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Abstract

The objective of this paper is twofold. In its ®rst part, we survey the state of the art in research on

agent architectures. The architecture of an agent describes its modules and capabilities, and how

these operate together. We structure the ®eld by investigating three important research threads, i.e.

architectures for reactive agents, deliberative agents and interacting agents. Then we describe

various hybrid approaches that reconcile these three threads, aiming at a combination of di�erent

features like reactivity, deliberation and the ability to interact with other agents. These approaches

are contrasted with architectural issues of recent agent-based work, including software agents,

softbots, believable agents, as well as commercial agent-based systems. The second part of the paper

addresses software engineers and system designers who are interested in applying agent technology

to their problem domains. The objective of this part is to assist these readers in deciding which agent

architecture to choose for a speci®c application. We characterise the most important domains to

which the di�erent approaches described in the ®rst part have been applied, propose an application-

related taxonomy of agents, and give a set of guidelines to select the right agent (architecture) for a

given application.

1 Introduction

The term autonomous agent appears to be a magic word in the computing world of the 1990s. The

concept of autonomous software programs that are capable of ¯exible action in complex and

changing multiagent environments, has refocused the way arti®cial intelligence as a whole de®nes

itself (Russell & Norvig, 1995), and is about to ®nd its way into industrial software engineering

practice. Agent technology is used to model complex, dynamic, and open applications, e.g. in

production planning, tra�c control, work¯ow management, and increasingly, the Internet.

At the heart of an autonomous agent is its control architecture, i.e. the description of its module

and of how they work together. Over the past few years, numerous architectures have been

proposed in the literature, addressing di�erent key features an agent should have. In the ®rst part of

this paper, we survey the state of the art in the design of control architectures for autonomous

agents. We start with an investigation of architectural issues raised by three in¯uential threads of

agent research, i.e., reactive agents, deliberative agents and interacting agents. Reactive agents,

discussed in section 2, are built according to the behaviour-based paradigm, have no ± or at most a

very simple ± internal representation of the world, and provide a tight coupling of perception and

action. Deliberative agents (see section 3) are agents in the symbolic arti®cial intelligence tradition

(Newell & Simon, 1976) that have a symbolic representation of the world in terms of categories such

as beliefs, goals or intentions, and that possess logical inference mechanisms to make decisions

based on their world model. Finally, interacting agents are able to coordinate their activities with

those of other agents through communication and, in particular, negotiation. Interacting agents

have been mainly investigated in distributed AI; they may have explicit representations of other



agents and may be able to reason about them. We give an overview of the developments in

interacting agents in section 4.

Each of these threads focuses on one important property of an agent:

. Reactive agents: reactivity and real-time behaviour;

. Deliberative agents: the ability to act in a goal-directed manner (proactiveness, see Wooldridge &

Jennings (1995));

. Interacting agents: the ability of cooperative social behaviour.

Thus, it is not surprising that research on agent architectures in the 1990s mainly tried to reconcile

these properties in layered (mostly hybrid1) agent architectures. In section 5, some important

layered architectures are overviewed.

Up to the early 1990s, the driving force behind the development of agent architectures was

robotics, and many of the architectures described in sections 2±5 were actually developed and

evaluated by using robotics applications. Over the past few years, the term agent has been

increasingly used in di�erent contexts, e.g.

. agents that are designed to be believable to humans,

. software agents that act on behalf of or assist humans in a great variety of tasks,

. softbots that move through the Internet performing tasks there similar to the way robots act in a

physical environment.

In section 6, some architectural issues raised by these new developments shall be investigated.

In the second part of this paper, we address the question as to what agent architectures are most

suitable for building di�erent types of agent applications. While no complete and undebatable

answer to this question can be given so far, it is possible to provide some guidelines that help the

system designer select the right (i.e. most appropriate) architecture for a given problem domain (see

section 7). Thus, while the ®rst part of this paper addresses a broad audience, the second part is

intended for system designers and software engineers interested in agent technology as a software

engineering paradigm.

As stated above, the usage of the term agent is used to denote a wide variety of concepts, and

across the borders of scienti®c communities. Rather than trying to be complete, in this survey we

select and explain a few representative instances of the most important agent-related research

directions. Additional references for further reading are provided in each section. For a general

introduction to the area, the reader may refer, e.g. to Maes (1994b), Wooldridge and Jennings

(1995), Wooldridge et al. (1996), Johnson (1997), MuÈ ller et al. (1997) and Huhns and Singh (1998).

Franklin and Graesser (1997) overview di�erent agent de®nitions and suggest a taxonomy; Nwana's

(1996) paper is a survey of software agents, also including a taxonomy for this class of agents.

Finally, for a more thorough discussion of the historical development of autonomous agents

research, the reader is referred to MuÈ ller (1996b, Ch. 2), which also presents agent research in the

context of important parental disciplines, such as control theory, distributed systems and cognitive

psychology.

2 Architectures for reactive agents

In the mid-1980s, a new school of thought emerged that was strongly in¯uenced by behaviourist

psychology. Guided by researchers such as Brooks, Chapman and Agre, Kaelbling, and Maes,

architectures were developed for agents that were often called behaviour-based, situated or reactive.

These agents make their decisions at run-time, usually based on a very limited amount of

information, and simple situation-action rules. Some researchers, most notably Brooks with his

subsumption architecture, denied the need of any symbolic representation of the world; instead,

1We call an architecture hybrid if it makes use of di�ering means of representation or mechanisms of control in
di�erent layers.
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reactive agents make decisions directly based on sensory input. The design of reactive architectures

is partly guided by Simon's (1981) hypothesis that the complexity of the behaviour of an agent can

be a re¯ection of the complexity of the environment in which the agent is operating, rather than a

re¯ection of the agent's complex internal design. The focus of this class of system is directed towards

achieving robust behaviour instead of correct or optimal behaviour. Arti®cial life (Conway, 1976;

Langton, 1989; Maes, 1994b) is a research discipline that strongly builds on reactive, behaviour-

based agent architectures. For further reading on architectures for reactive agents, see, e.g., Agre

and Chapman (1987, 1990), Brooks (1986, 1990, 1991), Suchman (1987), Ferber (1989), Kaelbling

and Rosenschein (1990), Maes (1990b) and Balch and Arkin (1995).

2.1 Brooks: subsumption architectures

Brooks' subsumption architecture (Brooks, 1986, 1991) provides an activity-oriented decomposition

of the system into independent activity producers which are working in parallel. Individual modules

(layers) extract only these aspects of the world which are of interest to them. Thus, the

representation space is cut into a set of subspaces. Between the subspaces, no representational

information is passed. The lowest layers of the architecture are used to implement basic behaviours

such as to avoid hitting things, or to walk around in an area. Higher layers are used to incorporate

facilities such as the ability to pursue goals (e.g., looking for and grasping things while walking

around).

Control is based on two general mechanisms, namely inhibition and suppression. Control is

layered in that higher-level layers subsume the roles of the lower level layers when they wish to take

control. Layers are able to substitute (suppress) the inputs to and to remove (inhibit) the output

from lower layers for ®nite, pre-programmed time intervals. The ability (bias) of the robot agent to

achieve its higher-level goal while still attending to its lower-level goals (e.g., the monitoring of

critical situations) crucially depends upon the programming of inter-layer control, making use of the

two control mechanisms. Brooks was successful in building robots for room exploration, map

building and route planning. However, to our knowledge, so far there are no subsumption-based

robots that can do complex tasks requiring means-end reasoning and/or cooperation.

2.2 Steels: behaviour-based robots

Steels' approach to modelling autonomous agents described in Steels (1990), forgoes any planning

and instead refers to the principle of emergent functionality brought about by processes of self-

organisation which plays an important role in system theory (Nicolis & Prigogine, 1977), biology,

physics and chemistry (Babloyantz, 1986).

The fundamental observation is that complex behaviour of the system as a whole can emerge by

the interaction of simple individuals with simple behaviour. This describes the phenomenon of

swarm intelligence. Steels provided the following example for self-organisation in a scenario

involving autonomous robots swarming out from a mother ship on a remote planet to collect

samples: samples occur in clusters, and the robot agents use simple rules to indicate regions where

samples are likely to be found: if an agent carries a sample, it drops crumbs, if it carries none and

detects crumbs, it picks up the crumbs again. Thus, paths are built leading to regions with high

density of samples. On the other hand, agents take into account the information provided by the

crumbs by following the highest concentration of crumbs. By a simulation, Steels shows that the

performance of the agents can be remarkably improved by this reactive cooperation method.

As for most other reactive approaches, Steels' model su�ers from the fuzziness of the underlying

terms such as self-organisation and emerging behaviour. The extent to which his model can be

generalised, and its general usefulness as a model for intelligent agents that are able to deal with a

broader range of tasks and environments, is unclear.
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2.3 Arkin: the AuRA architecture

AuRA (Autonomous Robot Architecture) (Arkin, 1990) is an architecture for reactive robot

navigation that extends Brooks' approach by incorporating di�erent types of domain knowledge to

achieve more ¯exibility and adaptability. AuRA consists of ®ve components: (i) a perception

subsystem which provides perceptual input for other modules; (ii) a cartographic subsystem, i.e., a

knowledge base for maintaining both a priori and acquired world knowledge; (iii) a planning

subsystem which consists of a hierarchical planner and a reactive plan execution subsystem; (iv) a

motor subsystem providing the interface to the e�ectors of the robot; and (v) a homeostatic control

subsystem which monitors internal conditions of the robot such as its energy level, and which

provides this status information both to the planning subsystem and to the motor subsystem.

