
Model- and Architecture-Driven Development in the
Context of Cross-Enterprise Business Process Engineering

Stephan Roser1, Bernhard Bauer1, Jörg P. Müller2
1Institute of Computer Science, University of Augsburg, D-86135 Augsburg

2Institute of Computer Science, Clausthal University of Technology, D-38678 Clausthal
[bauer | roser]@informatik.uni-augsburg.de

mueller@in.tu-clausthal.de

Abstract

Modelling and enacting Cross-Enterprise Business

Processes (CBPs) is a key ability for successfully set-
ting up and managing virtual organizations, e.g. sup-
ply chains. In this paper we present and compare ap-
proaches for modelling CBPs based on the service-
oriented architecture paradigm. By embedding our
overall approach into a model- and architecture-
driven development perspective, we show how service-
oriented systems realising CBPs can be derived from
business-level modelling.

1. Introduction

Enabling enterprises to keep up with constantly
evolving business relationships and cross-
organizational value chains, business systems need to
become more adaptive and service-oriented. In order to
achieve this, methodologies, methods, and infrastruc-
tures are required to support changes to business proc-
esses being defined at the business level and providing
well-defined (and possibly largely automated) model
transformations and refinements down to the level of
service-oriented implementations. The main objective
of our research is to improve business interoperability
by developing architecture and tools to provide end-to-
end support for the design of business processes, from
the business level down to deployed service-oriented
applications. The approach we follow in order to
achieve this end is model-driven software development
(MDSD) [2], a generalization of OMG’s Model-
Driven Architecture paradigm (MDA™) [14] in com-
bination with a software architecture driven approach
(see Section 3).

Within the context of the ATHENA IP [1], we have
extended the MDA paradigm to fit the needs of model-

ling CBPs; in order to realize such CBPs in a service-
oriented environment based on a software architecture
centric approach. The goal is to develop executable
models of cross-enterprise collaborations by applying
MDSD techniques based on software architectures. In
previous work [4][6], we described conceptual MDSD-
based architectures for modelling CBPs with sets of
model transformations enabling semi-automated map-
ping of a computation-independent description, down
to a platform-independent model representation. We
investigated architectures for realizing business level
processes (in our case starting from a CBP model ex-
pressed using ARIS1) into an information and commu-
nication technology (ICT) architecture at the platform-
independent level based on Service Oriented Architec-
ture (SOA).

Totally decentralized architectures without broker
can very well be applied to eBusiness scenarios with
restricted size and complexity like online shopping or
auctions in the B2C or C2C market. Those scenarios
are characterised by the fact that they describe routine
processes with low specificity. The centralized broker
architecture described in [4] was found to be useful in
a scenario where the collaborative process was largely
designed and its execution controlled by one partner in
a cross-enterprise relationship, i.e., corresponding to a
star topology of a business relationship including one
large and powerful player and multiple smaller players,
as we can observe it today e.g. in the automotive and
aerospace domains. However, it reveals limitations in
flexibly supporting more symmetric business relation-

1 We realize that some readers will feel alienated by the fact that

we call ARIS computational independent level. However, ARIS is a
de-facto industry standard for the business level modelling of busi-
ness processes, and thus is the natural starting point for a top-down
model-driven development approach.

ships, focusing on scenarios supporting collaboration
between Small and Medium Enterprises, as well as
Virtual Enterprise scenarios, where partners that com-
pete in other sectors join together temporarily to pro-
vide a product or service. These scenarios will benefit
from a less centralized architecture (see [6]), enabling
looser coupling, more modular and flexible process
modification strategies, and a higher degree of auton-
omy of the individual partners (including better sup-
port for encapsulating enterprise-internal information).

The main contributions of this paper are twofold:
first, we introduce three architectures for controlling
and enforcing CBPs in a model-driven development
context; second, we describe and compare transforma-
tion procedures for deriving service-oriented platform-
independent models of a CBPs based on different ar-
chitectures described in Section 3.

After summarizing the technological context of the
work in Section 2, Section 3 introduces and aligns
model-driven software development with software
architecture centric approaches. Section 4 describes
three architectures for realizing CBPs in a service-
oriented environment. In Section 5, we present in-
stances of model transformations for ARIS to a SOA.
Section 6 discusses the described conceptual modelling
architectures related to interoperability, relationships to
related work, and areas of future research.

