endeavor.

The objective of this paper is to assist readers in deciding which agent architec-
ture to choose for a specific application. We approach this objective in three steps.
First, we identify application areas for agent technology starting from the exam-
ples presented in the first part of this paper. Then, based on the characteristics
of different classes of applications identified in the first step, we propose a clas-
sification of agents according to different classes of applications. Based on this
classification, the third step is to provide rules of thumb to help a software engi-
neer or system designer decide which agent architecture (or which class thereof)
is likely to be appropriate for a certain class of applications.

1 Introduction

An important research branch in Al in the early nineties has investigated control ar-
chitectures for intelligent agents. An agent architecture describes the functional com-
ponents of an agent and how they work together. Over the past few years, numerous
architectures have been proposed in the literature, addressing different key features an
agent should have, and building on a wide variety of research disciplines. Indeed the
variety of agent architectures and systems is so wide that system designers in academia
and industry, who are willing to “try” intelligent agents technology to solve an appli-
cation problem, are often lost when it comes to decide what is the most suitable agent
architecture for their specific problem.

In this paper, we address the question as to what agent architectures are most suit-
able for building different types of agent applications. While no complete and undebat-
able answer to this question can be given so far, our aim is to provide a set of guidelines
that help the system designer select the right — i.e., most appropriate — architecture for
a given problem domain. Thus, this paper is intended for system designers and software
engineers interested in agent technology as a software-engineering paradigm.

Our approach in this paper is based on empirical evidence: we study existing agent
architectures and the applications that were built using these architectures, as far as
known from the literature. Based on this test set, we try to derive a taxonomy that
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classifies agents in terms of the classes of applications they appear in, and we define a
set of guidelines that we hope will help system designers in identifying what is the right
agent to do the right thing.

The paper is organized as follows: Section 2 presents the test set that we use, i.e.,
the set of example agent architectures. Section 3 identifies the core application for the
architectures in the test set. In Section 4, we propose a taxonomy for agents based
on the classes of applications identified in Section 3. A set of guidelines for choosing
agent architectures is presented in Section 5. In Section 6, we discuss these guidelines
and how to use them. The paper finishes with some concluding remarks in Section 7.
Table 6 in Appendix A summarizes the analysis of the test set.

2 The Test Set

The test set used in this paper consists of ca. 30 agent architectures. It is an updated and
extended version of the architectures described in an earlier review [26]. The architec-
tures discussed vary widely in underlying models, approaches, and features. Available
implementations range from proof-of-concept prototypes over research implementa-
tions to semi-commercial or commercial systems.

In accordance with [26] we classify our test set into five categories, i.e., reactive
agents, deliberative agents, interacting agents, layered approaches, and others. The
former four categories reflect different architectural paradigms (see [25] for a detailed
discussion). The latter category serves as a container for various more recent approaches
that do not fit nicely in any of the former, such as believable agents, softbots, and a
variety of commercial agent-based systems.

A detailed description of the architectures in the test set would exceed the bound-
aries of this paper. We refer to the original article. In the remainder of this section, we
provide a brief characterization of each category and its instances. For a complete list
of the architectures contained in the test set, we refer to Table 6 in Appendix A.

The first category, reactive agents, include examples such as Brooks’s subsumption
architecture. Research on reactive agents is strongly influenced by behaviorist psychol-
ogy and Artificial Life. Reactive agents make decisions based on a very limited amount
of information, and simple situation-action rules. Some researchers denied the need of
any symbolic representation of the world; instead, reactive agents make decisions di-
rectly based on sensory input. The focus of this class of system is directed towards
achieving robust behavior instead of correct or optimal behavior. Table 1 shows the
instances of reactive agents that we consider in this paper.

Deliberative agents are based on Simon and Newell’s physical symbol system hy-
pothesis in their assumption that agents maintain an internal representation of their
world, and that there is an explicit mental state which can be modified by some form of
symbolic reasoning. Al planning systems and BDI agents are the classical representa-
tives of this category (see Table 2).