The coupling of planner and reacting subsystem is similar to Firby's RAP System (see section 5),

Wilkins' Cypress system, as described in Wilkins et al. (1994), and the New Millennium Remote

Agent Architecture (NMRA, Pell et al., 1997). However, Arkin's approach sticks to reactivity as its

main focus; the underlying representation by a potential ®eld is very application-speci®c and lacks

generality. Moreover, it is hard to see how models of other agents could be incorporated into the

architecture apart from treating them as obstacles in a potential ®eld. Thus, as in basically all

reactive approaches, the cooperative abilities of AuRA robots do not exceed that of simple grouping

or following behaviours (see also Mataric (1993) and Balch & Arkin (1995)). There is no way of

expressing goals or even cooperative or synchronised plans.

2.4 Maes: dynamic action selection

Maes (1989, 1990b) presented a model of action selection in dynamic agents, i.e., a model the agent

can use to decide what to do next. Driven by the drawbacks of both purely deliberative agents and

purely situated agents, Maes argues in favour of introducing the notion of goals for situated agents.

However, in contrast to traditional symbolic approaches, her model is based on the idea of

describing action selection as an emergent property of a dynamics of activation and inhibition

among the di�erent actions the agent can execute. The model eschews any global control arbitrating

among the di�erent actions. An agent is described by a set of competence modules; these correspond

to the notion of operators in classical AI planning. Each module is described by preconditions,

expected e�ects (add and delete lists), and a level of activation. Modules are arranged in a network

by di�erent types of links: successor links, predecessor links and con¯ictor links. A successor link

a!s b denotes that a provides the precondition for b. A predecessor link between two modules a and

b is de®ned as a!p b i� b!s a. Finally, a con¯ictor link between two modules a and b, a!c b denotes

that a disables b by destroying b's precondition.

Modules use these links to activate or inhibit each other in three basic ways: ®rst, the activation of

successors occurs by an executable module spreading activation forward. This method implements

the concept of enforcing sequential actions. Secondly, the activation of predecessors provides a

simple backtracking mechanism in case of a failure. Thirdly, the inhibition of con¯ictors resolves

con¯icts among modules. To avoid cyclic inhibition, only the module with the highest activation

level is able to inhibit others. Activation messages increases the activation value of a module. If the

activation value of a module exceeds the threshold speci®ed by the activation level, and if its

preconditions are satis®ed, the module will take action.

Maes' approach extends purely reactive approaches by introducing the useful abstraction of

goals. However, the underlying process of emergence is not yet fully understood, and the system

behaviour resulting from it is di�cult to understand, predict and verify.

3 Architectures for deliberative agents

Most agent models in AI are based on Simon and Newell's physical symbol system hypothesis

(Newell & Simon, 1976) in their assumption that agents maintain an internal representation of their
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world, and that there is an explicit mental state which can be modi®ed by some form of symbolic

reasoning. These agents are often called deliberative agents. AI planning systems (Fikes et al., 1971;

Sacerdoti, 1975; Wilkins, 1988; Ambros-Ingersson & Steel, 1990) can be regarded as the predecessor

of today's research on deliberative agents (see MuÈ ller (1996b) for an overview). Over the past few

years, an interesting research direction has explored the modelling of agents based on Beliefs,

Desires and Intentions (BDI architectures). In this section, we give some prominent examples of

deliberative agents. Further examples of deliberative agent architectures can be found in George�

and Lansky (1986), Laird et al. (1987), Sanborn and Hendler (1990), Cohen et al. (1989), Hayes-

Roth (1990, 1995), Allen et al. (1990), Drummond and Kaelbling (1990), McDermott (1991),

Wooldridge and Jennings (1995), Wooldridge et al. (1996), Kinny et al. (1996), Gmytrasiewicz

(1996), Norman and Long (1996) and MuÈ ller et al. (1997).

3.1 Bratman et al.: IRMA

IRMA (Bratman et al., 1987) is an architecture for resource-bounded agents that describes how an

agent selects its course of action based on explicit representations of its perception, beliefs, desires

and intentions. The architecture incorporates a number of modules, including an intention

structure, which is basically a time-ordered set of partial, tree-structured plans, a means-end

reasoner, an opportunity analyser, a ®ltering process and a deliberation procedure. As soon as the

agent's beliefs are updated by its perception, the opportunity analyser is able to suggest options for

action based on the agent's beliefs. Further options are suggested by the means-end reasoner from

the current intentional structure of the agent. All available options run through a ®ltering process,

where they are tested for consistency with the agent's current intentional structure. Finally, options

that pass the ®ltering process successfully are passed to a deliberation process that modi®es the

intention structure by adopting a new intention, i.e., by committing to a speci®c partial plan.

The IRMA model embodies two di�erent views on plans: on the one hand, the plans that are

stored in the plan library can be looked upon as beliefs the agent has about what actions are useful

for achieving its goals. On the other hand, the set of plans the agent has currently adopted de®ne its

local intentional structure. This second view of plans as intentions has become now the most

accepted paradigm in research on BDI architectures.

IRMA takes a pragmatic stance towards BDI architectures. In particular, it does not provide an

explicit formal model for beliefs, goals, and intentions nor for their processing.2 Thus, the

contribution of IRMA has rather been the de®nition of a control framework for BDI-style agents

which served as a basis to many subsequent formal re®nements of BDI-concepts.

3.2 Rao and George�: a formal BDI model

Anand Rao and Michael George� (Rao & George�, 1991b) formalised the BDI model, including

the de®nition of the underlying logics, the description of belief, desire and intentions as modal

operators, the de®nition of a possible worlds semantics for these operators, and an axiomatisation

de®ning the interrelationship and properties of the BDI-operators. In contrast to most philosophi-

cal theories, Rao and George� have treated intentions as ®rst-class citizens, i.e., as a concept which

has equal status to belief and desire. This allows the representation of di�erent types of rational

commitment based on di�erent properties on the persistence of beliefs, goals3 and intentions.

The world is modelled using a temporal structure with branching time future and linear past, a so-

called time tree. Situations are de®ned as particular time points in particular worlds. Time points are

2Bratman (1987) gave a theory of intentions from a philosophical point of view.
3A note on the relationship between the two terms goal and desire: whereas desire is an abstract notion that
speci®es preference over world states, the goals of an agent are de®ned as a consistent subset of desires.
Additionally, it is often required that an agent believes its goals to be achievable (realism). Rao and George�

have been somewhat inconsistent over time, recently tending to use the more common term goal instead of the
technically correct term desire.
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transformed into one another by events. There are both primitive and non-primitive events; the

latter are useful to model partial and hierarchical plans that are decomposable into subplans and,

®nally, into primitive actions. There is a distinction between choice and chance, i.e, between the

ability of an agent to deliberately select its actions from a set of alternatives and the uncertainty of

the outcome of actions, where the determination is made by the environment rather than by the

agent.

The formal language describing these structures is a variation of the Computation Tree Logic

(CTL*) (Emerson & Srinivasan, 1989). There are two types of formulae, namely state formulae

which are evaluated at speci®c time points, and path formulae which are evaluated over a path in a

time tree.

Semantics is de®ned in three parts: a semantics for state and path formulae, a semantics of events,

and a semantics of beliefs, goals, and intentions. It is speci®ed by an interpretation M that maps a

standard ®rst-order formula into a domain and into truth values, and a possible-worlds semantics

for mental modalities by introducing accessibility relations for beliefs, goals and intentions.

Beliefs are axiomatised in the standard weak-S5 (KD45) model system (see Meyer et al., 1991).

The D and K axioms are assumed for goals and intentions. That means that goals and intentions are

closed under implication and that they have to be consistent. The original axiomatisation provided

by Rao and George� (1991a) su�ers from the well-known problem of logical omniscience, since, due

to the necessitation rule, an agent must believe all valid formulae (see Vardi (1986)), intends them

and has the goal to achieve them.

In Rao and George� (1991b), di�erent commitment strategies (i.e., relationships between the

current intentions of an agent and its future intentions) were discussed: blind commitment, single-

minded commitment and open-minded commitment. In Kinny and George� (1991), an empirical

evaluation of these strategies is given.

