
A Multiagent Approach for Logistics Performance Prediction Using Historical
And Context Information

Yutao Guo, Jörg P. Müller
Intelligent Autonomous Systems

Siemens AG, Corporate Technology
Otto-Hahn-Ring 6

81730 Munich, Germany
joerg.p.mueller@siemens.com

Bernhard Bauer
Institute of Computer Science

University of Augsburg
Universitätsstraße 14

86135 Augsburg, Germany
bernhard.bauer@informatik.uni-augsburg.de

Abstract

This paper presents a multiagent architecture and meth-
ods for intelligent decision support in logistics processes.
It extends current advanced prediction systems by provid-
ing the ability to combine history and situated reasoning.
The contribution of the paper is threefold: first, a multi-
agent architecture and learning algorithms are developed
that enables us to combine background models learned from
history data with context-related knowledge about the cur-
rent situation; second, using a large real data set we show
that adding situated knowledge actually improves the per-
formance of a supply chain decision support system; and
third, for our settings we evaluate the degree to which agent-
assisted decision support is actually usable/sufficient to im-
prove human decision-making and to support automated
decision-making in dynamic supply network management
scenarios.

1. Introduction

In this paper we propose the notion of intelligent assis-
tance for supply chain decision-making to tackle the com-
plexity of cross-enterprise supply chain processes and to en-
able supply network collaboration. Our vision is that soft-
ware agents act on behalf of organisations and humans, pro-
viding situated decision support and, ultimately, increas-
ingly automating processes. To this end, agents need to per-
ceive business environments, learn from their experience,
and react to changes in these environments. At the same
time, the use of peer-to-peer, multi-agent collaboration ar-
chitectures supports flexible and self-organising supply net-
work structures and decentral problem solving.

Over the past few years, there have been various research
activities in this area (e.g., [8][6][3]). A number of busi-

ness success stories have been reported where multinational
companies applied agent technology to optimise their sup-
ply networks [10]. However, these are claims that can hardly
be verified objectively, and the technical details of methods
and implementations remain obscure.

State-of-the-art advanced planning systems [14] provide
methods for process planning and prediction based broadly
on history information. Our claim, triggered by observing
real applications, is that this information, while being valu-
able, is not sufficient as a basis for intelligent supply chain
decision-making assistance. Our claim is that history-based
information should – and can – be enhanced by context-
related situated knowledge to provide an improved basis for
decision-making assistance.

Our objective is threefold: first, to develop a multi-
agent architecture and learning algorithm that enable us
to combine background knowledge models (retrieved from
analysing e.g., history data held in a business data ware-
house) with context-related information about the current
situation; second, to verify our claim that bringing in situ-
ated knowledge actually improves the performance of a sup-
ply chain decision support system; and third, to evaluate the
degree to which agent-assisted decision support is actually
usable/sufficient (a) to improve human decision-making and
(b) to automated decision-making in dynamic supply net-
work management scenarios.

The technical focus of this paper is on methods for intel-
ligent agent assistance in logistics order fulfilment predic-
tion. The agents in our system can sense the current con-
text of transport order planning and execution, and they ap-
ply learned history knowledge models, e.g., identify crit-
ical orders with a high probability/impact of delay. This
gives users sufficient time to develop contingency plans,
and hence improves decisions. To combine history-based
background knowledge with situated knowledge, we pro-
pose a multi-agent learning algorithm where history models
are learned with Bayesian classifiers, and situated model is



integrated with the stacking strategy using Support Vector
Machine (SVM) algorithm. The different models and func-
tions are deployed as agent services in a multi-agent archi-
tecture. We evaluate the performance of our approach by us-
ing real order fulfilment data.

This paper is structured as follows: Section 2 summarises
related research. Section 3 describes the multi-agent assis-
tance architecture framework. In Section 4, the multi-agent
learning algorithm is described. The learning model is eval-
uated with experiments on real data in Section 5. A discus-
sion of the results, conclusion and perspectives of future re-
search is provided in Section 6.

