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Abstract

This paper presents a multiagent architecture and algo-
rithms for collaborative learning in distributed and hetero-
geneous business systems, where the participating agents
have local, incomplete knowledge used to make predictions
about parameters of a business transaction. We propose two
collaborative learning strategies which differ in the nature
and amount of information that is exchanged during collab-
oration, and which are hence suitable for different organi-
sational settings. The first algorithm relies on the exchange
of information about a transaction instance, whereas the
second algorithm uses qualitative information provided by
individual agents, such as the results of predictions from
the agent’s local perspective. We apply the architecture and
strategies to a distributed supply chain prediction problem.
Experiments run on a large real-world order data set in-
dicate that our approach effectively improves the learning
performance based on limited additional communication
between the participating agents.

1. Introduction

Globalisation and mass customisation are business
trends that have created a development where business pro-
cesses that used to be managed by a single enterprise are
now distributed and need to be planned and enacted across
multiple partners. This leads to highly distributed archi-
tectures of business systems with amplified complexity
and increased need for collaboration among the participat-
ing organizations. Multiagent systems [7] are a powerful
technology to tackle this complexity and to enable flexi-
ble business systems. Software agents autonomously mon-
itor business environments, observe and react to unfore-
seen events, provide human users with decision support,
engage in automated action on behalf of humans and or-
ganizations, and learn from their experience. At the same

time, the use of peer-to-peer, multiagent collaboration ar-
chitectures in business applications [11] supports flexible
and self-organising structures and decentral problem solv-
ing.

In distributed business systems, the participating organi-
zations (and the software agents that represent these) usu-
ally have incomplete knowledge based on their partial local
views on process definitions, (sub-)process status and out-
comes, and information structures. In our paper, we repre-
sent this view by limiting the view of an agent to a projec-
tion of attributes from a relational table denoting e.g., the
execution history of a transport order. In addition, the or-
ganizations and agents are embedded in an organizational
structure. In our paper, we use a simplified model based
on a graph topology which imposes constraints on the abil-
ity of individual agents to communicate with each other,
and which (in future work) will allow us to associate cost
and utility of communicating along an edge in the graph. A
main reason for choosing a decentral, loosely coupled ar-
chitecture is that centralization of data is often neither fea-
sible nor desirable in many cases. Firstly, high transaction
volumes and quickly changing local situations mean that
enforcing complete knowledge involves a prohibitive com-
munication overhead. Secondly, the different organizations
participating in a distributed business system may not be
willing to reveal private data to their competitors or cus-
tomers.

In this paper, we present a multiagent architecture and
two strategies and algorithms for collaborative learning in
distributed, decentralized business systems. Our application
is the prediction of delays in a supply chain logistics sce-
nario. The first learning strategy aims at improving the qual-
ity of local prediction by incorporating process informa-
tion available at other agents’. The second strategy aims at
improving the prediction quality by exchanging qualitative
information, i.e., opinions of other prediction agents, thus
minimizing the amount of information which needs to be
communicated. Experiments run on a large real-world or-



der data set indicate that the collaborative multiagent learn-
ing approach effectively improves the learning performance
based on limited additional communication between the
participating agents.

This paper is structured as follows: Section 2 discusses
application scenarios and describes the architecture of our
system. Section 3 gives an overview of related research.
In Section 4, two collaborative learning algorithms are de-
scribed. Section 5 describes the results of an empirical eval-
uation of the two approaches based on a large real-world
data set. Finally, we present conclusions and perspectives
of future research in Section 6.

2. Application scenario and system architec-
ture

Many business systems are in distributed architecture
and collaborative learning can help improving their perfor-
mance. For example:

• Supply chain management: Supply networks reveal
highly distributed architectures with heterogeneous in-
formation distribution, i.e. the partners have incom-
plete knowledge based on their local views of pro-
cess definitions, status, and outcomes. Here, our claim,
which we justify in this paper, is that collaborative
learning can improve adaptive process planning, mon-
itoring, and coordination of the overall process.