The third category, interacting agents, have their origin in Distributed Artificial In-
telligence (DAI). DAI deals with coordination and cooperation among distributed intel-
ligent agents. While the focus of this research discipline has been on the coordination
process itself and on mechanisms for cooperation among autonomous agents rather
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| Architecture | Reference |
Subsumption architecture|[6]
Self-organizing agents  ([38]

AuRA [2]
Dynamic action selection |[23]
PENGI [1]

ECO model [9]

Table 1. Reactive agents

|Architecture  [Reference]

IRMA [5]

PRS [15]
dMARS [33]
SOAR [21] [41]
Cypress [43]
Agent0 / PLACA|[35] [42]

Table 2. Deliberative agents

than on the structure of these agents, we have selected some approaches for the test set

that deal with the incorporation of cooperative abilities into an agent framework (see
Table 3).

|Architecture|Reference]
MAGSY  |[12]
GRATE* [18] [27]
MECCA [39]
COSY [7]

Table 3. Interactive agents

The three categories discussed so far suffer from different shortcomings: whereas
purely reactive systems have a limited scope insofar as they can hardly implement goal-
directed behavior, most deliberative systems are based on general-purpose reasoning
mechanisms which are not tractable, and which are much less reactive. One way to
overcome these limitations in practice, are layered architectures. The main idea is to
structure the functions of an agent into two or more hierarchically organized layers that
interact with each other in order to achieve coherent behavior of the agent as a whole.
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Table 4 shows the layered architectures that we consider in this paper.

|Architecture [Reference |
RAPs, ATLANTIS, 3T'|[11] [14] [4]
Lyons & Hendriks [22]
TouringMachines [10]

INTERRAP [25]
SIM_AGENT [37]
NMRA [30]

Table 4. Layered approaches

The last category, others, is a collection of miscellaneous agent systems, including

three sub-areas, i.e., believable agents, softbots, and various Internet software agents.
The instances under consideration are shown in Table 5.

|Architecture [Reference]
Tok [34]
VET [19]
ShopBot [16]

Zuno VRISKO, QuarterDeck Web-
Compass, AgentSoft LifeAgent Pro,|—
FireFly . ..

Table 5. Other approaches

In the remainder of this paper, we will identify and classify the core application
areas of each architecture in the test set, and establish some guidelines to assist a system
designer in selecting an architecture for a specific application.

3 Application Areas for Intelligent Agents

In the absence of theories to determine which agent paradigm is most useful for which
class of applications, we take an empirical approach: we analyze the main areas of
application known from the literature for each of the agent architectures described in
Section 2. The first two columns of Table 6 in Appendix A summarize the main appli-
cation areas for the architectures under consideration. While we refer to the appendix
for details, in this section we discuss some interesting observations relating to Table 6.



The Right Agent (Architecture) to Do the Right Thing 215

Observation 1 Most architectures discussed are used for autonomous control systems.
The first striking observation is that a large percentage of applications (approximately
half of them) are in the area of mobile robots or, more broadly speaking, autonomous
control systems (ACS). While this is likely to be explained as a historical coincidence,
it is striking to what degree this also affects the more recent hybrid architectures, such
as NMRA, i3I, INTERRAP, or SIM_AGENT.

Observation 2 There is only a limited number of examples of cooperating hardware
agents.

The second, and maybe more surprising observation is that while few researchers will
doubt the role of cooperation and agent interaction, our list of applications contains only
a few examples that actually use interaction among ACSs as a core ingredient. Where
these systems can be found (most notably production planning and flexible transport
system applications), in most cases the individual agents have limited autonomy, and
the interactions among them are simple (e.g., a decentralized material flow where two
machines are fed by a transport robot using material buffers, thus eliminating the nitty-
gritty details of real-time interaction). One possible explanation for the small number
of applications for cooperating ACSs is that there are still a number of fundamental
problems in the modeling of an individual ACS (e.g., at the level of sensorimotor con-
trol and the abstraction of input sensor data), that need to be solved before the use of
cooperating ACSs in real-world applications becomes practical.