3.3 Rao and George�: an interpreter for a BDI agent

A major criticism of the BDI theory as presented in Rao and George� (1991a) is that the multi-

modal BDI logics do not have complete axiomatisations, and that no e�cient implementations are

available for them (Rao & George� (1995); hence, so far they had little in¯uence on the actual

implementation of BDI-systems. In Rao and George� (1992), the authors address this criticism by

providing an abstract interpreter for a BDI agent. An abstract agent interpreter is speci®ed that

embodies the essential modules of Bratman's BDI agent (see subsection 3.1). It describes the control

of an agent by a processing cycle:

BDI Interpreter

initialise-state();

repeat

options := option-generator(event-queue);

selected-options := deliberate(options);

update-intentions(selected-options);

execute();

get-new-external-events();

drop-successful-attitudes();

drop-impossible-attitudes();

end repeat

In each cycle, the event queue is looked up by the interpreter. A set of options is generated, i.e., goals

that the agent could potentially pursue given the current state of the environment. The set of options

is extended by the options that are generated by the deliberator. Finally, the intention formation

step is taken in the procedure update-intentions. A subset of the options determined so far is selected

as intentions, and the agent commits to the associated course of action. If the agent has committed

to perform an executable action, the actual execution is initiated. The cycle ends by incorporating
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new events into the event queue, and by checking the current goals (options) and intentions whether

they have been achieved, or whether they are impossible (in the case of desires) or unrealisable (in

case of intentions).

In more recent work, Rao and George� (1995) have proposed a number of restricting

assumptions and representation choices to their model to obtain a practical architecture:

. Instead of allowing arbitrary formulae for beliefs and goals, these are restricted to be ground sets

of literals with no disjunctions or implications.

. Only beliefs about the current state of the world are explicitly represented, denoting the agent's

current beliefs that are prone to change over time.

. Information for means-end reasoning, i.e., about means of reaching certain world states and

about the options available to the agent for proceeding towards the achievement of its goals, is

represented by plans.

. The intentions of an agent are represented implicitly by the agent's run-time stack.

The Procedural Reasoning System (George� & Lansky, 1986, 1989) and dMARS (Kinny et al.,

1996) are implementations of a BDI architecture based on these assumptions. Wilkins' Cypress

system (see Wilkins et al. (1994)) is based on a hybrid architecture (see also section 5) using PRS in

conjunction with the SIPE planner (Wilkins, 1988).

3.4 Shoham and Thomas: agent-oriented programming

Shoham (1993) proposed the framework of agent-oriented programming (AOP). He presented a class

of agent languages that are based on a model looking upon an agent as ``an entity whose state is

viewed as consisting of mental components such as beliefs, capabilities, choices, and commitments''.

Thus, Shoham adopts the notion of an intentional stance as proposed by Dennett (1987).

An AOP system is de®ned by three components: (i) a formal language for describing mental states

of agents; (ii) a programming language with a semantics corresponding to that of a mental state; and

(iii) an agenti®er, i.e., a mechanism for turning a device into what can be called an agent, and which

can thus bridge the gap between low-level machine processes and the intentional level of agent

programs. In the research published so far, Shoham focused on the former two elements of AOP.

The formal language comprises the mental categories of beliefs, obligations, and capability.

Obligation largely coincides with Rao and George�'s notion of intention and commitment.

Capability is not directly represented as a mental concept in the BDI architecture; rather, it is

covered by plans to achieve certain goals.

The programming of agents is viewed as the speci®cation of conditions for making commitments.

The control of an agent is implemented by a generic agent interpreter running in a two-phase loop.

In each cycle, ®rst the agent reads current messages and updates its mental state; second, it executes

its current commitments, possibly resulting in further modi®cations of its beliefs.

AGENT0 is a simple instance of the generic interpreter. The language underlying AGENT0

comprises representations for facts, unconditional and conditional actions (both of which can be

private or communicative), and commitment rules which describe conditions under which the agent

will enter into new commitments based on its current mental state and on the messages received by

other agents. Messages are structured according to message types; admissible message types in

AGENT0 are INFORM, REQUEST and UNREQUEST. The corresponding agent interpreter

instantiates the basic loop by providing functions for updating beliefs and commitments. Beliefs

are updated or revised as a result of being informed or of executing an action. Commitments are

updated as a result of changing beliefs or of UNREQUEST messages received by other agents.

AGENT0 is a very simple language which was not meant for building interesting applications.

Important aspects of agenthood have been neglected: it does not account for motivation, i.e., for

how goals of agents come into being, nor for decision-making, i.e., how the agent selects among

alternative options. The PLACA language (Thomas, 1993, 1995) extends AGENT0 by introducing

knowledge about goals the agent can achieve, and re®nes the basic agent cycle by adding a time-
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dependent step of plan construction and plan re®nement. PLACA adopts Bratman's view of plans

as intentions, i.e., the agent has a set of plans; its intentions are described by the subset of plans the

agent has committed to. Whereas PLACA clearly extends the expressiveness of AGENT0 by

providing the notion of plans, it does not address other restrictions such as motivation, decision-

making, and the weak expressiveness of the underlying language.

4 Architectures for interacting agents

Distributed Arti®cial Intelligence (DAI)4 deals with coordination and cooperation among distrib-

uted intelligent agents. So far, its focus has been on the coordination process itself and on

mechanisms for cooperation among autonomous agents rather than on the structure of these

agents. However, some recent work deals with the incorporation of cooperative abilities into an

agent framework. In the following, four prominent approaches are described in more detail:

Fischer's MAGSY, the GRATE* architecture by Jennings, Steiner's MECCA system, and the

COSY architecture developed by Sundermeyer and Burmeister. For further reading, see, e.g.,

George� (1983), Finin and Fritzson (1994), Rosenschein and Zlotkin (1994), McCabe and Clark

(1995), Barbuceanu and Fox (1996), Chaib-Draa (1996) and May®eld et al. (1996).

4.1 Fischer: MAGSY

MAGSY (Fischer, 1993) is a rule-based language for designing agents. The MAGSY agent

architecture is fairly simple. A MAGSY agent consists of a set of facts representing its local

knowledge, a set of rules representing its strategies and behaviour, and a set of services that de®ne

the agent's interface. An agent can request a service o�ered by another agent by communication.

Fischer demonstrates the applicability of MAGSY by the application of decentralised coopera-

tive planning in an automated manufacturing environment. Agents are, e.g., robots, and di�erent

types of machines like heating cells or welding machines. The domain plans of the robots are

represented as Petri nets, which are translated into a set of rules, so-called behaviours. These

behaviours are procedures that interleave planning with execution.

The MAGSY language enables the e�cient and convenient implementation of multiagent

systems. It provides a variety of useful services and protocols to establish multiagent communica-

tion links. Clearly, MAGSY inherits both the positive and the negative properties of rule-based

programming languages: on the one hand, there is concurrency and the suitability for modelling

reactive agents; on the other, there is the ¯at knowledge representation and the awkward way to

represent sequential programs. Cooperation between agents is hard-wired by connections between

the Petri nets representing behaviours of di�erent agents. Thus, MAGSY does not support

reasoning about cooperation.

4.2 Jennings: GRATE*

The focus of Jennings' work on the GRATE* architecture (Jennings, 1992b) was on cooperation

among possibly preexisting and independent intelligent systems, through an additional cooperation

knowledge layer. The problem solving capability of agents were extended by sharing information

and tasks among each other. GRATE* is an architecture for the design of interacting problem

solvers. A general description of cooperative agent behaviour is represented by built-in knowledge.

Domain-dependent information about other agents is stored in speci®c data structures (agent

models).

4See Bond and Gasser (1988) and Gasser and Huhns (1989) for collections of papers that provide a good
overview of DAI research by the end of the 1980s. More recent work on DAI can be found in the annual

proceedings of the Distributed AI Workshop (until 1994), and in the proceedings of the International
Conference on Multiagent Systems (ICMAS) (since 1995).
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GRATE* consists of two layers, a cooperation and control layer and a domain level system. The

latter can be preexisting or purpose built; it provides the necessary domain functionality of the

individual problem solver. The former layer is a meta-controller operating on the domain level

system in order to ensure that its activities are coordinated with those of others in the multiagent

system (Jennings, 1992a). Agent models hold di�erent types of knowledge: the acquaintance model

includes knowledge the agent has about other agents; the self model comprises an abstracted

perspective of the local domain level system, i.e., of the agent's skills and capabilities. The

cooperation and control layer consists of three submodules, representing the interplay between

local and cooperative behaviour: The control module is responsible for the planning, execution and

monitoring of local tasks. The cooperation module handles processes of cooperation and coordina-

tion with other agents. The situation assessment module forms the interface between local and social

control mechanisms. It is thus responsible for the decision to choose local or coordinated methods

of problem solving.

Clearly, Jennings' focus was on the cooperation process. However, he went beyond work

discussed before by de®ning a two-layer architecture that embeds cooperation into a domain level

system.5 The architecture does not address more subtle questions of agent behaviour, such as how to

reconcile reactivity and deliberation. Rather, these problems are expected to be solved within the

domain level system.

4.3 Steiner et al: MECCA

In the MECCA architecture (Steiner et al., 1993; Lux & Steiner, 1995; Lux, 1995), an agent is

regarded as having an application-dependent body, a head whose purpose is to actually agentify the

underlying system, and a communicator which establishes physical communication links to other

agents. This view supports the construction of multiagent systems from second principles. Agent

modelling is addressed in the design of the agent's head. It is described by a basic agent loop

consisting of four parallel processes: goal activation, planning, scheduling and execution. In the goal

activation process, relevant situations (e.g., user input) are recognised and goals are created that are

input to the planning process. There, a partially ordered plan structure is generated corresponding

to a set of possible courses of action the agent is allowed to take. The scheduler instantiates

(serialises) this partially ordered event structure by assigning time points to actions. The execution

of actions is initiated and monitored by the execution process.