• Customer relation management: Customer services
are usually implemented by different business units,
such as product sales, delivery, and technical support.
Each unit keeps specific service information, which
can be seen as partial views of the overall customer
information. Collaborative learning of these business
units can help towards better understanding of the cus-
tomers’ context and preferences, and provide assis-
tance to product recommendation or fraud detection
applications.

In this paper, we illustrate our collaborative learning
strategies using the supply chain scenario, and, in partic-
ular, proactive monitoring of logistics processes. We draw
our results from a real-world use case and real application
data obtained from a major logistics service provider. This
service provider is responsible for the administration and
supervision of order delivery. Customers are business units
who wish to deliver products to their customers, as shown
in Figure 1. Orders are characterised by origins and destina-
tions around the world, various product types from automa-
tion systems to medical equipment, and different packag-
ing. To carry out an order, different local and international
transportation service providers may be selected. Often, ful-
filling an order requires a combination of transport means

and service providers. Due to the high volume of transac-
tions (several millions of orders over the period of one year),
short planning/executioncycles, and a variety of unexpected
events that happen during execution, monitoring each trans-
action manually is infeasible for humans users.

Figure 1. The system architecture of agent
assistance in the logistics process.

Figure 1 shows the multi-agent architecture that we de-
signed to support a decision support solution for this ap-
plication. The human dispatcher – located at the logistics
monitoring node in Figure 1 interacts with a decision sup-
port system that uses dedicated prediction agents to obtain
predictions for order delays. These predictions can be used
for dispatching incoming orders (e.g., by proposing suit-
able transport service providers) as well as for execution
monitoring (e.g., by integrating different types of informa-
tion and predict which orders have high delay probabili-
ties). Apart from a team of local learning agents (omitted
in Figure 1) that provide different means for making predic-
tions based on analysing available local data (see [5] for a
more detailed description of this part of the system), there
is a distributed group of coordination agents whose task it
is to exchange information in order to improve the quality
of prediction across the boundaries of individual organiza-
tions. These agents can be located everywhere in the supply
chain, at manufacturers, logistics services, transport service
providers, and customers. Our focus in this paper is on the
latter group of agents, the coordination agents.

3. Related work

Agent technology is becoming increasingly often used to
model and implement distributed business systems. TRA-
CONET [14] is a vehicle routing system with an extended
version of the contract net protocol. A multiagent approach
for cooperative transportation scheduling is investigated in



[3]. [4] describes an agent-based logistics monitoring archi-
tecture. A variety of approaches from multiagent systems,
maybe most notably represented by the ADEPT project [6],
have explored the use of multiagent collaboration and coor-
dination techniques in the context of business applications.
However, these approaches were generally not focused on
aspects of adaptation and learning. There have been some
researches on agent learning in Markov games with rein-
forcement learning [17]. Whereas the research in this paper
focuses on multiagent collaborative learning in distributed
and heterogeneous business systems for decision making.

Learning from heterogeneous distributed data is an ac-
tive and challenging area [12]. The collective Bayesian
network learning algorithm proposed in [1] works in two
stages: first it learns a local Bayesian network at each site
using the local data. Then each site identifies the observa-
tions that are most likely provide evidence for coupling be-
tween local and non-local variables and transmits a subset
of these observations to a central site. A second Bayesian
network is learnt at the central site using the data trans-
mitted from the local site. The local and central Bayesian
networks are combined to obtain a collective Bayesian net-
work, that models the entire data. This approach suffers
from the fact that it requires centralization of part of the
data set at the training stage and that it relies on the ex-
change of row data in the prediction stage, thus leading to a
considerable communication overhead.

To prevent centralization and reduce the amount of in-
formation exchanged, [10] propose a distributed decision
tree (DDT) based method enabling a multiagent learning of
classification tasks. Their algorithm performs a breath-first
search for the path through some decision tree. The algo-
rithm does not provide a training stage, nor is an explicit
model learnt. At the prediction stage, the results of the it-
erative learning at the individual agents is correlated, also
leading to a considerable computation and communication
effort, since the whole process is performed each time an in-
stance is classified.

