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ABSTRACT

In the past, research on agent-oriented software engineering had been widely lacking touch with
the world of industrial software development. Recently, a cooperation has been established
between the Foundation of Intelligent Physical Agents (FIPA) and the Object Management
Group (OMG) aiming to increase acceptance of agent technology in industry by relating to de
facto standards (object-oriented software development) and supporting the development
environment throughout the full system lifecycle.

As a first result of this cooperation, we proposed AGENT UML [Bauer, 1999; Odell 2000], an
extension of the Unified Modeling language (UML), a de facto standard for object-oriented
analysis and design. In this paper, we describe the heart of AGENT UML, i.e., mechanisms to
model protocols for multiagent interaction. Particular UML extensions described in this paper
include protocol diagrams, agent roles, multithreaded lifelines, extended UML message semantics,
nested and interleaved protocols, and protocol templates.
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1 INTRODUCTION

For the past decade, research on agent-oriented software engineering had suffered from a lack of
touch with the world of industrial software development.
Recently, it has been recognized that the use of software
agents is unlikely likely to gain wide acceptance in industry
unless it relates to de facto standards (object-oriented software
development) and supports the development environment
throughout the full system lifecycle.
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Successfully bringing agent technology to market requires techniques that reduce the perceived
risk inherent in any new technology, by presenting the new technology as an incremental
extension of known and trusted methods, and by providing explicit engineering tools to support
proven methods of technology deployment.

Applied to agents, these insights imply an approach that:

• introduces agents as an extension of active objects: an agent is an object that can say "go"
(flexible autonomy as the ability to initiate action without external invocation) and  "no"
(flexible autonomy as the ability to refuse or modify an external request)1;

• promotes the use of standard representations for methods and tools to support the analysis,
specification, and design of agent software.

The former aspect of our approach leads us to focus on fairly fine-grained agents. More
sophisticated capabilities can also be added where needed, such as mobility, mechanisms for
representing and reasoning about knowledge, and explicit modeling of other agents.  Such
capabilities are extensions to our basic agents—we do not consider them diagnostic of agenthood.
To achieve the latter, three important characteristics of industrial software development should
be addressed:
1. The scope of industrial software projects is much larger than typical academic research

efforts, involving many more people across a longer period of time. Thus, communication is
essential;

2. The skills of developers are focused more on development methodology than on tracking the
latest agent techniques. Thus, codifying best practice is essential;

3. Industrial projects have clear success criteria. Thus, traceability between initial requirements
and the final deliverable is essential.

The Unified Modeling Language (UML) is gaining wide acceptance for the representation of
engineering artifacts in object-oriented software. Our view of agents as the next step beyond
objects leads us to explore extensions to UML and idioms within UML to accommodate the
distinctive requirements of agents. To pursue this objective, recently a cooperation has been
established between the Foundation of Intelligent Physical Agents (FIPA) and the Object
Management Group (OMG). As a first result of this cooperation, we analyzed the requirements
for such an endeavor and proposed the framework of AGENT UML [Bauer, 1999].

In this paper, we describe a core part within AGENT UML, i.e., mechanisms to model protocols for
multiagent interaction. This is achieved by introducing a new class of diagrams into UML:
protocol diagrams. Protocol diagrams extend UML state and sequence diagrams in various ways.
Particular extensions in this context include agent roles, multithreaded lifelines, extended message
semantics, parameterized nested protocols, and protocol templates.

The model described in this paper has been proposed and accepted for inclusion into the
upcoming FIPA'99 standard. It was invited to be submitted as a response to a Request for

                                                
1 See [Jennings, 1998], [Müller, 1997] for more comprehensive definitions of agents.
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Information (RFI) issued by the OMG Analysis and Design Task Force for the next release of
UML (v2.0).  

The paper is structured as follows: In Section 2, we survey approaches to software specification,
including UML. Section 3 specifies the extension of UML by multiagent interaction protocols.
Section 4  discusses further details of the extensions. Section 5 attempts a preliminary evaluation
of the concepts,   summarizes the results of the paper and discusses future research topics.

2 SOFTWARE SPECFICATION TECHNIQUES
AGENT UML is an attempt to bring together research on agent-based software methodologies and
emerging standards for object-oriented software development.