Observation 3 Distributed resource allocation is a core area for interacting agents.
The third observation is that a considerable class of applications found in Table 6 deals
with distributed resource allocation, routing, and scheduling problems. Examples are
logistics and transport planning, production planning systems, workflow management,
and business process enactment and monitoring systems.

Observation 4 Cooperative expert systems are a core area for interacting agents.

A fourth observation is that some of the traditional areas of use of expert systems
reappear as application areas of agent technology. Again, this is not very surprising as
a significant part of the momentum behind developing multiagent systems originated
from the need to build cooperating expert systems. The most prominent example of this
class of applications are diagnosis problems that require systems capable to deal with
fuzzy and possibly inconsistent knowledge (e.g., GRATE* as used in ARCHON, or the
spacecraft health management component of the NMRA architecture).

Observation 5 Mainstream architectures do not sufficiently account for HCI require-
ments.

A fifth observation is that a small class of applications addresses the design of agents
that interact with humans. Given that user modeling is a well-established discipline in
Al and that many of its aspects have been revived by research areas such as Computer-
Supported Cooperative Work (CSCW) and Human Computer Interaction (HCI), it is
surprising how little effect the requirements of dealing with “human agents” have had
on the design of mainstream agent architectures. Those applications in Table 6 that
require the ability to deal with human agents are mostly software agent applications,
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such as entertainment, art, education, personal assistants (meeting scheduling, traffic
guidance, secretarial functions) and process monitoring agents. However, there seems
to be a potential for robots interacting with or assisting humans (e.g., robotic wheelchair,
errand-running, robots “working” with humans in factories or offices).

Observation 6 Designers of software agents tend to use other architectures than their
hardware colleagues.

The final observation we would like to make in this subsection concerns the wide va-
riety of application areas created by the advent of global computer networks, and, in
particular, the World Wide Web. These areas require software agents to perform infor-
mation retrieval, information filtering, and resource discovery tasks in a real-world soft-
ware environment. Requirements that are imposed by these applications are the need for
interoperability (legacy systems), user profiling capabilities to provide personalized ser-
vices, and robustness to cope with ever-changing conditions in the environment (e.g.,
availability of WWW resources) and with changing or context-dependent user pref-
erences. Looking at Table 6, it is striking that the architectures used to build softbot
applications seem to differ largely from those developed to build autonomous robots.
This is particularly surprising as the notion of a softbot has been derived from a soft-
ware program being faced with conditions similar to those a mobile robot is likely to
encounter, e.g., uncertainty, huge amounts of information, change. We shall get back to
this observation in Section 5.

4 An Taxonomy of Agent Applications

Based on the observations made in Section 3, we propose a taxonomy of intelligent
agents that reflects the different application areas identified above, and that can be used
to classify the above agent architectures according to how suitable they are for different
application problems.

We suggest a classification of agents according to two dimensions, the first of which
is the material state of the agents, i.e.:

— Hardware agents: Agents that have a physical gestalt and that interact with a phys-
ical environment through effectors and sensors. Clearly, hardware agents will use
software components.

— Software agents: Programs that interact with real or virtual software environments.

The second dimension is the primary mode of interaction between the agent and its
environment:

— Autonomous agents: This perspective of autonomous agents concentrates on two
entities and their relationship: the agent itself and its environment. Virtually all
autonomous control systems fall into this category.

— Multiagents: The environment of multiagents is classified into two categories, i.e.:
other agents and non-agents. An agent can use its knowledge about other agents
to coordinate its actions, to make better predictions about the future, or to achieve
goals collaboratively.
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— Assistant agents: Assistant agents primarily interact with (and: act on behalf of)
one particular type of other agents, i.e., humans.

The motivation for our choice is as follows: the first dimension (material state) is
introduced to comply with Observation 6: if different architectures are used in prac-
tice to model hardware agents on the one hand and software agents on the other, the
classification should reflect this.