2. Context

2.1. Business Process Modelling Terminology

[9] distinguishes between an internal and an external
view of business processes. Depending on the view-
point, a process is described either as an executable,
abstract, or collaborative process: Executable Proc-
ess: The internal view models the ‘how’ of a business
process from the modeler’s view. Processes that model
process flows as a set of partially ordered tasks, are
called executable processes [10]. As the flow of an
executable processes is described from the viewpoint
of a single process coordinating its sub-processes, this
is often referred to as process orchestration. Abstract
process: The external view models the ‘what’ of a
business process. Each process specifies its roles in the
collaboration with other processes, but hides the way it
is realized. The interfaces of such business processes
components are called abstract processes describing
the public interactions they perform in relation to their
roles in collaborations. Collaborative process: de-
scribes the collaboration between abstract processes in

the case of process choreography. Collaborative proc-
esses use abstract processes to model the sequence of
the message exchange from the viewpoint of an exter-
nal observer. The collaborations between the involved
parties are modelled as interaction patterns between
their roles.

In order to coordinate inter-organizational workflow
Liu and Shen introduced the concept of views, as they
are used in database systems, to provide abstract in-
formation about internal processes. In [13] they extend
their work to CBPs. Chiu et al. introduce workflow
views to control visibility of internal processes and to
enable interoperability of e-services, focusing on com-
bining views of different partners to composite e-
services (CBPs). Schulz et al. use the concept of views,
and formalize the dependencies between private proc-
esses, process views and CBPs [17].

Adopting the general approach of [17], we distin-
guish between private processes, view process and
CBPs (according to [12]): Private Processes are inter-
nal to an organization. They contain data not be re-
vealed by default. Views on processes provide an ab-
straction of private processes, which is sufficient to
coordinate internal actions with activities of external
trading partner(s) [17]. A particular interaction may
require involved partners to adapt for the purpose of
the communication. This adaptation may not necessar-
ily be reflected in the partners' private (internal) busi-
ness processes without inflicting their ability to interact
with other partners in a different context. View Proc-
esses combine private processes to an abstract level
that enables companies to hide critical information
from unauthorized partners. The view process connects
the private process with the abstract process an organi-
zation provides to a CBP. Based on one private proc-
ess, different views can be generated and reflecting the
specific requirements of multiple interactions. CBPs
define the interactions between two or more business
entities. These interactions take place between the de-
fined abstract processes and are defined as a sequence
of message and/or other material input/output ex-
change. Using different views of the same internal
processes, organisations are able to interact in a differ-
ent context without changing the internal process.

2.2. PIM4SOA

A major result of the ATHENA IP [1] is a set of
metamodels and tools called PIM4SOA (Platform-
Independent Model for Service-Oriented Architecture,
see [7]), supporting the smooth integration into Web

Service Composition standards, in particular WS-
BPEL [11]. The PIM4SOA metamodel has essentially
two main concepts for describing services and their
collaborations at a platform-independent level (see
Figure 1). Collaborations specify patterns of interac-
tion between participating roles. They specify the in-
volved roles and their responsibilities within the col-
laboration. Service providers take on roles through
which they participate in collaborations and realize
roles in collaborations. The participation of service
providers in a collaboration is modelled via Collabora-
tion Uses. The bindings of a collaboration use specify
which roles of the collaboration are realized by the
roles of the service provider.

Fig. 1: PIM4SOA: structure

The communication behaviour as well as the activi-

ties, that together realize the provided services, can be
described by the service provider’s behaviour, i.e.
process (see Figure 2). The process of a service com-
ponent specifies the externally observable activities
independent of the realization. The process flow de-
fines sequencing constraints and data flow on the re-
lated activities. A task is either an internal task that is
not further specified, or an interaction task through a
service. In the latter case the service is referenced by
specifying a collaboration use path.

Fig. 2: PIM4SOA: behaviour

3. Architecture for Business Process Mod-
elling Methodology

We introduce, describe and compare model trans-

formations (from business level ARIS models to plat-
form-independent ICT system models) encoding
knowledge about a service-oriented ICT architecture.