2.1 Methodologies for agent -based software development

There is a considerable interest in the agent R&D community in methods and tools for analysing
and designing complex agent-based software systems, including various approaches to formal
specification (see [Iglesias, 1998] for a survey). Since 1996, agent-based software engineering has
been a focus of the ATAL workshop series (see e.g.,  [Wooldridge, 1998]) and was the main
topic for MAAMAW’99 [Garijo, 1999].

Various researchers have reported on methodologies for agent design, touching on
representational mechanisms as they support the methodology. Our own report at [Parunak,
1998] emphasizes methodology, as does Kinny's work on modeling techniques for BDI agents
[Kinny, 1996a; Kinny, 1996b]. The close parallel that we observe between design mechanisms
for agents and for objects is shared by a number of authors, for example, [Burmeister, 1996;
Bryson, 1998].

The GAIA methodology [Wooldridge, 2000] includes specific recommendations for notation in
support of the high-level summary of a protocol as an atomic unit, a notation that is reflected in
our recommendations. The extensive program underway at the Free University of Amsterdam on
compositional methodologies for requirements [Herlea, 1999], design [Brazier, 1998], and
verification [Jonker, 1997] uses graphical representations with similarities to UML collaboration
diagrams, as well as linear (formulaic) notations better suited to alignment with the UML meta-
model than with the graphical mechanisms that are our focus.

Our discussion of the compositionality of protocols is anticipated in the work of Burmeister et
al. [Burmeister, 1993]. Dooley graphs [Parunak, 1996; Singh, 1998a] facilitate the identification
of the character that results from an agent playing a specific role (as distinct from the same agent
playing a different role).

The wide range of activity in this area is a sign of the increasing impact of agent-based systems,
since the demand for methodologies and artifacts reflects the growing commercial importance of
agent technology. Our objective is not to compete with any of these efforts, but rather to extend
and apply a widely accepted modeling and representational formalism (UML) in a way that
harnesses their insights and makes it useful in communicating across a wide range of research
groups and development methodologies.
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2.2 UML

The Unified Modeling Language (UML) [Odell, 1998] unifies and formalizes the methods of
many object-oriented approaches, including Booch, Rumbaugh (OMT), Jacobson, and Odell.  It
supports the following kinds of models:
· use cases: the specification of actions that a system or class can perform by interacting with

outside actors. They are commonly used to describe how a customer communicates with a
software product.

· static models: describe the static semantics of data and messages in a conceptual and
implementational way (e.g., class and package diagrams).

· dynamic models: include interaction diagrams (i.e., sequence and collaboration diagrams), state
charts, and activity diagrams.

· implementation models: describe the component distribution on different platforms (e.g.,
component models and deployment diagrams).

· object constraint language (OCL): a simple formal language to express more semantics within
an UML specification. It can be used to define constraints on the model, invariant, pre- and
post-conditions of operations and navigation paths within an object net.

In this paper, we propose agent-based extensions to three following UML representations:
packages, templates, and sequence diagrams. This results in a new diagram type, called protocol
diagram, which we developed within FIPA 1999, and which will be considered for inclusion into
UML version 2.0 by OMG. The UML model semantics are represented by a meta-model the
structure of which is also formally defined by OCL syntax.  Extensions to this meta-model and
its constraint language are not addressed by this paper.

2.3 A rationale for AGENT UML

In a previous paper, we have argued that UML provides an insufficient basis for modeling agents
and agent-based systems [Bauer, 1999]. Basically, this is due to two reasons: Firstly, compared
to objects, agents are active because they can take the initiative and have control over whether
and how they process external requests. Secondly, agents do not only act in isolation but in
cooperation or coordination with other agents. Multiagent systems are social communities of
interdependent members that act individually.

To employ agent-based programming, a specification technique must support the whole software
engineering process—from planning, through analysis and design, and finally to system
construction, transition, and maintenance.

A proposal for a full life-cycle specification of agent-based system development is beyond the
scope for this paper. Both FIPA and the OMG Agent Work Group are exploring and
recommending extensions to UML [Odell, 1999; Bauer, 1999]. In this paper, we will focus on a
subset of an agent-based UML extension for the specification of agent interaction protocols
(AIP).

This subset was chosen because AIPs are complex enough to illustrate the nontrivial use of  and
are used commonly enough to make this subset of AGENT UML useful to other researchers. AIPs
are a specific class of software design patterns in that they describe problems that occur
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frequently in multiagent systems and then describe the core of a reusable solution to that problem
[Gamma, 1997, p. 2].