The algorithms and results presented in this paper ex-
tends these lines of research by reducing the amount of
communication and by allowing for loosely coupled col-
laboration among the learning agents, making it suitable for
distributed business systems.

4. Agent collaborative learning algorithm

4.1. Overview

We formalize our approach by introducing three mod-
els, labelled transaction data model, information distribu-
tion model, and organization model.

The transaction data model describes the structure of
business transaction information. A business transaction b

is defined as an n-tuple b = (x1, x2, . . . , xn), where xi ∈
Xi is the value of the i-th attribute of b.

The information distribution model describes how the
business transaction information is distributed over a group
of agents. In this paper, we assume a vertical information
distribution model, i.e., agents only know (possibly over-
lapping) sub-sets of the transaction attributes. So each agent
has a local, partial view of the overall transaction-related in-
formation and uses this view to construct models, e.g., used
for predictions on transaction parameters.

The agents in our business systems are arranged accord-
ing to an organization model OM = (A, S, OR), where
A = {a1, a2, . . . , an} is the set of agents, S = s1, . . . , sm

is the set of services, and OR is the definition of the collab-
oration schemes. Each agent can provide a number of ser-
vices to its environment. In this paper, and without loss of
generality, we assume that S is the union of all services of-
fered by the agents in A. The collaboration scheme OR al-
lows us to define constraints on service provisioning among
single agents. We define OR as OR = {(ai, aj , Sij)|1 ≤
i, j ≤ n, i 6= j} where Sij is a bit vector of length m with
the l-th bit in Sij being 1 iff ai provides service sl to aj .
See below for an example.

Collaborative learning is influenced by both the informa-
tion distribution model and the organization model. Besides
improving local learning performance, there are two issues
to be considered:

• Minimize information exchange between agents to re-
duce communication costs and protect privacy.

• Provide loose coupling of the agents to achieve flexi-
bility. For example, due to the chosen communication
mechanism and different system configurations at each
agent, it may be difficult to ensure the agents perform
the learning tasks in a synchronous (tightly coupled)
manner.

Two collaborative learning strategies are proposed in this
paper to meet these requirements. They can also form hy-
brid method for complex business scenarios.

• Collaboration based on instance information (CBI):
An agent acquires partial and explicit business transac-
tion information from other agents for better learning
performance. With this strategy, an agent requires in-
formation about certain attributes of other agents, but
does not need other agents make learning and predic-
tions at the same time. We propose a method for an
agent to determine the most relevant partner and ac-
quire informative data without having to enumerate the
transaction-related attribute space of other agents. See
Section 4.3.

• Collaboration based on agents’ predictions (CAP):
An agent ensembles other agents’ opinions to improve



its own predictions. So explicit transaction-related in-
formation of other agents is not required; rather other
agents need to provide their predictions simultane-
ously. We achieve this by a stacking based method with
Support Vector Machine for an agent to ensemble other
agents’ opinions. See Section 4.4.

We incorporate this into the organization model de-
scribed above by introducing two services that the agents
in our system can provide to each other: An agent can of-
fer another agent to provide transaction-related information
in terms of additional attribute values for a given transac-
tion instance (labelled service s1), and an agent can offer
to provide prediction results for a given transaction instance
(labelled service s2). Each agent may choose whether to of-
fer each service. Clearly, service s1 will lead to a higher vol-
ume of information to be exchanged while service s2 will be
more computation-extensive at the provider side, while al-
lowing the service provider to hide transaction-related infor-
mation and only reveal qualitative information. We can now
give an example of a collaboration schema between two
agents ai and aj : (ai, aj , (1, 0)) denotes that ai will provide
transaction-related information (service s1) to aj , whereas
it will not provide qualitative prediction results (service s2).
Collaboration schema information can be stored centrally or
locally for each agent. It will guide the behavior of an agent
in collaborations and constrain the possible forms of collab-
orative learning applicable in a certain situation.

In the following, we describe the local prediction algo-
rithms and the two collaborative learning strategies.