The second dimension (mode of interaction) aims at complying with the main appli-
cation areas identified above: In [45], the editors provide a similar separation between
(autonomous) agents and multiagents underlying Observations 1 to 4. The fact that ex-
isting single-agent architectures were extended or new architectures were developed
to cope with the requirements of multiagent applications in our view makes this dis-
tinction useful. In addition, Observation 5 suggests considering agents that primarily
interact with humans as an important special case of multiagents.

This taxonomy allows us to distinguish between six different agent types:

1. Autonomous hardware agents (HW-AU): They are characterized by the requirement
for robust control within a physical environment, interleaving higher-level control
and lower-level execution, coping with the unexpected in real time, and making up
for the limitations of practical sensors and effectors (incomplete, erroneous knowl-
edge). Most autonomous control systems shown in Table 6 fall into this category,
e.g., RAPs, NMRA, and AuRA. An example for an agent architecture of type HW-
AU presented in this volume is HEIR [31].

2. Autonomous software agents (SW-AU): Software systems that act autonomously
and make decisions in a software environment. An example is a software agent as-
sociated with a workflow. This agent autonomously plans and monitors the routing
of the different tasks to be performed as part of the workflow. Also, autonomous
software agents are often the back-end of what appears to be a software assistant
agent (see below) in the front-end perspective. Thus, a system such as ShopBot
could be seen as consisting of a front-end software assistant agent maintaining the
user profile, pre-processing user input and presenting results, and of an autonomous
software agent that goes shopping in the Internet. Wooldridge and Parson’s abstract
agent architecture presented in this volume [46] can be regarded as a further exam-
ple of type SW-AU.

3. Hardware assistant agents (HW-AS): Hardware agents whose primary task it is
to assist human users. One class of these agents are household robots. From the
architectures in the test set, only 3I' was used (among others) for human assis-
tance purposes, €.g., as a wheelchair and for running errands. However, we suggest
considering another group of hardware agents for this class, i.e., those agents that
interact with humans for entertainment or educational purposes. We are likely to
see examples of this species in the form of smarter, more human-like and more
interesting Tamagotchi-like hardware pets.

4. Software assistant agents (SW-AS): Programs that assist a human on the computer
screen or in Personal Digital Assistants (PDAs), that act on behalf of that human,
or that entertain the human. As illustrated in the ShopBot example above, soft-
ware assistant agents are often used as front-end to a system the back-end of which
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are autonomous software agents. The main requirements software assistant agents
have to satisfy are maintaining a user profile and adapting it to reflect changing
user preferences, and find information that is relevant to a human according to her
profile, and to present this information in a personalized way, i.e., in a way that is
appropriate to the knowledge state of the user according to the profile. Note that
entertainment agents (e.g., Creatures) and educational agents would fall into this
category as well, according to the above definition. While there are no specific
examples of architectures for assistant agents in this volume (neither HW-AS nor
SW-AS), awareness of concepts such as norms [8] and moral sentiments [3] will be
important for agents interacting with humans.

5. Hardware multiagents (HW-MA): Hardware agents that act as entities in a multi-
agent system, e.g., cooperating robots in a manufacturing environment. Building
hardware multiagents combines classical robotics requirements with the ability to
reason about other agents, to form teams, and to perform joint plans and actions,
e.g., in order to recognize and resolve goal conflicts or possibilities/necessities to
cooperate to achieve a local or global goal. As an example to be found in this vol-
ume, see Stone and Veloso’s team member architecture [40]; also in [31], the author
points out that his approach can support agents of type HW-MA.

6. Software multiagents (SW-MA): Programs that act as entities in a multiagent sys-
tem. The most common application areas for software multiagents are the solution
of dynamic and distributed resource allocation problems, as well as cooperative
expert systems applications. Numerous approaches found in this volume describe
architectures for software multiagents. See e.g., A-Teams [32]; the agent architec-
ture used by Skarmeas and Clark [36]; the model underlying Agentis [20], which
provides an interaction model for AIMARS; and PROSA; [29].