The definition of interaction protocols is part of the specification of the dynamical model of an
agent system. In UML, this model is captured by interaction diagrams, state diagrams and
activity diagrams.

- Interaction diagrams, i.e. sequence diagrams and collaboration diagrams are used to define the
behavior of groups of objects. Usually, one interaction diagram captures the behavior of one
use case. These diagrams are mainly used to define basic interactions between objects at the
level of method invocation; they are not well-suited for describing the types of complex social
interaction as they occur in multiagent systems.

- State diagrams are used to model the behavior of a complete system. They define all possible
states an object can reach and how an object's state changes depending on messages sent to
the object. They are well suited for defining the behavior of one single object in different use
cases. However, they are not appropriate to describe the behavior of a group of cooperating
objects.

- Activity diagrams are used to define courses of events / actions for several objects and use
cases.  The work reported in this paper does not suggest modifications of activity diagrams.

3 AGENT UML INTERACTION PROTOCOLS

The definition of an agent interaction protocol (AIP) describes
· a communication pattern, with

- an allowed sequence of messages between agents having different roles,
- constraints on the content of the messages, and

· a semantics that is consistent with the communicative acts (CAs) within a communication
pattern.

Messages must satisfy standardized communicative (speech)
acts which define the type and the content of the messages
(e.g. the FIPA agent communication language (ACL), or
KQML). Protocols constrain the parameters of message
exchange, e.g., their order or types, according to relationships
between the agents or the intention of the communication.

The new diagram type introduced in this paper are Protocol
Diagrams. Since interaction protocols, i.e. the definition of
cooperation between software agents, define the exact
behavior of a group of cooperating agents, we combine
sequence diagrams with the notation of state diagrams for the
specification of interaction protocols.

As an introductory example let us consider a surplus ticket
market for flights. The example is taken from the PTA

U ML-Airlines /
Auctioneer : Seller

AuctionParticipants :
Consumer

c fp(initial-price)

{m ? 0} not-
understood(syntax-error)

propose(price,
departure, arrival)

reject-proposal(wrong-price)

1/inform(end-of-auction,
departure, arrival)

{0..1} [ actualprice >=
reserved_price]

2/request(pay-price)

accept-proposal(correct-
price

c fp(new-price)

x

x

in form(start-auction,
departure, arrival)

x

c fp-2

1 n

1 n

1
m

n

1 k

k

1

n

1

1 1

n

start cfp time
+ 1 min

Figure 1. English-Auction protocol for surplus
flight tickets

start cfp time

{m ? 0} not-understood
(ontology)

1
x
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application (see Section 5). The auctioning of such tickets can be performed using, e.g. the FIPA
English-Auction Protocol as shown in Figure 1. The auctioneer initially proposes a price lower
than the expected market price, and then gradually raises the price. The auctioneer informs all
participants that the auction has started (represented by the messages inform(start-auction,
departure, arrival) in Figure 1) and announces the details of the flight. Each time a new price is
announced (represented by cfp(intial-price) and cfp(new-price)), the auctioneer waits until a given
deadline to see if any participants signal their willingness to pay the proposed price (propose)
for the ticket. If a participant does not understand the ontology or syntax of the cfp it replies a
not-understood communicative act. The diamond symbol with the 'x' in it indicates a decision
resulting in zero or more communications being sent (see Section 4.2)). As soon as one
participant indicates that it will accept the price, the auctioneer issues a new call for bids
(cfp(new-price)) with an incremented price. The auction continues until no auction participants
are prepared to pay the proposed price, at which point the auction ends. If the last price
accepted by a buyer exceeds the auctioneer's  reservation price, the ticket is sold to that
participant for the agreed price (otherwise the auction fails). The participants are informed about
the end of the auction and the buyer is requested to pay the price for the ticket.
The diagram in Figure 1 provided a basic specification for a English Auction protocol. In [Odell,
2000] we have shown how such a specification can be gradually refined until the problem has
been specified adequately to develop or generate code. Each level can express intra-agent or inter-
agent activity.

4 ELEMENTS OF PROTOCOL DIAGRAMS
In the last chapter we gave an example how interaction protocols can be specified using the UML
extension. In this chapter we will have a closer look at the different extensions.

4.1 Agent roles
In UML,  role is an instance focused term. In the framework of agent oriented programming by
agent-role a set of agents satisfying distinguished properties, interfaces, service descriptions or
having a distinguished behavior are meant.