3.1. MDSD Approach

The architecture of business process modelling can
be aligned to architectures for model-driven software
development and to an architecture of eBusiness sys-
tems. Starting from the business viewpoint of analysts,
where all issues related to the organization and the
operations of an enterprise are addressed, business
process models are semi-automatically refined to
specification views of system architects (e.g. service
and interface models).2 Their viewpoint focuses on the
main components of a software system before it is re-
fined to the realizations viewpoint of system develop-
ers (e.g. interaction and data models). Both specifica-
tion and realization viewpoint focus on ICT solutions
allowing an enterprise to operate, make decisions, and
exchange information internally and externally. They
deal with composition and flexible execution of ser-
vices.

eBusiness
Systems Architecture

computation independent level
business viewpoint

MDA&ADM

Construction of Cross-Org.
Business Processes

Business

Flexible Execution
And Composition

of Services

Model-driven
SoftwareDevelopment

platform independent level
specification viewpoint

platform specific level
realisation viewpoint

code

Collaborative Enterprise
Modelling

Processes

Services

ARIS

PIM4SOA

Transformation

Transformation

Transformation

eBusiness
Systems Architecture

computation independent level
business viewpoint

MDA&ADM

Construction of Cross-Org.
Business Processes

Business

Flexible Execution
And Composition

of Services

Model-driven
SoftwareDevelopment

platform independent level
specification viewpoint

platform specific level
realisation viewpoint

code

Collaborative Enterprise
Modelling

Processes

Services

ARIS

PIM4SOA

Transformation

Transformation

Transformation

Fig. 3. MDSD and e-Business architectures

Changes of viewpoints and modelling methods are a

crucial point in the development of an ICT system,
since errors made at this stage are rarely found before
the system is deployed. Thus a main concern is that
business models are consistent with the ICT systems
models (which a grounded on service-oriented archi-
tecture in our case).

2 For a more detailed description of the viewpoints see [8].

3.2. SW-Architecture Centric Approach

The typical views in the context of software archi-
tectures are (for details see [3]): context view showing
the interaction and interworking of the system under
development with its environment from a high level of
abstraction. Interfaces to neighbour systems, and the
interaction with the main stakeholders as well as the
main points of the infrastructure are shown; Building
block view showing how the system is internally struc-
tured, defining the static structures of the system, sub-
systems, components and its interfaces, which usually
developed in a top-down approach from the context
view; Run-time view showing the dynamics of the sys-
tem, i.e. which building blocks exist and interwork
during run-time; Deployment view: in which environ-
ment runs the system, i.e. HW component, processors,
net topology and protocols.

A software architecture centric approach has to go

along with the model-driven approach to support and
document the software views as well as the models at
different levels of abstraction within an eBusiness sys-
tems architecture. E.g. the system architect acts par-
ticularly on the context and building block views. A
methodology will provide necessary information to
allow automatic generation, semi-automatic refinement
and deployment of processes to a service-oriented en-
vironment.

4. Modelling Architecture for CBPs

Many people and organizations participate in the
construction of software systems, and impose different
concerns and requirements on the system. Business
considerations determine non-functional qualities that
must be accommodated in the system architecture.
Quality attributes like availability, modifiability, per-
formance, security, testability, usability or business
qualities are orthogonal to functional attributes de-
scribing the system’s capabilities, services, and behav-
iour. Since quality attributes are critical to the success
of systems, they must be considered throughout de-
sign, implementation and deployment [3].

In our work we describe, how service-oriented ar-
chitecture variants of software systems for CBPs can
be derived from business level descriptions. By inves-
tigating how architecture variants satisfy various qual-
ity attributes, we observed two interoperability-related
challenges for CBP architectures. Thus our focus is on
modifiability and privacy of internal data.

Modifiability: is about the cost of change [3]. Thus
the quality attribute mostly depends on how flexible
and modular a system is. The granularity of the archi-
tectural concepts should be sufficiently fine that
changes to a participant’s private implementation do
not necessarily result in changes of other participants
private processes. Modularity allows participants to a
CBP to be able to change processes without affecting
other participants.

Privacy of internal data: The modelling architecture
should enable participants of a CBPs to preserve pri-
vacy of their internal data, interfaces and processes.
The information provided to participate in a CBP gen-
erally not allow insights into the participant’s internal
realization of the functionality.