All control processes in the basic loop may involve coordination with other agents, leading to

joint goals, plans, and commitments, and to the synchronised execution of plans. Cooperation is

based on speech act theory: MECCA provides a set of cooperation primitives (e.g., INFORM,
PROPOSE, ACCEPT) which are treated by the planner as actions, i.e., whose semantics can be

described by preconditions and e�ects. This allows the planner to reason about communication with

other agents as a means of achieving goals (Lux and Steiner, 1995). Moreover, cooperation

primitives are the basic building blocks of communication protocols, so-called cooperation

methods.

4.4 Sundermeyer et al: COSY

The COSY agent architecture (Burmeister & Sundermeyer, 1992) describes an agent by behaviours,

resources and intentions. The behaviour of an agent is classi®ed into perceptual, cognitive,

communicative and e�ectoric, each of which is simulated by a speci®c component in the COSY

architecture. Resources include cognitive resources such as knowledge and belief, communication

resources such as low-level protocols and communication hardware, and physical resources, e.g., the

gripper of a robot. Intentions are used in a sense that di�ers from Cohen and Levesque (1990) and

5Note that the separation of cooperation knowledge from domain knowledge is a theme that can be found in
early DAI work, most prominently in the de®nition of the contract net (Davis & Smith, 1983).
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Rao and George� (1991a): there are strategic intentions modelling an agent's long-term goals,

preferences, roles and responsibilities, and tactical intentions that are directly tied to actions,

representing an agent's commitment to his chosen course of action.

The individual modules of COSY are ACTUATORS, SENSORS, COMMUNICATION,

MOTIVATIONS and COGNITION. The former three are domain-speci®c modules with their

intuitive functionality. The motivations module implements the strategic intentions of an agent. The

cognition module evaluates the current situation and selects, executes and monitors actions of the

agent in that situation. It consists of four subcomponents, a Knowledge Base, Script Execution

Component, Protocol Execution Component and Reasoning and Deciding Component. The applica-

tion speci®c problem solving knowledge is encoded into plans. There are two types of plans stored in

a plan library: scripts describing stereotypical courses of action to achieve certain goals, and

cooperation protocols describing patterns of communication (Burmeister et al., 1993). Scripts are

monitored and executed by the Script Execution Component, handing over the execution of

primitive behaviours to the actuators, and protocols to the Protocol Execution Component. The

Reasoning and Deciding Component is a general control mechanism, monitoring and administering

the reasoning and decisions concerning task selection and plan selection, including the reasoning

and decisions concerning intra-script and intra-protocol branches. Haddadi (1996) has extended

this work by providing a deeper theoretical model. Based on Rao and George�'s BDI model, her

approach describes a theory of commitments, and de®nes mechanisms allowing agents to reason

about how to exploit potentials for cooperation by communicating with each other.

5 Hybrid agent architectures

The approaches discussed so far su�er from di�erent shortcomings: whereas purely reactive systems

have a limited scope insofar as they can hardly implement goal-directed behaviour, most

deliberative systems are based on general-purpose reasoning mechanisms which are not tractable,

and which are much less reactive. One way to overcome these limitations in practice, which has

become popular over the past few years, are layered architectures. Layering is a powerful means for

structuring functionalities and control, and thus is a valuable tool for system design supporting

several desired properties such as reactivity, deliberation, cooperation and adaptability. The main

idea is to structure the functionalities of an agent into two or more hierarchically organised layers

that interact with each other to achieve coherent behaviour of the agent as a whole. Layering o�ers

the following advantages:

. It supports modularisation of an agent; di�erent functionalities are clearly separated and linked

by well-de®ned interfaces.

. This makes the design of agents more compact, increases robustness and facilitates debugging.

. Since di�erent layers may run in parallel, the agent's computational capability can be increased in

principle by a linear factor.

. Especially, the agent's reactivity can be increased: while planning, a reactive layer can still

monitor the world for contingency situations.

. Since di�erent types and partitions of knowledge are required for the implementation of di�erent

functionalities, it is often possible to restrict the amount of knowledge an individual layer needs

to consider.

These advantages have made layering a popular technique that has been mostly used to reconcile

reaction and deliberation. In the following, four layered approaches are presented that extend

architectural concepts of separating control and execution inherent in the PRS system (see section

3): architectures based on Firby's RAPs, the planner-reactor architecture proposed by Lyons and

Hendriks, Ferguson's Touring Machines architecture, and the interrap architecture developed by

the author of this survey. For further reading, we refer to Brooks (1986), Kaelbling (1990), BuÈ rckert

and MuÈ ller (1991), Firby (1992), Lyons and Hendriks (1992), Dabija (1993), Wilkins et al. (1994),

Bonasso et al. (1996), Sloman and Poli (1996) and Davis (1997).
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5.1 Firby, Gat, Bonasso: reactive action packages

Firby's work (1989, 1992) has been most in¯uential in research on integrating reaction and

deliberation in the area of AI planning and robotics. In this subsection, we outline Firby's original

work and two of its recent extensions.

The RAPs System The RAPs (Reactive Action Packages) system describes an integrated

architecture for planning and control. The underlying agent architecture consists of three modules,

a planning layer, the RAP executor and a controller. The planning layer produces sketchy plans for

achieving goals using a world model representation and a plan library. The RAP executor ®lls in the

details of the sketchy plans at run-time. The expansion of vague plan steps into more detailed

instructions (methods) at run-time reduces the amount of planning uncertainty, and thus largely

simpli®es planning. If incorrect methods are selected at run-time, the RAP executor is able to

recognise failure6 and to select alternative methods to achieve the goal. Apart from controlling the

process of achieving goals in a reactive manner, and thus providing the interface between

subsymbolic continuous and symbolic discrete representation and reasoning, the RAP executor

o�ers a set of abstract primitive actions to the planner.

The controller provides two kinds of routines that can be activated by requests from the RAP

executor and that deliver results to that module: active sensing routines and behaviour control

routines. Sensing routines are useful for providing lacking information about the current world

state. Behaviour routines are continuous control processes that change the state of the physical

environment. Examples for behaviour routines are collision avoidance, visual tracking, or moving

in a speci®ed direction. In a later paper (Firby, 1994), the control of continuous processes (i.e., the

interplay of the RAP executor and the controller) is elaborated by describing an extension to the

RAPs representation language and the semantics for task nets.

ATLANTIS Gat (1991b, 1992) describes the heterogeneous, asynchronous architecture ATLAN-

TIS that combines a traditional AI planner with a reactive control mechanism for robot navigation

applications. ATLANTIS consists of three control components: a controller, a sequencer and a

deliberator. The controller is responsible for executing and monitoring the primitive activities of the

agent. Gat (1991a) de®nes a language for modelling the often nonlinear and discontinuous control

processes. The controller thus connects to the physical sensors and actuators of the system. The

deliberator process performs deliberative computations which may be time-consuming, such as

planning or world modelling. Between the two components stands the sequencer which initiates and

terminates primitive activities by activating and deactivating control processes in the controller, and

which maintains the allocation of computational resources to the deliberator, by initiating and

terminating deliberation with respect to a speci®c task. As in the RAPs system, the sequencer

maintains a task queue; each task described by a set of methods together with conditions for their

applicability. Methods describe either primitive activities or subtasks; in the former case, the

corresponding module in the controller is activated; the latter case is handled by recursive

expansion. ATLANTIS extends Firby's original work by allowing control of activities instead of

primitive actions, and provides a bottom-up ¯ow of control: in RAPS, tasks are installed by the

planner whereas they are initiated in the sequencer in Gat's architecture.

The 3T architecture Peter Bonasso and colleagues (Bonasso et al., 1996) have de®ned the layered

architecture 3T, which enhances the RAPs system by a planner. In particular, 3T consists of three

control layers: a reactive skill layer, a sequencing layer and a deliberation layer. The reactive skill

layer provides a set of situated skills. Skills are capabilities that, if placed in the proper context,

achieve or maintain particular states in the world. The sequencing layer is based on the RAPs

system. It maintains routine tasks that the agent has to accomplish. The sequencing layer triggers

6The underlying assumption is that of a cognizant failure: it is not required that no failure occurs, but that

virtually all possible failures may be detected if they occur, and that repair methods can be applied to recognised
failures.
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continuous control processes by activating and deactivating reactive skills. Finally, the deliberation

layer provides a deliberative planning capability which selects appropriate RAPs to achieve complex

tasks. This selection process may involve reasoning about goals, resources and timing constraints.

Compared to Gat's work, 3T uses a more powerful planning mechanism; moreover, reactivity,

i.e., the ability to react to time-critical events, is implemented at the skill layer in 3T, whereas it is

partly a task of the sequencing layer in ATLANTIS. Both of these extensions make the sequencing

layer in 3T more compact and easier to handle.