2. Related work

There’re some initial research and applications of us-
ing software agents to provide assistance in supply chain
management. TRACONET [11] is a vehicle routing sys-
tem with an extended version of the contract net proto-
col. A multiagent approach for cooperative transportation
scheduling is investigated in [3] to implement cooperation
among the agents, task decomposition and task allocation,
and decentralised planning. The joint research of SAP and
Biosgroup focus on adaptive planning in supply chain man-
agement based on Ant Colony Optimisation (ACO) [12].
[4] describes an agent-based logistics monitoring architec-
ture. On the commercial side, SAP offers an Event Man-
ager component for their mySAP SCM product. The SAP
Event Manager provides a basic distributed blackboard in-
frastructure together with a generic event model that enables
parties in the supply network to publish events and to for-
mulate responses based on perceived events. This solution
can be regarded as a basis for the later deployment of intel-
ligent agents. The research of this paper extends these ap-
proaches by proactive reasoning and prediction instead of
mere passive monitoring.

The research in this paper on combining history and sit-
uated reasoning is related to meta learning. Meta learn-
ing learns from learned knowledge by assembling multiple
learners. It is an active research area targeting improvement
of learning performance and enabling distributed learning.
Various meta-learning strategies have been proposed in the
literature [2, 9]. Voting is the simplest method of combing
predictions from multiple classifiers. In its simplest form,
majority voting, each model contributes a single vote. The
collective prediction is determined by the majority of the
votes. In weighted voting, the classifiers have varying de-
grees of influence on the collective prediction that is rela-
tive to their prediction accuracy. Each classifier is associ-
ated with a specific weight determined by its performance
on a validation set. The final prediction is decided by sum-
ming over all weighted votes and by choosing the class with
the highest aggregate. The voting method combines the set

of models in a linear fashion, which is not effective in some
applications. The meta-learning method that we shall adopt
and extend in this paper is Stacking, one of the most effec-
tive meta learning strategies [9]. It is described in Section
4.

3. Application scenario and system architec-
ture

The application use case considered in this paper has
been obtained from a major logistics service. This service
is responsible for the administration of order delivery. Cus-
tomers are business units who wish to deliver products to
their customers, as shown in Figure 1. Orders are described
by origins and destinations around the world, various prod-
uct types from automation systems to medical equipment,
and different packaging. To carry out an order, different lo-
cal and international transportation service providers may
be selected. Fulfilling an order often requires a combination
of transport means and service providers. Due to high trans-
action volumes (several millions of orders over the period
of one year), short planning/execution cycles, and a variety
of unexpected events that happen during execution, moni-
toring each transaction manually is not feasible.

The mechanisms for agent assistance described in this
paper are designed to effectively solve this problem by pro-
viding proactive monitoring and prediction throughout the
order fulfilment process. In addition to keeping track of
current events (e.g., a certain milestone has been reached
with delay), the agents can learn from experience to pro-
vide users with advance warning that a problem is likely
to occur. Considering the dynamic nature of the logistics
process, we propose a learning approach that combines his-
tory based and situated reasoning, so that the agents can
sense the current context and overlay this context informa-
tion with previously acquired knowledge models.

The agents incrementally build two types of models: his-
tory models, based on past order execution records, and a
context model, based on recently perceived data. When a
new order is entered into the system, the combined mod-
els are used to provide users with information predicting
future delivery status, including the likelihood of the order
being delayed. The learning and model combination proce-
dures are detailed in Section 4 and evaluated with real busi-
ness data in 5.

Figure 1 illustrates the multiagent system architecture.
Different agents represent different sources of events in the
order fulfilment process (manufacturing, dispatching, deliv-
ery tracking) as well as the adaptive assistance functions
(history model learners, meta learners). Based on interac-
tion protocols, agents can collaborate with other agents,
such as the service agents for customer notification, and the
agents for tracking real time status of deliveries from the



transportation service providers’ systems. This collabora-
tion is beyond the scope of this paper that focuses on deci-
sion support aspects.

We found the multi-agent architecture an appropriate (if
not the only applicable) approach to our problem as it pro-
vides us with the openness and flexibility required to add
additional models, services, and collaboration patterns in
the future.