For each agent architecture considered in this paper, the third column of Table 6
shows what types of agents were built using this architecture.

5 Agent Architectures and Applications: Some Guidelines

So far, we have described a set of agent architectures and defined a taxonomy of types
of agents for different applications. In this section, we address the question: What is the
right agent architecture to apply to a specific problem?

Frankly, there is no black-or-white, algorithmic answer to this. More often than not,
the answer will be pre-determined by external factors (e.g., commercial availability,
availability of tools and development environments, compliance with internal informa-
tion infrastructure), and the choice of the agent architecture will be one of the smaller
problems to be solved. Realistically, we should not hope for more than providing useful
guidelines.

Guideline I Check carefully whether you need agents, or whether another program-
ming paradigm, such as (distributed) objects, will do the job to solve your application
problem. Be requirements- driven rather than technology-driven. If your application
problem shows some of the following properties, then you might want to consider look-
ing at agent technologies:
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— highly dynamic, necessary to be responsive and adaptable to a changing environ-
ment;

— need to deal with failure, e.g., re-scheduling, re-planning, re-allocating of resources;

— need to balance long-term goal-directed and short-term reactive behavior;

— complex and/or safety-critical, guaranteed reaction and response times;

— geographically or logically distributed, autonomous or heterogeneous nodes;

— need for reliability, robustness, and maintainability;

— complex or decentralized resource allocation problems with incomplete informa-
tion;

— flexible interaction with human users.

For instance, imagine your task is to build a workflow management system to im-
prove your company’s information processes. If the business processes in your company
are well-understood, largely involve information flow but no material flow, if there are
clear and well-established ways of dealing with failure, if the services provided by dif-
ferent departments are static and known a priori, then you might as well model your
workflow management system as a distributed object-oriented application.

If, however, the set of services is expected to change or service-level agreements
are likely to be negotiable depending on the requester of a workflow service, if work-
flows are dynamic and need to be completed within a short period of time, and if your
workflow system is likely to cater for the needs of offline workers and has to scale up to
workflow processes beyond the control of an individual enterprise, then consider using
agent technology, possibly based on a distributed object-oriented approach.

Guideline 2 Use Table 6 for a rough orientation. The fact that architecture A was suc-
cessfully used to build applications of class P, but never used to build applications of
class ) does not necessarily mean that A is not appropriate to deal with @); however,
in this case, if your problem is P, at least you have some positive evidence that A will
work.

Guideline 3 If your problem requires autonomous hardware agents, then you may be
well served with a hybrid architecture. A purely reactive approach may be applicable
if you can find a decomposition of your system that allows you to define very simple
agents. But do not underestimate the difficulty of achieving meaningful self-organizing
behavior from a set of simple agents.

Guideline 4 If your problem requires autonomous software agents, then you can choose
between some robust architectures such as dAMARS and SOAR. dMARS is a commer-
cial product and hence not available for free; however, there are various implementa-
tions of PRS, one of which, UM-PRS, has been developed at Michigan University.

Guideline 5 If your problem requires software assistant agents, then the agent archi-
tecture is definitely not the first thing to worry about. What is much more important is
to get the domain functionality such as profiling and personalization right. These, how-
ever, are much more problems of human-computer interaction (HCI), user modeling
and pattern matching.
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Guideline 6 If your problem requires hardware assistant agents, then there is no off-
the-shelf system available. A solution to your problem may be to select any architecture
for ACSs (see also Guideline 3) and extend it by adding the required HCI functionality
(see Guideline 5).

Guideline 7 If your problem requires software multiagents, then you might want to look
at any of the examples presented under the Interacting Agents category. However, if
there are high interoperability requirements on your system (e.g., communication with
non-agent components within your company), then you may run into trouble as none of
the systems described easily complies with interoperability standards such as CORBA.
You therefore may have to modify the communication layer. When doing so, make sure
that you do not do double work: there are well-established means of transporting a
stream of bytes from one place to another. What is missing is a system that can deal
with the semantics of these byte streams, and this is where agents can help.