5.2 Lyons and Hendriks: planning and reaction

In Lyons and Hendriks (1992), a practical approach towards integrating reaction and deliberation

in a robotic domain is introduced based on the planner-reactor model proposed by Drummond and

Bresina (1990) in their ERE architecture incorporating planning, scheduling, and control.7 Whereas

Drummond and Bresina's model focused on the anytime character of the architecture, Lyons and

Hendriks put emphasis on the task of producing timely, relevant actions, i.e., on the task of

qualitatively reasonable behaviour.

The basic structure of Lyons and Hendriks' architecture is described by a planner, a reactor and a

world (which is, in the spirit of control theory (Dean &Wellman, 1991), looked upon as a part of the

system to be described). In contrast to the hybrid approaches discussed so far, in Lyons and

Hendriks' model, planning is looked upon as incrementally adapting the reactive system which is

running concurrently in a separate process by bringing it into accordance with a set of goals. Thus,

the planner can iteratively improve the behaviour of the reactive component.

The reactor itself consists of a network of reactions, i.e., sensory processes that are coupled with

action processes in a sense that the sensory processes initiate their corresponding action processes in

case they meet their trigger conditions. It can act any time independently from the planner, and it

acts in real time. The planner can reason about a model of the environment (EM), a description of

the reactor (R), and a description of goals (G) that are currently to be achieved by the reactor, as

well as constraints imposed by these goals. The task of the planner is to continuously monitor

whether the behaviour of R conforms to G. If this is not the case, the planner incrementally changes

the con®guration of R by specifying adaptations. On the other hand, the reactor can send collected

sensory data to the planner allowing the latter to predict the future state of the environment.

Adaptations of the reactor include removing reactions from the reactor and adding new reactions.

5.3 Ferguson: Touring Machines

Ferguson (1992) describes a layered control architecture for autonomous, mobile agents performing

constrained navigation tasks in a dynamic environment. The TouringMachines architecture consists

of three layers, a reactive layer, a planning layer and a modelling layer. These layers operate

concurrently; each of them is connected to the agent's sensory subsystem from which it receives

perceptual information, and to the action subsystem to which it sends action commands. The

reactive layer is designed to compute hard-wired domain-speci®c action responses to speci®c

environmental stimuli; thus, it brings about reactive behaviour. On the other hand, the planning

layer is responsible for generating and executing plans for the achievement of the longer-term

relocation tasks the agent has to perform. Plans are stored as hierarchical partial plans in a plan

library; based on a topological map, single-agent linear plans of action are computed by the agent.

Planning and execution are interleaved to cope with certain forms of expected failure. The modelling

layer provides the agent's capability of modifying plans based on changes in its environment that

cannot be dealt with by the replanning mechanisms provided by the planning layer. In addition, the

modelling layer provides a framework for modelling the agent's environment, and especially, for

building and maintaining mental and causal models of other agents.

7A similar paradigm has been proposed by McDermott (1991).
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The individual layers are mediated by a control framework that coordinates their access both to

sensory input and to action output. This is described by means of a set of context-activated control

rules. There are two types of rules: censors and suppressors (see also Minsky (1986)). Censors ®lter

selected information from the input to the control layers; suppressors ®lter selected information

(i.e., action commands) from the output of the control layers.

The unrestricted concurrent access of the control layers to information and action and the global

(i.e., for the agent as a whole) control rules in Ferguson's model imply a high design e�ort to

analyse, predict, and prevent possible interactions among the layer. Since each layer may interact

with any other layer in various ways either by being activated through similar patterns of

perception, or by triggering contradictory or incompatible actions, a large number of control rules

are necessary. Thus, for complex applications, the design of consistent control rules itself is a very

hard problem.

5.4 MuÈller and Pischel: interrap

Like the 3T and Touring Machines architectures discussed in the previous sections, interrap
(MuÈ ller & Pischel, 1994; MuÈ ller, 1996b, 1996a) consists of three layers. However, the focus of

interrap was to extend the scope of agent control architectures by supporting agent interaction.

For this purpose, it o�ers a separate cooperative planning layer on top of the behaviour-based layer

and the local planning layer. The cooperative planning layer implements a cooperation model (see

MuÈ ller (1996a)). It provides negotiation protocols and negotiation strategies (see also Rosenschein

& Zlotkin (1994)). Triggered by control messages from the lower layers, an agent can decide to start

a cooperation with other agents by selecting a protocol and a strategy. InMuÈ ller (1996b), it has been

shown how autonomous robots can solve con¯icts by negotiating a joint plan.

As regards the control ¯ow, interrap forgoes global control rules. Rather, it uses two

hierarchical control mechanisms. Activity is triggered bottom-up by so-called upward activation

requests, whereas execution is triggered top-down (downward commitment posting), i.e., a control

layer in interrap will become active only if the layer below it cannot deal with a situation. This

competence-based control allows an agent to react adequately to a situation, either by patterns of

behaviour, by local planning, or by cooperation. The execution output of the cooperative planning

layer are partial plans with built-in synchronisation commands; these are passed to the local

planning layer, which outputs calls to procedure patterns of behaviour in the behaviour-based

component. The latter component then produces actions.

The strict control in interrap considerably simpli®es design; a more ¯exible architecture, e.g.,

allowing concurrent activation of the di�erent control layers, would certainly be useful, but the

discussion of the approaches in this section shows that this will not come for free, and requires

sophisticated mechanisms of coordination and pre-emption.

6 Other approaches

Over the past few years, the notion of an agent has been used in a number of di�erent contextsÐ

often confusing, not only for non-experts. Prominent examples of these are believable agents and

software agents or softbots. Also, the term agent has become a popular add-on to a number of

commercial software products. Looking at these approaches in detail, it appears that they cannot

easily be mapped into the categories de®ned earlier on in this paper, but rather seem orthogonal.

For instance, believability is orthogonal to both reactivity and deliberation: what matters for a

believable agent is not that it can react especially quickly or in a clever fashion to external events, but

rather that it appears to act in a way that makes the human observer believe it has a personality.

Therefore, believable agents are considered as a separate category in section 6.1.

The same is true for softbots: like robots, the design of softbots can be based either on a reactive,

deliberative or hybrid paradigm. What makes them interesting as a class is the fact that they are
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programs rather than physical entities. Therefore, we deal with them as a separate case in section

6.2.

6.1 Believable agents

The Oz project (Bates, 1994; Reilly, 1996) investigates agents that are both autonomous and that

can act as believable characters in interactions with humans (e.g., in a computer game). Such agents

may not be intelligent and may be not be realistic, but will have a strong personality. The approach

to modelling these agents is what is called a broad but shallow approach (see also Sloman & Poli

(1996) and Davis (1997)): instead of being able to do a small number of things particularly well, the

agent is required to cope with a variety of situations occurring in interactions with human users.

The architectural challenges in building believable agents lie in the integration of a large set of

shallow capabilities. The Tok architecture (see Bates et al. (1992)) extends the traditional AI

approach in various respects: ®rst, it enhances sensing±acting by the notion of body and face

changes. Secondly, it maintains an emotional state of the agent with speci®c emotion types and

structures, and with corresponding behavioural features. Emotions can cause changing behaviour

of the agent in terms of motivation, action and body state and facial expression. Primary application

areas for believable agents are education and entertainment. For instance, believable software

agents can help children to learn more e�ectively (see Hayes-Roth & van Gent (1997)); an example

for the use of believable, improvisational agents in entertainment is Erin the Bartender described by

Extempo Systems Inc. (1997). The pedagogical agent Steve that has been developed in the VET

project (Johnson & Rickel (1997)) is another example for research addressing of believable agents,

as well as the traditional reconciliation of cognitive and sensorimotor processing.

6.2 Software agents and softbots

The rapid development of the Internet has given rise to new classes of agents: software agents (Maes,

1994a; Genesereth &Ketchpel, 1994) and softbots (see Etzioni &Weld (1994) and Etzioni (1996)). In

the software agents approach, the notion of an agent is used as a metaphor for

intelligent autonomous system[s] that help[s] the user with certain computer-based tasks [...and that]

o�er[s] assistance to the user and automate[s] as many of the actions of the user as possible'' (Maes, 1994b).

Thus, software agents and softbots act in a software domain; their task is mostly to assist the user

in dealing with information management tasks. Whereas software agents research aÁ la Maes puts

emphasis on the fact that software act on behalf of a human user, the notion of a softbot is strongly

based on the analogy to autonomous robots (Etzioni, 1996). While the architectural requirements of

modelling software agents seem indeed very similar to that of traditional (mostly robot-like) agents,

there are a number of di�erences: ®rst, a software environment is in many respects easier to deal

with than a hardware environment as it liberates the designer from the problems of a rough physical

environment that are related to sensing and physically manipulating the world. Thus, although

software agents need to cope with a changing world, the possible ways in which this world may

change is somewhat more restricted in practice. Secondly, software agents often interact closely with

humans. This increases the importance of dealing with communication and cooperation compared

to robotic systems. Both di�erences seem to justify agent architectures for software agents to focus

on the higher level functionalities such as adaptation, cooperation and planning, and to simplify the

lower layers of reactivity and physical action.

Current software agent research mostly operates under what Etzioni calls a useful ®rst approach,

that focuses on useful functionality and defers or abandons the claim of (AI style) intelligence (see

Franklin & Graesser (1997) and Petrie (1997) for two interesting recent essays in this context).