4.2. Local prediction algorithms

We view the problem of predicting transaction parame-
ters (e.g., whether a transaction will be delayed or not) as a
classification problem. Given incomplete knowledge about
other attributes of the transaction, we shall classify the at-
tribute order delivery status either as delay or on-time1.

We adopt the Bayesian classifier method to implement
the agents’ local basis prediction algorithms used to build
their individual models (based on a training set e.g., ex-
tracted from past transaction execution records), as most
attributes of the instances of logistics orders have nomi-
nal data types. Bayesian classifiers assign the most likely
class (e.g., delay or on-time in the above example) to a
given instance described by its feature vector. The sim-
plified Bayesian classifiers, Naive Bayes, assumes that at-
tribute values are conditionally independent given the class
values. Despite this assumption is unrealistic, Naive Bayes
is remarkably successful in practice, often competing with
much more sophisticated techniques [8].

1 Note that more fine-grained definitions of delay are possible using this
approach

y =
argmax
yj ∈ Y P (yj)

n
∏

i=1

P (xi|yj) (1)

where y is the predicted class, x = (x1, . . . , xn) is the
attribute vector describing an instance to be classified, Y is
the class value set. The various P (yj) and P (xi|yj) terms
can be estimated based on the training set. Given an instance
with unknown label, the learned model will output the prob-
ability of success/delay. Hence, a criterion is needed to pro-
vide explicit labelling. In this paper, we label the instances
using a relative measure of delay instead of a fixed proba-
bility threshold. We achieve this by sorting the instances ac-
cording to their probability of delay, and then labelling the
top d percent of instances as delay. A realistic value for d

is determined by computing the average percentage of de-
lay instances in the training set.

4.3. Collaboration based on instance information

In this learning strategy, an agent integrates partial infor-
mation from other agents for better learning performance.
The motivation for this is that research on using selec-
tive Bayesian classifiers [9] for feature selection has proved
that a classifier built on an properly selected subset of at-
tributes may have the same or even better performance than
one created using all attributes. Another approach [20] uses
naive Bayes classifier committees for improving classifi-
cation performance. Each committee member is a naive
Bayesian classifier built using different attribute subsets in
sequential trials, and the final class predictions are made
through committee voting. Although in a distributed busi-
ness system, the attribute space is partitioned physically
based on the business collaboration structure, we still can
add relevant transaction attribute data to an agent’s exist-
ing data to effectively improve its learning performance.

The optimized selection of the attribute subsets in [20] is
based on greedy search of the whole attribute space; in our
approach, we focus on minimizing communication costs
and protection of privacy relating to an underlying organi-
zation model. We propose a method for an agent determine
most relevant partner and get informative information with-
out having to enumerate the attribute space of other agents.
The method is implemented in two steps:

1. Each agent i finds the most relevant agent j by corre-
lation analysis on their prediction behavior on the con-
text set.

2. Agent j provides agent i its high informative attributes
derived by mutual information analysis between all at-
tributes and the instance class.

Here, the context set is a data set containing a small num-
ber of transactions, and with similar properties as the test



set. It is used for analyzing the agents models obtained from
their training sets. In this paper, we use recent data as the
context set. The context set is also an important component
in the second collaborative learning strategy described in
Section 4.4, below.

In the first step, an agent performs correlation analysis
on the other agents’ predictions on the context set. Agents
with smaller resulting correlation will be more helpful to
improve current agent’s learning performance. The corre-
lation of the agents prediction behavior on the context set,
pagenti and pagentj , is measured by the Bravais Pearson
correlation coefficient as Equation (2).

ci,j =

∑n

k=1
(pagenti

k
− p̄agenti )(p

agentj

k
− p̄agentj )

√

∑n

k=1
(pagenti

k
− w̄agenti )2

∑n

k=1
(p

agentj

k
− p̄agentj )2

(2)

where p
agenti

k and p
agentj

k are the predicted probability
of delay of instance k in the context set by agent i and agent
j, p̄agenti and p̄agentj are the mean values, and n is the
number of instances in the context set.