Guideline 8 If your problem requires hardware multiagents, then either select one of
the architectures or systems for autonomous hardware agents (see Guideline 3) and
add your cooperation knowledge to these, or select one of the cooperation-centered
architectures presented in Section 2 and enhance them by the necessary interface to
your hardware. An architecture like INTERRAP might be of interest for you as it has
been applied to the domain of interacting robots. However, its current status is that of a
research prototype.

Guideline 9 Do not break a butterfly on a wheel. While it is appealing to compare an
Internet search agent with a robot, this analogy must not be taken too literally. Most
architectures that are used to control robots are by far too heavy-weight. If the domain
you are working in is a software domain, more likely than not your architecture of
choice should:

be capable of multi-tasking;

— de-couple low-level message handling from high-level message interpretation;

— come with a service model allowing agents to vend services that are internally
mapped into tasks;

— comply with interoperability standards such as CORBA to make agent services
available to a wide spectrum of applications;

— have a small footprint: the empty agent should not be bigger than a few 100K.

Guideline 10 For most interesting applications, neither purely reactive nor purely de-
liberative architectures are useful. The odds are that you are best served with one of the
hybrid architectures. Systems such as PRS, RAPS, or SOAR have been around for years
and are sufficiently stable and mature to be a good choice for any type of autonomous
control systems.

Guideline 11 1If adaptability is crucial to solve your application problem, you will not
have much choice. Most research reviewed in this paper has neglected the ability of
an agent to learn and it is not clear how the architectures could support enabling an
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agent to deal with longer term change. A notable exception is the SOAR system, so
you might want to have a look at that. Some approaches, in particular the reactive agent
approaches, provide a short-term form of adaptability based on feedback. However, to
our knowledge none of the described architectures offers a uniform and complete model
for adaptability.

6 Discussion

The first aspect of the discussion is the taxonomy itself. The reader may wonder why
we defined our own taxonomy instead of adopting e.g., either of Franklin and Graesser
[13] or Nwana [28]. Also, why did we introduce two different schemes of classification
in the two parts of this paper?

To answer the first part of this question: the Franklin-Graesser taxonomy has been
a general, rather philosophical attempt to structure the field. As such, it does not reflect
the view of a system designer who wishes to apply agent technology to a specific appli-
cation domain. On the other hand, Nwana’s taxonomy is restricted to software agents.
Therefore, we preferred not to adopt any of the existing taxonomies.

With regard to the second part of the question, it is important to note that what we
classified in the first part of this paper (reactive, deliberative, interacting, hybrid, others),
were agent architectures. However, the classification proposed in Section 4 refers to
agents or agent systems that were built according to an agent architecture. Thus, the
two schemes classify different entities. Note that different agent types may appear in
one and the same application. The most important requirement to be satisfied by the
latter scheme is that it can be used to classify specific instances of agents built according
to a specific agent architecture and used in a specific class of applications.

The second topic of discussion relates to the guidelines. Clearly, they are rules of
thumb, and should be treated as such. They are a result of analyzing current agent ar-
chitectures and the applications they were used for, as well as of our experience in
designing agent architectures and agent-based systems. Guidelines 2 to 8 are more or
less directly derived from Table 6. The guidelines reflect the current state of the art and
are prone to changes. For instance, Guideline 9 seems to suggest to use “lighter” ar-
chitectures for autonomous software agent applications than for autonomous hardware
agents. In fact, what it does suggest is to make this choice given the current state of
the art in agent research, based on observing the application areas of currently existing
architectures as well as on experiences with two architectures that we developed in the
past and applied to hardware and software domains alike.

Bridging the current gap, i.e., materializing the intuitive analogy between robots
and softbots in terms of architectures that can be used to deal with the common aspects
of both, is an interesting topic for future research.