Etzioni's softbots or Maes' assistant agents doubtlessly still have on their research agenda the long-

term goal of combining intelligent with useful behaviour in Internet domains (e.g., by using AI

planning techniques in the former case); software agents research at Stanford University (Geneser-
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eth &Ketchpel, 1994) focuses on communication between agents, and is strongly based on the typed

messages paradigm; the KQML Java agent template is an example of an implementation of a simple

agent model based on JAVA (Frost, 1996).

However, many current software agents approaches are using the term agent in a very loose and

shallowmanner: they rely on a de®nition of an agent as a program that is located in a network andÐ

either through migration or through a service interfaceÐcan communicate with other programs on

the network. From the architectural point of view, this sort of agents does not seem to be very

interesting. The challenge in their development isÐas it is the case with mobile agents (Straûer et al.,

1996)Ðat a di�erent level.

Recently, there has been a true in¯ation of the term agent being used to feature (semi-)

commercial agent-based software products, most of which are JAVA or TELESCRIPT-based, and

most of which are based on the mobile code paradigm. These commercial agent products can be

divided in two categories: Instances of the ®rst category o�er software applications with ``agents

inside''. Some of them are adaptive search, pro®ling and Electronic Commerce tools (e.g., Quarter-

Deck WebCompass, Fire¯y, ShopBot, Zuno VRISKO, Autonomy's search agents) that use the

term ``agent'' to denote a program with smart search and matching capabilities. The strength of

these approaches lies in their domain functionality; in general, they are not very interesting from the

point of view of agent architectures. Products that fall into the second category not only o�er

solutions for speci®c application domains, but also try to provide application-independent libraries,

languages or tools for modelling agents and agent-based systems (see, e.g., IBM's Aglets (Lange &

Chang, 1996), or AgentSoft's LiveAgent (AgentSoft). However, most of these systems so far focus

on the macro level, looking upon an agent as consisting of a body that implements the agent's

functionality and of a general communication interface (similar to the head-mouth-body architec-

ture described in section 4.3).

There are, however, a few commercial approaches that not only cover the macro level, but also

support the modelling of individual agents by providing a theory of agency and a general agent

architecture: the best known example is the dMARS system, which o�ers an agent programming

environment based on a BDI model (see section 3), along with a design methodology (Kinny &

George�, 1997), and which has been used to model various industrial applications (Rao &George�,

1995). The computational core of dMARS agents is (a further development of) the Procedural

Reasoning System (PRS) (George� & Ingrand, 1989). Future releases of dMARS will incorporate a

theory of team activity (Kinny et al., 1992), and thus, for the ®rst time, deserve the name of a

multiagent development platform. Systems such as dMARSmight provide the appropriate trade-o�

between the sophisticated but not su�ciently useful academic approaches, and today's useful but

not very sophisticated software agents.

7 Agent architectures and agent applications

In the ®rst part of this paper, we have provided a survey of architectures for intelligent agents. In this

section, we address the needs of system designers who require solutions to application problems and

who consider using agent technology for this purpose. Given the wide variety of architectures

described so far, we feel that it is important to provide this group of readers with a guide to the right

agent architecture for a given problem. Furthermore, to our knowledge, this matter has not been

addressed before.

We approach this objective in three steps. In section 7.1, we identify application areas for agent

technology starting from the examples presented in the ®rst part of this paper. Then, based on the

characteristics of di�erent classes of applications identi®ed in section 7.1, we propose a classi®cation

of agents according to di�erent classes of applications (section 7.2). Based on this classi®cation, the

third step is to provide some rules of thumb to help a software engineer or system designer decide

which agent architecture (or which class thereof) is likely to be appropriate for a certain class of

applications (section 7.3). Section 7.4 provides a brief discussion of the agent taxonomy and the

guidelines.
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7.1 Application areas for intelligent agents

In the absence of any theories that could help us in determining which agent paradigm is most useful

for which class of applications, we take an empirical approach: we analyse the main areas of

application known from the literature for each of the agent architectures described in the ®rst part of

the paper.

The ®rst two columns of Table 1 in Appendix A summarise the main application areas for the

architectures under consideration, i.e., for reactive, deliberative, interacting and hybrid architec-

tures, as well as for those approaches summarised as others. While we refer to the appendix for

details, in this subsection we discuss some observations that can be derived from Table 1.

Observation 1 Most architectures discussed are used for autonomous control systems. The ®rst

striking observation is that a large percentage of applications are in the area of mobile robots or,

more broadly speaking, Autonomous Control Systems (ACS). While this is likely to be explained as

a historical coincidence, it is striking to what degree this also a�ects the more recent hybrid

architectures, such as NMRA, 3T, interrap or SIM_AGENT. The old AI vision of building

humanoid computers is still widespread.

Observation 2 There is only a limited number of examples of cooperating hardware agents. The

second, and maybe more surprising, observation is that while few researchers will doubt the role of

cooperation and agent interaction, our list of applications contains only a few examples that

actually use interaction among ACSs as a core ingredient. Where these systems can be found (most

notably production planning and ¯exible transport system applications), in most cases the

individual agents have limited autonomy, and the interactions among them are simple (e.g., a

decentralised material ¯ow where two machines are fed by a transport robot using material bu�ers,

thus eliminating the nitty-gritty details of real-time interaction). One possible explanation for the

small number of applications for cooperating ACSs is that there are still a number of fundamental

problems in the modelling of an individual ACS (e.g., at the level of sensorimotor control and the

abstraction of input sensor data), that need to be solved before the use of cooperating ACSs in real-

world applications becomes practical.8

Observation 3 Distributed resource allocation is a core area for using interacting agents. The third

observation is that a considerable class of applications found in Table 1 deals with distributed

resource allocation, routing, and scheduling problems. Examples are logistics and transport

planning, production planning systems, as well as work¯ow management and business process

enactment and monitoring systems.

Observation 4 Cooperative expert systems are a core area for using interacting agents. A fourth

observation is that some of the traditional areas of use of expert systems reappear as application

areas of agent technology. Again, this is not very surprising, as a signi®cant part of the momentum

behind developing multiagent systems originated from the need to build cooperating expert systems.

The most prominent example of this class of applications are diagnosis problems that require

systems capable to deal with fuzzy and possibly inconsistent knowledge. The GRATE* architecture

described in section 4.2 is an example of an architecture used to solve a class of diagnosis problems

in electricity management. Another example is the spacecraft health management component of the

NMRA architecture (Pell et al., 1997).

Observation 5 Mainstream architectures do not su�ciently account for HCI requirements. A ®fth

observation is that a small class of applications addresses the design of agents that interact with

humans. Given that user modelling has been a well-established discipline in AI over a long time

(Kobsa & Wahlster, 1989) and that many of its aspects have been revived by research areas such as

8Note that there is a variety of related applications (e.g., multi-arm robots) that have been developed outside

the agents community. Also, there is a growing area within AI that tries to solve standard robotics problems by
using a large number of small and simple robots instead of one complex robot (Konolige, 1997).
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Computer-Supported Cooperative Work (CSCW) and Human Computer Interaction (HCI), it is

surprising how little e�ect the requirements of dealing with ``human agents'' have had on the design

of mainstream agent architectures. Those applications in Table 1 that require the ability to deal with

human agents are mostly software agent applications, such as entertainment, art, education,

personal assistants (meeting scheduling, tra�c guidance, secretarial functions) and process

monitoring agents. However, there seems to be a potential for robots interacting with or assisting

humans (e.g., robotic wheelchair, errand-running, robots ``working'' with humans in factories or

o�ces).

Observation 6 Designers of software agents often use other architectures than their hardware

colleagues. The ®nal observation we would like to make in this subsection concerns the wide

variety of application areas created by the advent of global computer networks, and, in particular,

the World Wide Web. These areas require software agents, such as those described in Section 6, to

perform information retrieval, information ®ltering and resource discovery tasks in a real-world

software environment. Requirements that are imposed by these applications are the need for

interoperability (legacy systems), user pro®ling capabilities to provide personalised services, and

robustness to cope with ever-changing conditions in the environment (e.g., availability of WWW

resources) and with changing or context-dependent user preferences. Looking at Table 1, it is

striking that the architectures used to build softbot applications seem to di�er largely from those

developed to build autonomous robots. This is particularly surprising as the notion of a softbot has

been derived from a software program being faced with conditions similar to those a mobile robot is

likely to encounter, e.g., uncertainty, huge amounts of information, change. We shall get back to

this observation in section 7.3.

7.2 An agent taxonomy

Based on the above observations, in this section we propose a taxonomy of intelligent agents that

re¯ects the di�erent application areas identi®ed above, and that can be used to classify the above

agent architectures according to how suitable they are for di�erent application problems.

We suggest a classi®cation of agents according to two dimensions:

. The material state of the agents, i.e.:

ÐHardware agents: agents that have a physical gestalt and that interact with a physical

environment through e�ectors and sensors. Clearly, hardware agents will use software

components.

ÐSoftware agents: programs that interact with real or virtual software environments.