In the second step, an agent determines the most infor-
mative attribute based on mutual information analysis [15].
Mutual information of two variables is defined as the reduc-
tion in uncertainty (Entropy) of the value of one variable
given knowledge of the value taken by other variable. The
relevance of an attribute is determined by the mutual infor-
mation H(y; xi) between the instance class y (in our exam-
ple denoting the order delivery status, which could take the
values delay or on-time) and the value of attribute xi of the
instance. Here, H(y; xi) measures the amount of informa-
tion the attribute value conveys about the order delivery sta-
tus. In case attribute value are continuous values, computing
the mutual information requires to divide their ranges into
predefined intervals [18]. The mutual information H(y; xi)
between an instance class y and an attribute xi is computed
as:

H(y;xi) =
∑

v

∑

c

P (y = c, xi = v)log2

P (y = c, xi = v)

P (y = c)P (xi = v)

(3)
where p(y = c) is the probability of delivery status being
c, and p(xi = v) is the probability of value v for attribute
xi occurring in the respective training set.

The algorithm describing the collaborative learning strat-
egy can now be defined as follows:

1. Each agent i learns its model Ci using the Bayesian
classifier on its local training data set as described in
Section 4.2.

2. Based on Ci, each agent i makes predictions on the
context set V.

3. Agents exchange the prediction results for the context
set.

4. Agent i finds the most relevant agent j by correlation
analysis on the other agents’ predictions on the context
set.

5. Agent j provides its most informative attribute to agent
i; this is obtained by mutual information analysis be-
tween the attributes and the instance class.

6. Each agent i re-learns its models Ci again with its local
training data set, adding the attributes acquired from
other agents.

7. The agents use Ci to make predictions on the test set.

4.4. Collaboration based on agents’ predictions

This collaborative learning strategy enables an agent to
integrate other agents’ predictions with its local model to
improve learning performance. We propose a meta learn-
ing approach to implement this strategy, as it provides flex-
ible ensemble of multiple learners while limiting commu-
nication. Various meta-learning strategies were described
in the literature [2, 13]. Voting is the simplest method of
combing predictions from multiple classifiers. In its sim-
plest form, majority voting, each model contributes a single
vote. The collective predictions is decided by the majority
of the votes. In weighted voting, the classifiers have vary-
ing degrees of influence on the collective prediction that is
relative to their prediction accuracy. Each classifier is asso-
ciated with a specific weight determined by its performance
on a validation set. The final prediction is decided by sum-
ming over all weighted votes and by choosing the class with
the highest aggregate. The voting method combine the set of
models in linear fashion and is not effective in some scenar-
ios.

In this paper, we adopt and extend the stacking method
[19], as one of the most effective meta learning strategies.
Stacking integrates independently computed base classifiers
into a higher-level classifier by learning over a so-called
meta set. A meta set is generated by using the predictions
of the base classifiers as attributes and keeping the original
class labels. Then a meta classifier can be trained with the
meta set; this meta classifier is then used to classify unla-
belled instances. The aim of this strategy is to correlate the
predictions of the base classifiers by learning the relation-
ship between these predictions and the true labels. So stack-
ing allows effective non-linear combination of base classi-
fiers. In this work, we added several improvements to the
standard stacking method:

• Use Support Vector Machine (SVM) as the meta
learner. SVM is an efficient learning method for learn-
ing problems based on small training sets. See below
for a short description of SVM.

• The meta set is generated with model predictions, as
well as the original attributes of the orders. Only highly



relevant attributes are selected to be the order attributes
in the meta set, based on the results of a mutual infor-
mation analysis (see Section 4.3). Not considering the
less relevant attributes actually improves learning per-
formance in our experiments, thus supporting Lang-
ley’s results reported in [9].

• The meta set uses the predicted probability of delay in-
stead of predicted class, which provides more informa-
tion for meta learning.