Figure 1. The system architecture of agent
assistance in the logistics process.

Based on the described architecture, we have developed
a protoype of a web-based agent-based decision-support
tool for order dispatching and monitoring. Figure 2 il-
lustrates the dispatchers’ screen, showing a list of orders
currently to be dispatched. This list is ranked by prior-
ity/urgency of orders, i.e., the dispatcher will find the or-
ders that need to be serviced immediately on top of the list.
By selecting an order, the order dispatching page will be
displayed as shown in Figure 3. It supports a dispatcher
in choosing an appropriate transport service provider. The
agent on the right side of the screen provides suggestions
for local and international transport service providers (la-
belled VSP and HSP) based on their history and current per-
formance. The dispatcher will assign orders to transport ser-
vice providers and commit the dispatching.

During order execution, events regarding the completion
of milestones will be received, either via dedicated tracking
agents or via a commercial system (e.g., SAP Supply Chain
Event Manager). Based on this information and available
history models, delay probabilities for individual orders are
updated. In the prototype, we use the agent-based tracking
system PAMAS [4] and its underlying milestone taxonomy.
In this view, the set of orders visible to the user are sorted
according to a mixture of delay probability and order prior-
ity. The user can select an order and inspect details on the
order execution status, triggering actions such as notifying

Figure 2. Screenshot of the order dispatch-
ing overview page

Figure 3. Screenshot of the order dispatch-
ing details page

the customer of delays, or re-assigning an order to a differ-
ent transport service provider if possible.

4. Multiagent learning algorithm

4.1. Overview

The main idea of our research is to integrate history-
based models with situated knowledge to improve predic-
tion accuracy. Our technical approach to this integration
task is based on the concept of meta learning (see Section 2
for an overview of related work on this topic). In the work
described in this paper, we adopted an effective meta learn-
ing strategy called Stacking [17]. Stacking integrates in-
dependently computed base classifiers into a higher-level
classifier by learning over a so-called meta set. A meta set



is generated by using the predictions of the base classifiers
as attributes and keeping the original class labels. Then a
meta classifier can be trained with the meta set; this meta
classifier is then used to classify unlabelled instances. The
aim of this strategy is to correlate the predictions of the
base classifiers by learning the relationship between these
predictions and the true labels. So stacking allows effec-
tive non-linear combination of base classifiers. In this work,
we added several improvements to the standard stacking
method as described in [17]:

• Different algorithms are supported for history and sit-
uated knowledge learning: Bayesian classifier as the
base classifier, and Support Vector Machine (SVM) as
the meta learner. The reason for this is that situated
learning needs to be done based on a much smaller
training set than history-based learning. Support Vec-
tor Machines are an efficient learning method for learn-
ing problems based on small training sets.

• For the sake of improved learning performance, the
meta set is generated with model predictions, as well
as the original attributes of the orders.

• The meta set uses the predicted probability of delay
instead of prediction labels (success, delay). This im-
proves performance and eliminates the problem of de-
termining the classification criteria.

• Only highly relevant attributes are selected to be the
order attributes in the meta set, based on the results
of a mutual information analysis (see Section 4.3).
Not considering the less relevant attributes actually im-
proves learning performance in our experiments.

The top-level approach of the learning algorithm is illus-
trated in Figure 4. It consists of the following steps:

Figure 4. Overview of the learning approach

1. Learn k models C1, C2, . . . , Ck using the Bayesian
classifier method from the history data set.

2. Select the context set V , containing the situated in-
formation to be considered. For the work described in
this paper, we take a recent set of data (e.g., data from
the current week) to represent the context set.

3. Generate a meta set T with the context set and the
predictions of the history models.

4. Learn a meta model M on the meta set T using the
SVM algorithm.

5. Use the meta model M to make predictions on the
prediction set.

The individual learning steps are described in detail in
the subsequent sub-sections.