CBPs can be realized in multiple ways, differing in
how CBP’s conversation flow is coordinated. In a bro-
kerless approach, private processes use their abstract
processes to directly exchange messages over enter-
prises’ boundaries. In an architecture relying on a cen-
tral broker, private processes exchange messages with
an intermediary acting as a global observer process
coordinating the partners as well as making decisions
on the basis of data used in the CBP. The decentralized
broker architecture finally divides the broker process
into several view processes jointly realizing the broker.
The view processes are provided by organisations par-
ticipating in the CBP.

In a brokerless architecture control flow logic of
CBPs is realized by the private processes of the par-
ticipants. Due to the mutual exchange of messages
these processes depend on one another. Changing the
business protocol would result in changing multiple
executable processes. This is only flexible and modular
to a small extent: if the abstract process of one private
process significantly changes, other private processes
or even the protocol description need to be adjusted.
The same restriction holds for privacy.

The application of a broker pattern has several ad-
vantages. When changing protocol description of a
CBP, only the broker process needs to be modified, not
the multiple private processes of the participating or-
ganizations. Organizations can hide their internal proc-
esses from their collaborators, but instead have to re-
veal them to a third party, the centralized broker.

In decentralized broker approach, the single broker
component is replaced by several view processes
jointly providing the broker functionality (note the
boundary in Figure 4). The view process behaviour,
which is relevant to the CBP, is defined by public ab-
stract processes. An abstract process is realized by the

executable process of the respective view process. A
view process also provides internal abstract processes
in order to use the private processes’ functionality. The
enterprise boundary in Figure 4 shows which private
processes are used by a view process and vice versa.

ex
ec

ut
ab

le
pr

oc
es

s
ab

st
ra

ct
pr

oc
es

s
(o

rg
an

is
at

io
na

li
nt

er
n)

en
te

rp
ri

se
bo

ar
de

r
br

ok
er

bo
ar

de
r

PP

decentralized broker

PP

PP

PP

PP

VP

VP

PP PPPP

VP

ab
st

ra
ct

pr
oc

es
s

(o
rg

an
is

at
io

na
le

xt
er

n)

PP

PP

PP

PP

PP PP

PP

PP

centralized broker

PP

PP

PP

PP

PP PP

PP

PP

without broker

PP
 =

 p
ri

va
te

 p
ro

ce
ss

V
P

=
 v

ie
w

pr
oc

es
s

ex
ec

ut
ab

le
pr

oc
es

s
ex

ec
ut

ab
le

pr
oc

es
s

ab
st

ra
ct

pr
oc

es
s

(o
rg

an
is

at
io

na
li

nt
er

n)
ab

st
ra

ct
pr

oc
es

s
(o

rg
an

is
at

io
na

li
nt

er
n)

en
te

rp
ri

se
bo

ar
de

r
en

te
rp

ri
se

bo
ar

de
r

br
ok

er
bo

ar
de

r
br

ok
er

bo
ar

de
r

PP

decentralized broker

PP

PP

PP

PP

VP

VP

PP PPPP

VP

PPPP

decentralized broker

PPPP

PPPP

PPPP

PPPP

VP

VP

PPPP PPPPPPPP

VP

ab
st

ra
ct

pr
oc

es
s

(o
rg

an
is

at
io

na
le

xt
er

n)
ab

st
ra

ct
pr

oc
es

s
(o

rg
an

is
at

io
na

le
xt

er
n)

PP

PP

PP

PP

PP PP

PP

PP

centralized broker

PPPP

PPPP

PPPP

PPPP

PPPP PPPP

PPPP

PPPP

centralized broker

PP

PP

PP

PP

PP PP

PP

PP

without broker

PPPP

PPPP

PPPP

PPPP

PPPP PPPP

PPPP

PPPP

without broker

PP
 =

 p
ri

va
te

 p
ro

ce
ss

V
P

=
 v

ie
w

pr
oc

es
s

Fig. 4: ICT architecture for CBPs

From a runtime point of view there are two alterna-

tives depending on whether the broker is hosted by a
third party or not. In case the logical enterprise bound-
ary in the architecture is also a physical boundary in
the runtime architecture, a view process is realised and
executed by the participating enterprise owing also the
private processes.