The learning algorithm consists of the following steps:

1. Each agent i learns its model Ci using the Bayesian
classifier method on its own training data set.

2. Each agent i makes predictions on the context set V
based on Ci.

3. Agents exchange the prediction results for the context
set.

4. Generate a meta set T with the agent predictions on
the context set.

5. Learn a meta model M on the meta set T using the
SVM algorithm.

6. Use the meta model M to make predictions on the
test set.

The context set and the learned individual mod-
els are used to compute the meta set. In this paper,
the attributes of a meta set data instance are com-
posed of the model predictions and the original at-
tributes of the orders. Thus, we define the meta set T as
T = {y, C1(x), C2(x), . . . , Ck(x), attribute vector(x))|

x ∈ V }, where x is an instance in the context set V , y is
the true class of x, Ci(x) is the prediction of model i on
x, and attribute vector(x) contains the attributes of x.
The predicted probability of delay is used instead of pre-
dicted labels as the model prediction attributes, and only
the high relevant attributes are selected to be the order at-
tributes in the meta set.

The meta learner is trained with the meta set to make de-
lay predictions on an instance of an order. We use Support
Vector Machine (SVM) classifier, which has proven empir-
ical performance in pattern recognition [16]. Based on sta-
tistical learning theory, the SVM learner has good general-
ization ability and reveals good performance even when the
size of the available training data is limited. This enables us
to use small context set. The SVM classifier projects data in
the input space X into a higher dimensional feature space
H, with a kernel Function k(ti, tj) = φ(ti)

T φ(tj), where ti

and tj are instances in the meta set. Vapnik shows that the
Structural Risk Minimization principle in statistical learn-
ing theory can be translated into finding the hyperplane with
maximum margin for separating the positive and negative
training instances. Computing this hyperplane is by solving

a quadratic optimization problem. The solution will be a set
of support vectors, which determine the position of the hy-
perplane. With the learned SVM model, the unlabelled or-
ders can be classified as on − time (positive) and delay

(negative). By calculating distances of order vectors to the
trained hyperplane, the SVM model can give a straightfor-
ward ranking of orders. In the experiments, as the meta set
is unbalanced, i.e., the percentage of success orders is much
higher than that of delay orders, so higher weight is given
to the delay orders when training the SVM model.

5. Empirical analysis

In this section, we describe experimental results which
we conducted to evaluate the performance of the two pro-
posed collaborative learning strategies.

5.1. Experimental settings

The empirical analysis is based on a large data set from
the data warehouse of a major logistics service provider col-
lected over 2003. Each data record describes a single order
execution transaction, including the attributes: origin, des-
tination, product type, packaging, local transport provider,
international transport provider (where applicable), planned
customer delivery date, planned pickup date, actual pickup
date, and actual delivery date. The data sets used for collab-
orative learning are as follows:

• Training set: 390505 transaction instances, vertically
partitioned into five separate groups and maintained by
five agents: agent 1 to agent 5. As described in Sec-
tion 2, these agents would represent different parties
in the supply chain, including logistics services, trans-
port service providers, or customers.

• Test set: 87994 transaction instances used for evalua-
tion. These orders were August 2003 data without the
first week in August, which was used as the context
set.

• Context set: data from the first week of August 2003,
6088 instances.

All experiments were repeated ten times with differing data
sets, all reported figures are average figures.

The following experiments are performed on the test set:

• EXP 1 to EXP 5: Results of local predictions of the
five agents, as described in Section 4.2.

• EXP 6: Results of local predictions, however, based on
the union of the information views of the five agents,
i.e., on complete information.

• EXP 7: One agent, e.g., agent 3 in this case, performs
collaborative learning based on instance information
(CBI), as described in Section 4.3.



Experiment Learning model DR DP

EXP 1 Agent 1 0.43 0.39
EXP 2 Agent 2 0.44 0.40
EXP 3 Agent 3 0.37 0.31
EXP 4 Agent 4 0.40 0.36
EXP 5 Agent 5 0.42 0.38
EXP 6 Centralized 0.49 0.42
EXP 7 CBI at Agent 3 0.45 0.41
EXP 8 CAP at Agent 3 0.59 0.40

Table 1. Learning performance of individual
and collaborative learning

• EXP 8: One agent, i.e., agent 3 in this case, per-
forms collaborative learning based on agents’ predic-
tions (CAP), as described in Section 4.4.