4.2. History knowledge models

Most attributes of the orders have nominal-valued data
types. Thus, using Bayesian classifier for learning from his-
tory data is appropriate. Bayesian classifiers assign the most
likely class (e.g., delay, small delay, no delay) to a given
instance (e.g., an order) described by its feature vector.
The simplified Bayesian classifiers, Naive Bayes, assumes
that attribute values are conditionally independent given the
class values. Despite this assumption is unrealistic, Naive
Bayes is remarkably successful in practice, often compet-
ing with much more sophisticated techniques [7]. In exper-
iments, we were able to verify Langley’s result by compar-
ison with the classifier based on a Bayesian belief network.
Therefore, we use the Naive Bayes method as the base clas-
sifiers for history knowledge:

y =
argmax
yj ∈ Y P (yj)

n∏

i=1

P (xi|yj) (1)

where y is the predicted class, x = (x1, . . . , xn) is the
attribute vector describing an instance to be classified, Y is
the class value set. The various P (yj) and P (xi|yj) terms
can be estimated based on the training set. Given an instance
with unknown label, the history model will output the prob-
ability of success/delay. Hence, a criterion is needed to pro-
vide explicit labelling. In this paper, we label the instances
using a relative measure of delay instead of a fixed proba-
bility threshold. We achieve this by sorting the instances ac-
cording to their probability of delay, and then labelling the
top d percent of instances as delay. A realistic value for d

is determined by computing the average percentage of de-
lay instances in the training set. In the experiments reported
later in this paper, the history models are built on a monthly
basis.

4.3. Situated knowledge

As explained before, we represent the set of all avail-
able situated information by the so-called context set. The



context set and the learned history models are used to com-
pute the meta set. In this paper, the attributes of a meta set
data instance are composed of:

• the model predictions; and

• the original attributes of the orders.

Thus, we define the meta set T as T =

{y, C1(x), C2(x), . . . , Ck(x), attribute vector(x))|x ∈ V },
where x is an instance in the context set V , y is the true
class of x, Ci(x) is the prediction of model i on x, and
attribute vector(x) contains the attributes of x. The pre-
dicted probability of delay is used instead of predicted la-
bels as the model prediction attributes, and only the
highly relevant attributes are selected to be the order at-
tributes in the meta set.

The computation of the relevance of order attributes is
based on the information theoretical measure of mutual in-
formation [13].Mutual Information of two variables is de-
fined as the reduction in uncertainty (Entropy) of the value
of one variable given knowledge of the value taken by other
variable. Mutual Information analysis has been success-
fully applied in feature-weighting in instance-based learn-
ing [1, 16]. The relevance of an attribute is determined by
the mutual information H(y; xi) between the delivery sta-
tus y and the value of attribute xi of the order instance.
Here, H(y; xi) measures the amount of information the at-
tribute value conveys about the order delivery status. Con-
tinuous attribute values can be divided into predefined in-
tervals [16]. The mutual information H(y; xi) between an
instance class y and an attribute xi is computed as:

H(y;xi) =
∑

v

∑

c

P (y = c, xi = v)log2

P (y = c, xi = v)

P (y = c)P (xi = v)

(2)

where p(y = c) is the probability of delivery status be-
ing c, and p(xi = v) is the probability of value v for at-
tribute xi occurring in the respective training set. Table 1
shows the mutual information analysis results for the most
relevant order attributes. It reveals that the destination at-
tributes are most relevant to the delivery status, i.e., there is
a relatively high correlation between the destination coun-
try of an order and its likelihood to be delayed.

4.4. Meta learning

In the last stage of our multiagent learning approach, a
meta learner is trained with the meta set calculated in Sec-
tion 4.3 to make delay predictions on an instance of an
order. We use Support Vector Machine (SVM) classifier,
which has strong mathematical foundations and excellent
empirical performance in pattern recognition [15]. Based on

Rank Attribute name Mutual Information

1 Destination Country 0.104
2 International Carrier 0.088
3 Origination Point 0.054
4 National Carrier 0.041
5 Container Type 0.033
6 Origination Country 0.007

Table 1. Top relevant order attributes by Mu-
tual information analysis

statistical learning theory, the SVM learner has good gener-
alization ability and reveals good performance even when
the size of the available training data is limited. This en-
ables us to integrate situated knowledge even if only a small
context set is available.