UML distinguishes between multiple classification (e.g., a retailer agent acts as a buyer and a
seller agent at the same time), and dynamic classification, where an agent can change its
classification during its existence.

Agents can perform various roles within one interaction protocol. E.g., in an auction between an
airline and potential ticket buyers, the airline has the role of a seller and the participants have the
role of buyers. But at the same time, a buyer in this auction can act as a seller in another auction.
I.e., agents satisfying a distinguished role can support multiple classification and dynamic
classification.

Therefore, the implementation of an agent can satisfy different roles. An agent role describes two
variations, which can apply within a protocol definition. A protocol can be defined at the level of
concrete agent instances or for a set of agents satisfying a distinguished role and/or class. An
agent satisfying a distinguished agent role and class is called agent of a given agent role and class,
respectively. The general form of describing agent roles in AGENT UML is



7

instance-1     ...     instance-n     /     role-1     ...     role-m     :     class   

denoting a distinguished set of agent instances instance-1,..., instance-n satisfying the agent roles
role-1,..., role-m with n, m  ≥ 0 and class it belongs to. Instances, roles or class can be omitted, in
the case that the instances  are omitted the roles and class are not underlined. In Fig. 1 the
auctioneer is a concrete instance of an agent named UML-Airlines playing the role of an
Auctioneer being of class Seller. The participants of the auctions are agents of role
AuctionParticipants which are familiar with auctions and of class Consumer.

4.2 Agent Lifelines and Threads of Interaction
The agent lifeline in protocol diagrams defines the time period during which an agent exists,
represented by dotted vertical lines. The lifeline starts when the agent of a given agent role is
created and ends when it is destroyed. For example, a user agent is created when a user logs on to

the system and the user agent is destroyed when the user logs
off. The lifeline may split up into two or more lifelines to
show AND and OR parallelism and decisions, corresponding
to branches in the message flow. Lifelines may merge at some
subsequent point. In Figure 1 the lifeline splits in order to
describe the different reaction of the agent depending on the

incoming messages, here to handle proposals and not-understoods respectively. Figure 2 shows
the graphical representations for  the logical connectors AND, XOR, and OR.

The XOR can abbreviated by interrupting the threads of interaction as shown also in Figure 3
(right). The thread of interaction, i.e. the processing of incoming messages, is split up into
different threads of interaction, since the behavior of an agent role depends on the incoming

message. The lifeline of an agent role is split
accordingly and the thread of interaction defines the
reaction to  different kinds of received messages.

The thread of interaction shows the period during
which an agent role is performing some task as a
reaction to an incoming message. It only represents
the duration of the action, but not the control
relationship between the sender of the message and
its receiver. A thread of interaction is always

associated with the lifeline of an agent role. Supporting concurrent threads of interaction is
another recommended extension to UML .

4.3 Nested and Interleaved Protocols
Because protocols can be codified as recognizable patterns of agent interaction, they become
reusable modules of processing that can be treated as first-class notions.  For example, Figure 4
depicts two kinds of protocol patterns. The left part  defines a nested protocol, i.e. a protocol
within another protocol, and the right part defines an interleaved protocol, e.g. if the participant
of the auction requests some information about his/her bank account before bidding. Additionally
nested protocols are used for the definition of repetition of a nested protocol according to guards

request

query

not-understood

x

request

query

not-understood

x

Figure 3. Full and abbreviated notation of XOR
connection

x

Figure 2. Connector types

x

AND XOR OR
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and constraints. The semantics of a nested protocol is the semantics of the protocol. If the nested
protocol is marked with some guard then the semantics of the nested protocol is the semantics of
the protocol under the assumption that the guard evaluates to true, otherwise the semantics is the
semantics of an empty protocol, i.e. nothing is specified.

If the nested protocol is marked with
some constraints the nested protocol is
repeated as long as the constraints
evaluate to true. In addition to the
constraint-condition used in UML the
description n..m, denoting that the
nested protocol is repeated n up to m
times with n ∈Ν, m ∈Ν ∪ { * }, the
asterisk denotes arbitrary times, is used
as a constraint condition.

4.4 Extended Semantics of UML Messages
The main purpose of protocols is the definition of communicative patterns, i.e., patterns of
messages sent from one agent role to another. This is described by various parameters, such as
different cardinalities, depending on some constraints, or using AND / OR parallelism and
decisions.

Sending a communicative act from one agent to another that conveys information and entails the
sender's expectation that the receiver react according to the semantics of the communicative act.
The specification of the protocol says nothing about how this reaction is implemented.