Thus, the decentralized broker architecture satisfies
the requirement of flexibility and modularity at the
conceptual level. The view processes are preserved in
any runtime architecture derived from this conceptual
architecture. The privacy of internal data depends on
the realization of decentralized broker at runtime. This
requirement can be met, if view processes are not
hosted by a third party, but rather implemented and
executed by the enterprises participating in the CBP.

We are aware that our conceptual ICT architecture

does not mention a directory service. The focus of this

paper is on the architectural issues for CBP modelling
and enactment; it is easy to image that a directory ser-
vice is used to search process partners which are inter-
acted in the CBP enactment at runtime dynamically.

5. Model-Driven Design of CBPs

Business process models at a computational-
independent level of abstraction are not affected by the
adoption of a certain conceptual architecture. How-
ever, ICT models at the platform-independent level
may differ considerably depending on whether an ar-
chitecture with centralized or decentralized brokers, or
a brokerless architecture is used. Thus, transformations
have to be adjusted to the various architectures. This
section shows, how service-oriented ICT models for
realizing collaborating components of architectures
with and without broker3 can be derived from high-
level ARIS description of a business process.

5.1. Example CBP

The CBP example comprises the solicitation of quo-
tations and the choice of component suppliers by an
automotive manufacturer. Three roles are involved in
the cross-organizational business process: OEM
(Original Equipment Manufacturer) is the automotive
manufacturer planning to produce a new automobile
type; PO (Purchasing Organization) is an independent
company or department of the OEM conduction the
solicitation of quotations and the final selection of the
suppliers; SU (Supplier) is a component supplier for
the automotive industry aiming to place contracts with
the OEM via the PO.

Fig. 5: Case study – process overview

As shown in Figure 5 the three roles OEM, PO and

SU are modelled as swimlanes in the process descrip-
tion. The CBP starts with the OEM conducting Pre-
liminarySOR where the requirements are gathered and
summarised in a 'Statement of Requirements’ (SOR).

3 For more details about the various approaches see [4] and [6].

In SADistribute PO generates an ActionPlan from the
SOR, containing information about the parts to be pro-
vided by the suppliers. OfferRequests are derived from
the ActionPlan and sent to appropriate SUs. An SU
evaluates in the process OfferGeneration at which
price it can supply certain parts. The SU creates an
Offer and sends it back to the PO. After a PO has col-
lected all incoming offers in SACollect, the evaluation
of these offers starts.

In the first column of the EPC diagram we can see
the departments responsible for executing the roles of
the CBP. The OEM role is realized by the engineering
department (ENG), the PO role by purchasing depart-
ment (PU) and the Supplier Relationship Management
(SRM), and the SU role by the engineering department
(ENG) and the Customer Relationship Management
(CRM) of the supplier.

5.2. Refining CBPs for PIM4SOA

The metamodel for specifying services and collabo-

rations presented in Section 2.2 is to be extended for a
decentralised broker architecture. We introduce con-
cepts for describing private processes participating in
collaborations through their view processes.

Fig. 6: PIM4SOA extension

In Figure 6 we see private processes, view processes

and collaboration processes as service providers. A
private process is an executable service provider who
references view processes that enact its participation in
external collaborations. Its behaviour is modelled by
an executable process. A view process is an executable
service provider whose behaviour is a process flow
model that may include view tasks. A view task is an
activity that abstracts a set of activities of the realizing
private processes into a single task. A view process
realizes roles in a single collaboration and view tasks
are visible in the collaboration. A collaboration process
is an abstract service provider whose behaviour is a
process flow model. The collaboration process may
specify the view processes that together enact the col-
laboration.

We regard a view process as an executable process
that realizes several abstract processes - one for the

collaborations it participates in and the others to par-
ticipate in the implicit collaborations with the private
processes it supports. A view process connects the
abstract process an organization provides to a CBP
with realizing private processes of the organization.

5.3. Brokerless architecture

Using a brokerless architecture, we can derive pri-

vate processes as services of a service-oriented envi-
ronment. The business-level CBP-description enables
the composition of binary collaborations patterns to
more sophisticated collaborations and protocols.

PP

PP

coll. prc.

PP

PP

coll. prc.