Figure 5. Meta learner using Support Vector
Machine (SVM).

Figure 5 illustrates the principle idea underlying SVM:
the SVM classifier projects data in the input space X into a
higher dimensional feature space H, with a kernel Function
k(ti, tj) = φ(ti)

T φ(tj), where ti and tj are instances in the
meta set. Vapnik shows that the Structural Risk Minimiza-
tion principle in statistical learning theory can be translated
into finding the hyperplane with maximum margin for sepa-
rating the positive and negative training instances. Comput-
ing this hyperplane is by solving the quadratic optimization
problem in Equation 4 and 5. The solution will be a set of
support vectors, which determine the position of the hy-
perplane. With the learned SVM model, the unlabelled or-
ders can be classified as success (positive) and delay (neg-
ative), using the procedures illustrated in Figure 6. The de-
cision function of SVM is

f(t) = sgn(

m∑

i=1

yiαi〈φ(t), φ(ti)〉+b) = sgn(

m∑

i=1

yiαik(t, ti)+b)

(3)



maximize
α ∈ R

m
W (α) =

m∑

i=1

αi −
1

2

m∑

i,j=1

αiαjyiyjk(ti, tj) (4)

subject to αi ≥ 0 for all i = 1, . . . , m, and
m∑

i=1

αiyi = 0 (5)

where t is the order instance to be classified, ti is the
ith support vector and yi is the true class of ti, m is the
number of support vectors. Furthermore, by calculating dis-
tances of order vectors to the trained hyperplane, the SVM
model can give a straightforward ranking of orders. In the
experiments, as the meta set is unbalanced, i.e., the percent-
age of success orders is much higher than that of delay or-
ders, so higher weight is given to the delay orders when
training the SVM model.

Figure 6. Making predictions with the SVM
meta learner.

5. Empirical analysis

In this section, we describe experimental results to eval-
uate the performance of the proposed multiagent learning
method with history and context information.

5.1. Experimental settings

The results reported in this paper were obtained by
analysing large data sets from a major logistics ser-
vice provider collected over a period of five months, from
March to July 2003 each of which describes a single or-
der execution including origin, destination, product type,
packaging, local transport provider, international trans-
port provider (where applicable), planned customer de-
livery date, planned pickup date, actual pickup date, and
actual delivery date. Table 2 shows the size of the train-
ing sets used for every months as well as the size of context
set and evaluation set.

Data set number of orders

March 2003 365981
April 2003 390505
May 2003 404901
June 2003 422811
July 2003 406699
Context set 6088
Evaluation set 87994

Table 2. The data set size of the experiment

From this data, the data sets used by the meta learning
approach described in the previous section were populated
as follows:

• History models: five separate month models were
learnt using the Bayesian classifier method, one for
each March to July 2003.

• Evaluation set: approximately 88000 orders used for
evaluation. These orders were August 2003 data ex-
cept the first week in August, which was used as the
context set.

• Context set: 6088 instances, randomly select 10% or-
ders from the first week of August 2003.

Based on these models, we performed the following ex-
periments on the evaluation set:

• E 1: A prediction algorithm that picks its decision (De-
lay, Success) randomly but compatible with the over-
all probability distribution of delayed orders. I.e., if the
probability of an order being delayed is 15%, algo-
rithm E 1 will answer it Delay in 15% of all cases. The
purpose of E 1 is to know a lower quality bound pro-
duced by a prediction algorithm that only takes very
little knowledge about the problem into account.

• E 2 to E 6: Predictions are made based on the
Bayesian classifier history models from March to July,
2003, respectively.

• E 7: Predictions are made using one big single model
containing the whole data set from March to July 2003
as the training set.

• E 8: Predictions are made based only on the situated
model derived from the context set. I.e., history data
will not be taken into account.

• E 9: Predictions are carried out based on the agent-
based meta learning approach described in Section 4,
combining the five month models used in E 2 to E 6
with the context model used in E 8.