To evaluate the learning performance, we adopted two
standard measures from information retrieval: delay recall
(DR) and delay precision (DP), as defined in Equations 4
and 5.

DR =
nD→D

nD→D + nD→S

(4)

DP =
nD→D

nD→D + nS→D

(5)

where nD→D is the number of correctly predicted De-
lay orders, nD→S and nS→D are the number of Delay →
Success and Success → Delay errors. Intuitively, delay
recall measures the share of actually delayed orders that the
mechanism could successfully predict as Delay, whereas
delay precision is a measure of the inverse noise ratio, i.e.,
the share of orders predicted by the system as Delay that
were actually delayed. It is known from information re-
trieval that there is a trade-off between recall and precision,
and that it is rather easy to optimise either of them, but very
hard to provide good results for both.

5.2. Experimental results and analysis

The experimental results of individual and collaborative
learning are shown in Table 1. The correlation analysis in
CBI (for EXP 7) is shown in Table 2; Table 3 illustrates the
mutual information analysis results used by the agents to
determine the informative attributes.

The experimental results show that both collaborative
learning methods, CBI and CAP, can effectively improve
the learning performance of agent local learning. CAP has
better performance than CBI by assembling higher level
knowledge of the agents. It’s also revealed in our experi-
ments that the proposed method in CBI is effective in help-
ing an agent find the relevant partner to get most infor-

Agent Correlation DR DP

Agent 1 0.32 0.45 0.41
Agent 2 0.40 0.43 0.40
Agent 4 0.77 0.39 0.36
Agent 5 0.41 0.44 0.40

Table 2. Correlation between agent 3 and
other agents, and learning performance with
CBI

Agent id Attribute name Mutual Information

Agent 1 Destination Country 0.104
Agent 2 Origination Point 0.054
Agent 3 National Carrier 0.041
Agent 5 International Carrier 0.088

Table 3. Top informative attribute of different
agents

mative information. Agents with low correlation of predic-
tion behaviors are most informative and lead to better val-
ues for delay precision and recall (see Table 2). Interest-
ingly, the comparison of EXP 6 with EXP 8 indicates that
in our experiments, the CAP strategy even manages to out-
perform a complete knowledge Naive Bayes classifier al-
gorithm. While this partly means that naive Bayes is not
the best possible learning algorithm, it does mean that CAP
provides good performance in a distributed multi-agent en-
vironment that compares favorably with established central
algorithms. Also, as described before this result supports
Langley’s observation in [9] that having more information
available to solve a classification problem does not automat-
ically mean having a better performance.

6. Conclusions

A key contribution of this paper is that it integrates tech-
niques and results from distributed learning with underly-
ing organization models constraining the ability of agents
to communicate and to make use of the services and com-
putation resources provided by each other. We proposed two
multiagent collaborative learning strategies, one of them
relying on the exchange of explicit transaction data, the
other being based on the communication of qualitative data,
i.e., prediction results. Using empirical data from a real-
world supply chain application scenario, we could show that
both collaborative methods can improve the learning per-
formance of agents endowed with a limited local view, and
meets the requirement of different organization scenarios.



The collaborative learning algorithms were developed in the
context of extending a pilot logistics decision-support solu-
tion for a major logistics service provider, which provides
support for order dispatching, monitoring, and re-planning
(see [5]). Our hope is to be able to improve the current lo-
cal prediction algorithms which work fine in a centralized
settings, but which do not scale to a decentralized business
environment.

Further research will investigate hybrid learning strate-
gies geared towards complex distributed business systems
with both heterogeneous information distribution and orga-
nization models. Also, the research shown in this paper fo-
cused on the influence of the information distribution mod-
els on learning performance; we did not consider the ef-
fect of varying parameters of the organization model. This
will be another topic of future research. Finally, we have not
yet theoretically explored the communication overhead in-
volved with the different collaborative learning strategy. In
our experiments, however, communication was not a criti-
cal factor, since both collaborative approaches attempt to re-
duce communication. However, a formal analysis of this as-
pect is subject of future work.
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