. The primary mode of interaction between the agent and its environment:

ÐAutonomous agents: this perspective of autonomous agents concentrates on two entities and

their relationship: the agent itself and its environment. Virtually all autonomous control

systems fall into this category.

ÐMultiagents: the environment of multiagents is classi®ed into two categories, i.e., other agents

and non-agents. An agent can use its knowledge about other agents to coordinate its actions

with those of others, to make better predictions about the future, or to achieve goals

collaboratively.

ÐAssistant agents: assistant agents primarily interact with (and: act on behalf of) one particular

type of other agent, i.e., humans.

The motivation for our choice is as follows: the ®rst dimension (material state) is introduced to

comply with Observation 6: if di�erent architectures are used in practice to model hardware agents

on the one hand, and software agents on the other, the classi®cation should re¯ect this.

The second dimension (mode of interaction) aims at complying with the main application areas

identi®ed above: Wooldridge et al. (1996) provide a similar separation between (autonomous)

agents and multiagents underlying Observations 1 to 4. The fact that existing single-agent
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architectures were extended or new architectures were developed to cope with the requirements of

multiagent applications in our view makes this distinction useful. In addition, Observation 5

suggests considering agents that primarily interact with humans as an important special case of

multiagents.

We refer to section 7.4 for a more detailed discussion of this taxonomy. We end this subsection by

brie¯y characterising the di�erent agent types that can be derived as instances from the taxonomy.

There are six possible combinations of agents:

1. Autonomous hardware agents (H-AU): these agents are characterised by the requirement for

robust control within a physical environment, interleaving higher-level control and lower-level

execution, coping with the unexpected in real time, and making up for the limitations of practical

sensors and e�ectors (incomplete, erroneous knowledge). Most autonomous control systems

shown in Table 1 fall into this category, e.g., RAPs, NMRA, and AuRA.

2. Autonomous software agents (S-AU): software that acts autonomously and makes decisions in a

simulated or real software environment. An example is a software agent associated with a

work¯ow. This agent autonomously plans and monitors the routing of the di�erent tasks to be

performed as part of the work¯ow. Also, autonomous software agents are often the back-end of

what appears to be a software assistant agent (see below) in the front-end perspective. Thus, a

system such as ShopBot (Grand et al., 1997) could be seen as consisting of a front-end software

assistant agent maintaining the user pro®le, preprocessing user input and presenting results, and

of an autonomous software agent that goes shopping in the Internet.

3. Hardware assistant agents (H-AS): hardware agents whose primary task it is to assist human

users. One class of these agents are household robots (von Puttkamer et al., 1991). From the

architectures considered in this survey, only 3T was used (among others) for human assistance

purposes, e.g., as a wheelchair and for running errands. However, we suggest to consider another

group of hardware agents for this class, i.e., those agents that interact with humans for

entertainment or educational purposes. We are likely to see examples of this species in the form

of smarter, more human-like and more interesting Tamagotchi-like hardware pets.

4. Software assistant agents (S-AS): programs that assist a human on the computer screen or in

Personal Digital Assistants (PDAs), that act on behalf of that human, or that entertain the

human. As illustrated in the ShopBot example above, software assistant agents are often used as

front-end to a system the back-end of which are autonomous software agents. The main

requirements software assistant agents have to satisfy are maintaining a user pro®le and adapting

it to re¯ect changing user preferences, and ®nd information that is relevant to a human according

to her pro®le, and to present this information in a personalized way, i.e., in a way that is

appropriate to the knowledge state of the user according to the pro®le. Note that entertainment

agents such as Creatures (Grand et al., 1997), as well as educational agents (Johnson & Rickel,

1997) would fall into this category as well, according to the above de®nition.

5. Hardware multiagents (H-MA): hardware agents that act as entities in a multiagent system, e.g.,

cooperating robots in a manufacturing environment. Building hardware multiagents combines

classical robotics requirements (see above) with the ability to reason about other agents, to form

teams, and to perform joint plans and actions, e.g., in order to recognize and resolve goal

con¯icts or possibilities/necessities to cooperate to achieve a local or global goal.

6. Software multiagents (S-MA): programs that act as entities in a multiagent system. The most

common application areas for software multiagents are the solution of dynamic and distributed

resource allocation problems, as well as cooperative expert systems applications.

For each agent architecture considered in this paper, the third column of Table 1 shows what

types of agents were built using this architecture.

7.3 Choosing the right agent to do the right thing

So far, we have described a set of agent architectures and de®ned a taxonomy of types of agents for
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di�erent applications. In this section, we address the question:What is the right agent architecture to

apply to a speci®c problem?

Frankly, there is no black-or-white, deterministic answer to this. More often than not, the answer

will be pre-determined by external factors (e.g., commercial availability, availability of tools and

development environments, compliance with internal information infrastructure), and the choice of

the agent architecture will be one of the smaller problems to be solved. For this reason, we provide

some guidelines that may help a user decide which architecture to choose for a speci®c application

domain.

At present, only a handful of commercial agent applications are available, most of which we

discussed in section 6. Most of the architectures that were reviewed in this paper are research

prototypes. Thus, if the reader intends to ®nd an o�-the-shelf solution, the choice will be restricted.

The guidelines we provide below in particular aim at two groups of users: academic users who may

adapt/extend an existing system to meet their speci®c requirements, and commercial users who see a

potential in developing agent technology for a speci®c class of applications and who wish to make

the right technological base decisions.

Guideline 1 Check carefully whether you need agents, or whether another programming paradigm,

such as (distributed) objects, will do the job to solve your application problem. Be requirements-

driven rather than technology-driven. If your application problem shows some of the following

properties, then you might want to consider using agents:

. highly dynamic, necessary to be responsive and adaptable to a changing environment;

. need to deal with failure, e.g., re-scheduling, re-planning, re-allocating of resources;

. need to balance long-term, goal-directed and short-term, reactive behaviour;

. complex and/or safety-critical, guaranteed reaction and response times;

. geographically or logically distributed, autonomous or heterogeneous nodes;

. need for reliability, robustness, and maintainability;

. complex or decentralised resource allocation problems with incomplete information;

. ¯exible interaction with human users.

For instance, imagine your task is to build a work¯ow management system to improve your

company's information processes. If the business processes in your company are well-understood,

largely involve information ¯ow but no material ¯ow, if there are clear and well-established ways of

dealing with failure, if the services provided by di�erent departments are static and known a priori,

then you might as well model your work¯ow management system as a distributed object-oriented

application.

If, however, the set of services is expected to change or service-level agreements are likely to be

negotiable depending on the requestor of a work¯ow service, if work¯ows are dynamic and need to

be completed within a short period of time, and if your work¯ow system is likely to cater for the

needs of o�ine workers and has to scale up to work¯ow processes beyond the control of an

individual enterprise, then consider using agent technology, possibly based on a distributed object-

oriented approach.

Guideline 2 Table 1 provides a basic guideline for which architectures are potentially useful to deal

with which class of application. The fact that architecture A was successfully used to build

applications of class P, but never used to build applications of class Q does not necessarily mean

that A is not appropriate to deal with Q; however, if your problem is P, at least you have some

positive evidence that A will work. Thus, use Table 1 for a rough orientation.

Guideline 3 If your problem requires autonomous hardware agents, then chances are that you are

well served with one of the hybrid architectures. A purely reactive approach may be applicable if you

can ®nd a decomposition of your system that allows you to de®ne very simple agents. But do not

underestimate the di�culty of achieving meaningful self-organising behaviour from a set of simple

agents.
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Guideline 4 If your problem requires autonomous software agents, then you can choose between

some robust architectures such as dMARS and SOAR. dMARS is a commercial product, and hence

not available for free; however, there are various implementations of PRS, one of which, UM-PRS,

was developed at Michigan University and to our knowledge is available for free.

Guideline 5 If your problem requires software assistant agents, then the agent architecture is

de®nitely not the ®rst thing to worry about. What is much more important is to get the domain

functionality such as pro®ling and personalisation right. These, however, are much more problems

of human±computer interaction (HCI), user modelling and pattern matching.

Guideline 6 If your problem requires hardware assistant agents, then there is no o�-the-shelf

system available. A solution to your problem may be to select any architecture for ACSs (see also

Guideline 3) and extend it by adding the required HCI functionality (see Guideline 5).

Guideline 7 If your problem requires software multiagents, then you might want to look at any of

the examples presented under the Interacting Agents category. However, if there are high

interoperability requirements on your system (e.g., communication with non-agent components

within your company), then you may run into trouble as none of the systems described easily

complies with interoperability standards such as CORBA. You therefore may have to modify the

communication layer. When doing so, make sure that you do not do double work: there are well-

established means to transport a stream of bytes from one place to another. What is missing is a

system that can deal with the semantics of these byte streams, and this is where agents can help.

Guideline 8 If your problem requires hardware multiagents, then either select one of the

architectures or systems for autonomous hardware agents (see Guideline 3) and add your

cooperation knowledge to these, or select one of the cooperation-centred architectures presented

in section 4 and enhance them by the necessary interface to your hardware. An architecture like

interrap might be of interest for you as it has been applied to the domain of interacting robots.

However, its current status is that of a research prototype.