Experiment Learning
model

Delay
recall

Delay
precision

E 9 Meta learning (history + context) 0.66 0.48
E 1 Distribution-based prediction 0.25 0.26
E 2 March’03 history model 0.41 0.38
E 3 April’03 history model 0.49 0.42
E 4 May’03 history model 0.43 0.38
E 5 June’03 history model 0.46 0.40
E 6 July’03 history model 0.43 0.39
E 7 Joint March to July’03 hist. model 0.50 0.44
E 8 Context set model only 0.40 0.37

Table 3. Summary of experimental results for
meta learning and other models

5.2. Evaluation metrics and results overview

To evaluate the learning performance, we adopted two
standard measures from information retrieval: delay recall

(DR) and delay precision (DP), as defined in Equations 6
and 7.

DR =
nD→D

nD→D + nD→S

(6)

DP =
nD→D

nD→D + nS→D

(7)

where nD→D is the number of correctly predicted De-
lay orders, nD→S and nS→D are the number of Delay →
Success and Success → Delay errors. Intuitively, delay
recall measures the share of actually delayed orders that the
mechanism could successfully predict as Delay, whereas
delay precision is a measure of the inverse noise ratio, i.e.,
the share of orders predicted by the system as Delay that
were actually delayed. It is known from information re-
trieval that there is a trade-off between recall and precision,
and that it is easy to optimise either recall or precision, but
very hard to provide good results for both. Table 3 illus-
trates the experimental results.

6. Discussion of results, conclusions, and out-
look

The first and obvious result of our experiments is that
all learning algorithms that make use of history or situ-
ated knowledge perform better than the random prediction
method E 1. That indicates that there are recurring patterns
in supply network execution that lead to orders being de-
layed. Second, it shows that the learning performance of
meta learning (E 9) based on history and situated knowl-
edge widely outperforms all other methods. This reveals
that single model learning is less effective in the dynamic
logistics process and that even a relatively simple form of
situated knowledge can lead to a considerable improvement.

The fact that meta learning has better performance than the
history models and the model trained with the context set
shows that the meta learner applied the best knowledge of
the history models by sensing the context set.

When examining the meta set, we made the interest-
ing observation that different history models often come up
with different opinions on the prediction of an instance. This
is due to the dynamic and time-dependent nature of the lo-
gistics process and also indicates that meta-learning is ben-
eficial in this application domain. The third result indicates
that all of the algorithms considered(including the meta-
learning) perform better in terms of recall than it does in
terms of precision. While a 66% recall means that two third
of all delays can be correctly predicted, the current preci-
sion level of less than 50% for the best algorithm indicates
that there is a considerable number of false friends, i.e., or-
ders that are mistakenly predicted to be delayed but which
are not. Hence, while recall of the current meta-learning al-
gorithm is appropriate for a decision-support algorithm, the
precision ratio may not be acceptable due to a fairly high
number of false alarms. An easy way of improving preci-
sion would be to increase the probability threshold for clas-
sifying an order as delayed. However, this would reduce re-
call.

In general the supply chain prediction method presented
in this paper takes decision support approaches that are
based on implicit and subsymbolic knowledge representa-
tion to its limits. We believe that the learning performance
can be improved with the enhancement of explicit situated
knowledge. These knowledge can be in an explicit factual
or rule-based fashion (e.g., if a Thursday is a holiday, or-
ders to be sent on the subsequent Friday in country X are
likely to take a longer time to deliver), or that simply cannot
be predicted (e.g., there is a railway strike in Austria from
Wednesday to Friday, which will effect orders to, from, and
across Austria). Integrating this explicit knowledge with the
implicit knowledge approach described in this paper will
greatly improve the agent prediction performance.

Another idea that we would like to explore in future work
is to employ collaborative reasoning from different sources.
For example, monitoring agents can enhance their reason-
ing with additional knowledge of the tracking agents used
by the transport service providers. Multiagent learning in
such a heterogenous and distributed business environment
is investigated in another research [5]. Another extension of
our system would be a more elaborate reasoning about root
causes and context of a problem, and intelligent event re-
sponse management, e.g., by presenting users appropriate
recommendations for counter-actions.