Similarly, Guideline 11 should be understood as a requirement for future research
on integrating learning mechanisms into agent architectures. There are plenty of appli-
cations that require only a limited (short-term) form of learning which is provided by at
least some systems that are available today. What is lacking is longer-term adaptability.
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7 Conclusion

The main contribution of this paper is threefold: Firstly, we analyzed a collection of
agent architectures and systems built on the basis of these architectures with respect to
what application areas they were used in. Secondly, we propose a taxonomy that allows
us to classify agents with respect to types of applications they were used in. Thirdly,
based on our analysis and the taxonomy, we extract guidelines as to which type of
architecture is best suited for which type of application.

Clearly, the fuzzy nature of the task implies that there are a number of limitations,
some of which were discussed in Section 6. For instance, the analysis of most ap-
proaches relies on information contained in the literature and to a degree on word of
mouth information. In particular, our information relating to what applications were
built using an architecture is prone to be somewhat incomplete. Nevertheless, we be-
lieve that the results described in this paper exceeds the scope of a traditional survey
paper in that we aim at assisting system designers in finding the right agent to do the
right thing.
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A Agent architectures, types, and applications

Table 6 overviews the test set used in this paper (first column), the main types of appli-
cations that were built using these architectures (second column), and the corresponding
classification of the types of agents built using these architectures according to Section
4 (third column). For each architecture mentioned, at least one reference is given in the
fourth column of the table.
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|Architecture [Applications [ Classification [Reference]
Reactive agents
Subsumption architecture |mobile robots and land vehicles HW-AU [6]
Self-organizing agents mobile robots, emerging group behavior [HW-AU, (HW-MAS) [38]
AuRA mobile robots and land vehicles HW-AU, (HW-MAS) 2]
Dynamic action selection |technique has been used in mobile robots | HW-AU [23]
and Artificial Life applications
PENGI arcade computer game SW-AU [1]
ECO model distributed problem-solving SW-MA [9]
Deliberative agents
IRMA general architecture, probably robotics |HW-AU [5]
PRS originally: robotics HW-AU [15]
dMARS air traffic control, business process HW-AU, SW-AU, [33]
enactment and monitoring SW-AS, (SW-MA)
SOAR general Al problem-solving architecture; |HW-AU, SW-AU [21]
mainly autonomous control systems, , SW-AS
more recently also believable agents [41]
Cypress mobile robots and vehicles HW-AU [43]
Agent0 / PLACA no specific application mentioned, HW-MA (?7), SW-MA (7)|[35] [42]
supports communicative acts
Interacting agents
MAGSY production planning, distributed resource
allocation, cooperating expert systems  [SW-MA, SW-AS [12]
GRATE” electricity network diagnosis, later: SW-MA, SW-AS [17]
workflow management [18][27]
MECCA traffic control systems, SW-AS, SW-MA [39]
personal digital assistants
COSY production planning, transport planning [SW-MA [7]
Layered approaches
RAPs, ATLANTIS, 3T mobile robots and land vehicles, HW-AU, [11][14],
robotics wheelchair, errand running (3) |(HW-AS) [4]
Lyons & Hendriks mobile robots and land vehicles HW-AU [22]
TouringMachines mobile robots and land vehicles HW-AU, (SW-AU) [10]
INTERRAP cooperating robots, flexible transport HW-MA, (SW-MA) [25]
systems, game playing agents, logistics
SimAgent humanoid robots or softbots HW-AU (?7), SW-AU (?) |[37]
(very abstract architecture)
NMRA spacecraft control HW-AU [30]
Other approaches
Tok believable agents for entertainment SW-AS [34]
and arts applications.
VET education and training SW-AS [19]
ShopBot Resource discovery, electronic commerce|SW-AS, SW-AU [16]
Zuno VRISKO, information retrieval and SW-AU, SW-AS
QuarterDeck WebCompass,
AgentSoft LifeAgent Pro, |information filtering, SW-AU, SW-AS —_
FireFly ... personalization

Table 6. Agent architectures and agent applications
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