Guideline 9 Do not break a butter¯y on a wheel. While it is appealing to compare an Internet

search agent with a robot, this analogy must not be taken too literally. Most architectures that are

used to control robots are far too heavy-weight. If the domain you are working in is a software

domain, your architecture of choice should:

. be capable of multi-tasking;

. decouple low-level message handling from high-level message interpretation;

. come with a service model allowing agents to vend services that are internally mapped into tasks;

. comply with interoperability standards such as CORBA to make agent services available to a

wide spectrum of applications;

. have a small footprint: the empty agent should not be bigger than a few 100K.

Guideline 10 For most interesting applications, neither purely reactive nor purely deliberative

architectures are useful. The odds are that you are best served with one of the hybrid architectures.

Systems such as PRS, RAPS or SOAR have been around for years and are su�ciently stable and

mature to be a good choice for any type of autonomous control systems.

Guideline 11 If adaptability is crucial to solve your application problem, you will not have much

choice. Most research reviewed in this paper has neglected the ability of an agent to learn, and it is

not clear how the architectures could support enabling an agent to deal with longer term change. A

notable exception is the SOAR system, so you might want to have a look at that. Some approaches,

in particular the reactive agent approaches, provide a short-term form of adaptability based on

feedback. Also, Ferguson's Touring Machines provide a modelling layer that can be used to change

planning parameters. Also, learning a user's preferences is an important issue in assistant agents

applications. However, to our knowledge none of the described architectures o�ers a uniform and

complete model for adaptability.
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7.4 Discussion

The ®rst aspect of the discussion is the taxonomy itself. The reader may wonder why we de®ned our

own taxonomy instead of adopting e.g., either of Franklin and Graesser (1997) or Nwana (1996).

Also, why did we introduce two di�erent schemes of classi®cation in the two parts of this paper?

To answer the ®rst part of this question: the Franklin±Graesser taxonomy has been a general,

rather philosophical attempt to structure the ®eld. As such, it does not re¯ect the view of a system

designer who wishes to apply agent technology to a speci®c application domain. On the other hand,

Nwana's taxonomy is restricted to software agents. Therefore, we preferred not to adopt any of the

existing taxonomies.

With regard to the second part of the question, it is important to note that what we classi®ed in

the ®rst part of this paper (reactive, deliberative, interacting, hybrid, others), were agent

architectures. However, the classi®cation proposed in section 7.2 refers to agents or agent systems

that were built according to an agent architecture. Thus, the two schemes classify di�erent entities.

Note that di�erent agent types may appear in one and the same application. The most important

requirement to be satis®ed by the latter scheme is that it can be used to classify speci®c instances of

agents built according to a speci®c agent architecture, and used in a speci®c class of applications.

The second topic of discussion relates to the guidelines. Clearly, they are rules of thumb, and

should be treated as such. They are a result of analysing current agent architectures and the

applications they were used for, as well as of our experience in designing agent architectures and

agent-based systems. Guidelines 2 to 8 are more or less directly derived from Table 1. The guidelines

re¯ect the current state of the art and are prone to changes. For instance, Guideline 9 seems to

suggest to use ``lighter'' architectures for autonomous software agent applications than for

autonomous hardware agents. In fact, what it does suggest is to make this choice given the current

state of the art in agent research, based on observing the application areas of currently existing

architectures, as well as on experiences with two architectures that we developed in the past and

applied to hardware and software domains alike.

Bridging the current gap, i.e., materialising the intuitive analogy between robots and softbots in

terms of architectures that can be used to deal with the common aspects of both, is an interesting

topic for future research.

Similarly, Guideline 11 should be understood as a requirement for future research on integrating

learning mechanisms into agent architectures. There are plenty of applications that require only a

limited (short-term) form of learning which is provided by at least some systems that are available

today. What is lacking is longer-term adaptability.

8 Conclusion

The main contribution of this paper is twofold: ®rst, it o�ers a survey of agent control architectures,

aimed at giving an accessible overview of the ®eld to readers not familiar with agent technology.

Secondly, it aims at providing the system designer with some guidelines as to which type of

architecture is best suited for which type of application.

Given the variety of the approaches described in this paper, one might wonder whether there is

some sort of convergence towards a generally accepted agent architecture. One quick and simple

answer is that, unfortunately, this is not the case: researchers are still debating the de®nition of an

agent (see MuÈ ller et al. (1997, Part II) for a good survey of this debate), and a general agent

architecture does not seem to be in sight, as long as there is no general agreement on the basics of an

agent. A more optimistic answer, however, is that despite the ongoing debate, there are a variety of

architectures that constitute operational models for implemented agent languages. Layered agent

architectures and BDI architectures are widely agreed upon, and there is active research work on

combining them (Fischer et al., 1996; Kinny & George�, 1997). Design methodologies for agents

and agent-based systems are becoming a research issue in their own right.

The ongoing discussion about a unique and generally accepted de®nition of agents and agent

architectures is somewhat similar to the discussion of what programming language would be the
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Table 1 Agent architectures and agent applications

Architecture Applications Classi®cation Reference

Reactive agents

Subsumption architecture mobile robots and land vehicles H-AU (Brooks, 1986)
Self-organising agents mobile robots, emerging group behaviour H-AU, (H-MA) (Steels, 1990)

AuRA mobile robots and land vehicles H-AU, (H-MA) (Arkin, 1990)
Dynamic action selection technique has been used in mobile robots and Arti®cial Life H-AU (Maes, 1989)

applications

PENGI arcade computer game S-AU (Agre & Chapman, 1990)
ECO model distributed problem-solving S-MA (Ferber, 1989)

Deliberative agents

IRMA general architecture, probably robotics H-AU (Bratman, Israel & Pollack, 1987)

PRS originally: robotics H-AU (George� & Ingrand, 1989)
dMARS air tra�c control, business process enactment and H-AU, S-AU, S-AS, (Rao & George�, 1995)

monitoring (S-MA)

SOAR general AI problem-solving architecture; mainly autonomous H-AU, S-AU, S-AS (Laird, Newell & Rosenbloom, 1987;
control systems, more recently also believable agents Tambe et al., 1994)

Cypress mobile robots and vehicles H-AU (Wilkins, Myers & Wesley, 1994)

Agent0/PLACA no speci®c application mentioned, supports communicative acts H-MA, S-MA (Shoham, 1993; Thomas, 1995)

Interacting agents

MAGSY production planning, distributed resource allocation, S-MA, S-AS (Fischer, 1993)
cooperating expert systems

GRATE* electricity network diagnosis, later: work¯ow management S-MA, S-AS (Jennings, 1992b; Jennings et al., 1996;
Norman et al., 1997)

MECCA tra�c control systems, personal digital assistants S-AS, S-MA (Steiner et al., 1993)

COSY production planning, transport planning S-MA (Burmeister & Sundermeyer, 1992)
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Hybrid architecture

RAPs, ATLANTIS, 3T mobile robots and land vehicles, robotics wheelchair, errand H-AU, (H-AS) (Firby, 1989; Gat, 1991b; Bonasso et al.,
running (3T) 1996)

Lyons and Hendriks mobile robots and land vehicles H-AU (Lyons & Hendriks, 1992)
TouringMachines mobile robots and land vehicles H-AU, (S-AU) (Ferguson, 1992)

interrap cooperating robots, ¯exible transport systems, game playing agents, H-MA, (S-MA) (MuÈ ller, 1996b)
logistics

SimAgent humanoid robots or softbots (very abstract architecture) H-AU, S-AU (Sloman & Poli, 1996)

NMRA spacecraft control H-AU (Pell et al., 1997)

Software agents

Tok believable agents for entertainment and arts applications S-AS (Reilly, 1996)

VET education and training S-AS (Johnson & Rickel, 1997)
ShopBot resource discovery, electronic commerce S-AS, S-AU (Grand et al., 1997)
Zuno VRISKO, QuarterDeck information retrieval and information ®ltering, personalisation S-AU, S-AS Ð
WebCompass, AgentSoft

LifeAgent Pro, Fire¯y ...
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best to be used. This analogy might suggest that there is no single best agent architecture: as in the

case of programming languages, the best choice depends upon the type of application to be

modelled and the problem to be solved. Section 7 complies with this view by proposing an

application-related taxonomy for agents and by o�ering some guidelines for relating agent

architectures to agent applications.

Also, whereas there is a strong need for standardisation of agent communication languages, such

a need is not directly obvious for agent architectures: if scienti®c initiatives (FIPA, DARPA

Knowledge Sharing E�ort) or industrial standards bodies (OMG, W3C) succeed in developing

uniform interfaces and communication standards that allow di�erent and possibly heterogeneous

agents to interact, we can live with di�erent de®nitions, theories, architectures and languages for

describing individual agents for quite a while.
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Appendix A: Agent architectures, types and applications

Table 1 overviews the architectures described in this paper (®rst column), the main types of

applications that were built using these architectures (second column), and the corresponding

classi®cation of the agents built using these architectures according to section 7.2 (third column),

using the abbreviations de®ned in that section. For each architecture mentioned, at least one

reference is given in the fourth column of the table. Table 1 contains some architectures or systems

that were not described in detail, but that were in¯uential (e.g., SOAR) or interesting for some other

reasons.
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