Coming back to the three objectives that we set out with
in this paper (see Section 1), we regard our results as first
and important step towards intelligent supply chain assis-
tance. We described an agent-based architecture framework



for combining history knowledge with situated information
and we were actually able to show using real data that sit-
uated knowledge and the use of multiple models is actually
beneficial in this domain. Even though our third hope – to
achieve a prediction quality that fulfils the requirements of
an online decision-support system – has not yet fully come
true, we believe that a first step has been made and that we
can improve our system sufficiently by adding a different
type of model based on explicit factual or rule-based knowl-
edge to our framework.

7. Acknowledgments

This paper is partly funded by the E.C. through the
Athena IP. It does not represent the view of E.C., and au-
thors are responsible for the paper’s content.

References

[1] T. M. Cover and J. Tomas. Elements of Information Theory.
John Wiley and Sons, New York, 1991.

[2] T. G. Dietterich. Machine-learning research: Four current di-
rections. The AI Magazine, 18(4):97–136, 1998.

[3] K. Fischer, J. P. Müller, and M. Pischel. Cooperative trans-
portation scheduling: an application domain for DAI. Jour-
nal of Applied Artificial Intelligence, 10(1), 1996.

[4] D. Frey, T. Stockheim, P.-O. Woelk, and R. Zimmermann.
Integrated multi-agent-based supply chain management. In
Proceedings of the 12th IEEE International Workshops on
Enabling Technologies: Infrastructure for Collaborative En-
terprises (WETICE-2003), pages 24–29. IEEE, 2003.

[5] Y. Guo and J. Müller. Multiagent collaborative learning for
distributed business systems. In Proceedings of The Third
International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS’04), New York, 2004. IEEE
Press.

[6] M. N. Huhns, L. M. Stephens, and N. Ivezic. Automating
supply chain management. In Proc. 1st International Joint
Conference on Autonomous Agents and Multiagent Systems
(AAMAS’02), pages 1017–1024. ACM Press, 2002.

[7] P. Langley, W. Iba, and K. Thompson. An analysis of
bayesian classifiers. In Proceedings of the Tenth National
Conference on Artificial Intelligence, pages 399–406. AAAI
Press, 1992.

[8] T. Moyaux and B. Chaib-draa. Multi-agent coordination
based on tokens: Reduction of the bullwhip effect. In
Proc.2nd International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS’03), pages 670–
677. ACM Press, 2003.

[9] A. Prodromidis and P. Chan. Meta-learning in distributed
data mining systems: Issues and approaches, 2000.

[10] N. Radjou, L. M. Orlov, and T. Nakashima. Adaptive Agents
Boost Supply Network Flexibility, 2002. March 2002 Tech
Strategy Brief.

[11] T. Sandholm. An implementation of the contract net proto-
col based on marginal-cost calculations. In Proc. 11th Na-
tional Conference on Artificial Intelligence (AAAI-93), pages
256–262, 1993.

[12] SAP AG. Managing the unmanageable with supply chain
networks, 2001. www.sap.info/public/en/index.php4/article/
comvArticle-193353c63af1170c55/en.

[13] C. E. Shannon. A mathematical theory of communication.
Bell Systems Technology Journal, 27(1,3):379–423 and 623–
656, July and October 1948.

[14] H. Stadtler and C. Kilger, editors. Supply Chain Manage-
ment and Advanced Planning. Springer-Verlag, 2nd edition,
2002.

[15] V. Vapnik. The Nature of Statistical Learning Theory.
Springer-Verlag, New York, 1995.

[16] D. Wettschereck, D. W. Aha, and T. Mohri. A review and em-
pirical evaluation of feature weighting methods for a class
of lazy learning algorithms. Artificial Intelligence Review,
11:273–314, July and Oct. 1997.

[17] D. Wolpert. Stacked generalization. Neural Networks,
5:241–259, 1992.