An asynchronous message is drawn as  2. It shows the sending of the message without
yielding control. A synchronous message is shown as . It shows the yielding of the thread of
control (wait semantics), i.e. the agent role waits until an answer message is received and nothing
else can be processed. Normally message arrows are drawn horizontally. This indicates the
duration required to send the message is “atomic”, i.e. it is brief compared to the granularity of
the interaction and that nothing else can “happen” during the message transmission. If the
messages requires some time to arrive, e.g. for mobile communication, during which something
else can occur then the message arrow is shown as . The repetition of a part of a protocol is
represented by an arrow or one of its variations usually marked with some guards or constraints
ending at a thread of interaction which is, according to the time axis, before or after the actual time
point, like the cfp(new-price) in Fig. 1. This repetition is another extension to UML messages

Each arrow is labeled with a message label3. The message label consists of the following parts,
which can also be found in Fig. 1. The communicative act which is sent from one agent to
another, like cfp(initial-price) with a list of arguments representing additional information for the
characterization of the communicative act. The cardinality defines that a message is sent from one
agent to n agents, like in the cfp(new-price) case. Constraints and guards, like {m >= 0 } and
                                                
2 Notation of UML v1.3.
3 The message label is a special case of the message label presented in the UML 1.1 specification section 8.9.2.

buyer-1 seller-1

request-good :
Request

request-pay :
Request

c ommitment

. ..

. ..
[commit]

Auctioneer Buyer

inform(start-auction,
departure, arrival)

Bank

request

inform

. ..

Figure 4. nested protocol and interleaved protocol
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[actualprice >= reservedprice] respectively, can be added to define the condition when a message
is sent. In addition to the constraint-condition used in UML the description n..m, denoting that
the message is repeated n up to m times with n ∈Ν, m ∈Ν ∪ { * }, the asterisk denotes arbitrary
times, is used as a constraint condition.

Messages may be sent in parallel or exactly one message out of a set of different messages should
be sent. E.g., in Figure 1, exclusive sending is denoted as for the reject-proposal and accept-
proposal. inform(end-of-auction, departure, arrival) and request(pay-price) are sent in parallel
but inform is sent first (1/inform-2) and the request is sent as the second message (2/request).
The request is also sent zero or one time {0..1}, depending on whether the reservation price was
reached or not.

4.5 Input and Output Parameters for Nested Protocols
Nested Protocols can be defined either within or outside a protocol diagram where it is used or
outside another protocol diagram. The input parameters of nested protocols are threads of
interaction which are carried on in the nested protocol and messages which are received from
other protocols.

The output parameters are the threads of interaction which are started
within the nested protocol and are carried on outside the nested
protocol and the messages which are sent from inside the nested
protocol to agent roles not involved in the actual nested protocol. A
message or thread of interaction ending at an input or starting at an
output parameter of a nested protocol describes the connection of a
whole protocol diagram with the embedded nested protocol.

The input and output parameters for the threads of interaction of a
nested protocol are shown as in Figure 5 which is drawn over the top

line and bottom line of the nested protocol rectangle,
respectively. The input and output message
parameters are shown as  and , respectively.

The message arrows can be marked like usual messages.
In this context the predecessor denotes the number of
the input / output parameter. The input / output thread
of interaction can be marked with natural numbers to
define the exact number of the parameter.

4.6 Protocol Templates

The purpose of protocol templates is to create
reausable patterns for useful protocol instances. E.g.,
Figure 6 shows a template for the FIPA-English-
Auction Protocol from Figure 1. It introduces two new
concepts represented at the top of the sequence chart.

FIPA-English-Auction-Protocol

Auctioneer Participant

cfp-1

{m ?  0} not-understood

propose

reject-proposal

1/inform-2

{0..1} [ actualprice >=
reserved_price]

2/request

accept-proposal

cfp-2

x

x

Auctioneer, Participant,
in form-start-of-auction : inform,

cfp-1 : cfp,
not-understood* : not-understood,

propose* : propose,
 accept-proposal* : accept-proposal,

reject-proposal* : re ject-proposal,
cfp-2 : cfp,

request* : request, inform* : inform

inform-start-of-auction

x

cfp-2

1 n

1 n

1 m

n

1 k

k

1

n

1

1 1

n

deadline

Figure 6. A generic AIP expressed as a template

start cfp time

request-good :
Request

request-pay :
Request

c ommitment

Figure 5. Input/output of
nested protocols
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First, the protocol as a whole is treated as an entity in its own right. The protocol can be treated
as a pattern that can be customized for other problem domains.  The dashed box at the upper
right-hand corner declares this pattern as a template specific-ation that identifies unbound entities
(formal parameters) within the package which need to be bound by actual parameters when
instantiating the package. A parameterized protocol is not a directly-usable protocol because it
has unbound parameters. Its parameters must be bound to actual values to create a bound form
that is a protocol. Communicative acts in the formal parameter list can be marked with an
asterisk, denoting different kinds of messages which can alternatively be sent in this context. This

template can be instantiated for a special purpose as shown in
Figure 14. Figure 7 applies the FIPA English Auction Protocol
to a particular scenario involving a specific auctioneer UML-
Airlines of role Auctioneer and Class Seller and
AuctionParticipants of Class Consumer. Finally, a specific
deadline has been supplied for a response by the seller.  In
UML termininology, the AIP package serves as a template. A

template is a parameterized model element whose parameters are bound at model time (i.e., when
the new customized model is produced).

Wooldridge et al suggest a similar form of definition with their protocol definitions [Wooldridge,
2000].  Here, they define packaged templates as “a pattern of interaction that has been formally
defined and abstracted away from any particular sequence of execution steps."  In contrast to
their notation, we suggest a graphical approach that more closely resembles UML, while
expressing the same semantics.

5 EVALUATION AND CONCLUSION

The artifacts for agent-oriented analysis and design were developed and evaluated in the German
research project MOTIV-PTA (Personal Travel Assistant) [Steiner, 1997], aiming at providing
an agent-based infrastructure for travel assistance in Germany (see www.motiv.de). MOTIV-
PTA will run from 1996 to 2000. IT is a large-scale project involving approx. 10 industrial
partners, including Siemens, BMW, IBM, DaimlerChrysler, debis, Opel, Bosch, and VW. The
core of MOTIV-PTA is a multiagent system to wrap a variety of information services, ranging
from multimodal route planning, traffic control information, parking space allocation, hotel
reservation, ticket booking and purchasing, meeting scheduling, and entertainment.

From the end user's perspective, the goal is to provide a personal travel assistant, i.e., a software
agent that uses information about the users' schedule and preferences in order to assist them in
travel, including preparation as well as on-trip support. This requires providing ubiquitous access
to assistant functions for the user, in the office, at home, and while on the trip, using PCs,
notebooks, information terminals, PDAs, and mobile phones.

From developing PTA (and other projects with corporate partners within Siemens) the

                                                
4 This template format is not currently UML-compliant but is a recommendation for future UML extensions.

FIPA-English-Auction-Protocol <
UML-Airlines / Auctioneer : Seller, AuctionParticipants : Consum er
start cfp time + 1 min
i nform(start-auction, departure, arrival),
cfp(initial-price),
not-understood(syntax-error), not -understood(ontology),
propose(pay-price),
reject-proposal(wrong-price), accept-proposal(correct-price),
cfp(increased-price),
i nform(end-of-action), request(pay-price, fetch-car)
>
Figure 7. Instantiation of a template
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requirements for artifacts to support the analysis and design became clear, and the material
described in this paper has been developed incrementally, driven by these requirements. So far no
empirical tests have been carried out to evaluate the benefits of the AGENT UML  framework.
However, from our project experience so far, we see two concrete advantages of these extensions:
Firstly, they make it easier for users who are familiar with object-oriented software development
but new to developing agent systems to understand what multiagent systems are about, and to
understand the principles of looking at a system as a society of agents rather than a distributed
collection of objects. Secondly, our estimate is that the time spent for design can be reduced by a
minor amount, which grows with the number of agent-based projects. However, we expect that
as soon as components are provided to support the implementation based on AGENT UML
specifications, this will widely enhance the benefit.

Areas of future research include aspects such as
• description of mobility, planning, learning, scenarios, agent societies, ontologies and knowledge
• development of patterns and frameworks
• consideration of events
• real-time-constraints
• support for different agent communication languages and content languages

At the moment we plan to extend the presented framework towards inclusion of these topics.
Moreover a project is on the way to refine the specification technique and generate code from
such a specification for different agent platforms, e.g. for the MECCA system [Gerber et al. 99],
based on a formal semantics of AGENT UML which is currently being developed.
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