Fig. 7: PIM4SOA instance without broker

From each private process of the ‘Sourcing’-CBP

description, one service provider is derived. The ser-
vice providers of the private processes directly col-
laborate with each other. Therefore collaborations are
instantiated for each pair of private processes commu-
nicating.

coll. prc.

composite collaboration

coll. prc.

coll. prc.

composite collaboration

coll. prc.

Fig. 8: Instantiation of composite collabora-
tion

The CBP described at business level is divided in

multiple binary collaborations in the brokerless ICT
architecture. To avoid loss of information (especially
about the complete CBP), the collaborations can be
grouped to composite collaborations (see Figure 8).

In the example, the composite collaboration derived
from the ‘Sourcing’-CBP is composed by the binary
collaboration patterns between the private processes.
This concept is analogous the UML2 specification.
[15], p.164ff.

5.4. Centralized broker

A centralized broker architecture is realized by a co-

ordinating executable broker process and several pri-
vate process. As described in [4], the broker process
coordinates the executable private processes via col-
laboration protocol descriptions.

broker

PP

coll. prc.

PP

coll. prc.

broker

PP

coll. prc.

PP

coll. prc.

Fig. 9: PIM4SOA instance central broker

For the ‘Sourcing’-CBP a service provider is instan-

tiated to provide the centralized broker functionality.
Each private process is transformed to one service pro-
vider and communicates with the broker process over
separate collaboration processes instantiated as col-
laborations. In Figure 9 the Role SAD-Req of the Pre-
liminarySOR (+roles) is bound to the PreSOR Role of
the collaboration with the broker process. The broker
process implements the coordination of the message
exchange described by the protocol description.

5.5. Decentralised broker

For a decentralised broker architecture we are able

to generate view processes, being an abstraction from
more detailed private processes, and their links to the
private process implementation by means of the ser-
vice-oriented PIM4SOA metamodel and its CBP-
extension at platform-independent level.

In Figure 10, the target PIM4SOA model is created
by applying transformation to the sample ARIS model
introduced in Section 5.1. A collaboration process is
derived for the CBP ‘Sourcing’. The collaboration
process is an abstract service provider. One view proc-
esses is derived for each organisation that takes part in

the CBP, i.e. the engineering department of the first
participating organisation (Org1-ENG) and so on. An
association connects the view process (+views) to the
collaboration (+collaboration). For each pair of roles
that collaborate in the ‘Sourcing’-CBP, one collabora-
tion process and one role for each of the collaborating
roles are instantiated for the PIM4SOA model; in Fig-
ure 10 these are the roles OEM and PO. Participation
of the departments in the collaboration is represented
by collaboration uses connecting the respective view
processes with the collaboration. A binding is used to
specify with which role (+boundRole) a service pro-
vider realizes a role (+role) in the collaboration. Con-
sidering the architecture described in Figure 4, the col-
laboration process represents the protocol description
between the publicly visible abstract processes. The
CBP is an abstract service provider (not executable)
and groups the view processes belonging to one CBP.

VP VP

VP

collaborative
process

CBP

VP VP

VP

collaborative
process

CBP

Fig. 10: PIM4SOA instance decentral broker

Figure 11 shows the generation of view processes’

behaviour description at the example of the Org1-ENG
view process. The behaviour of the view process, i.e.
the service provider, is described by process. This
process consists of steps which are derived from
ARIS-CBP. Two view tasks, PreliminarySOR and Of-
ferEvaluation(OEM), are instantiated for the corre-
sponding process modules of the ARIS-CBP.

VP

abstract process the VP provides to the CBP

VP

abstract process the VP provides to the CBP
Fig. 11: PIM4SOA instance connecting view
process to private process behaviour

For the Org1-ENG view process two ‘send’ and one
‘receive’ tasks (two times it invokes another process
and one time it is invoked) are instantiated and added
to the control flow. Those tasks refer to the collabora-
tion uses over which the view process participates in
collaborations. In Figure 11 the control flow is de-
picted in a simplified way as arrows with dashed lines.
It shows the complete description of the view process’
executable process. Those parts of the executable proc-
ess relevant to a publicly visible abstract process, are
bound to the respective collaborative process (i.e. col-
laboration).

6. Discussion

In this paper we have introduced and compared ar-
chitectures being feasible target platforms of a model-
driven transformation of cross-enterprise business
processes from the computational independent down to
platform-independent level. We showed how the in-
formation necessary to automatically create platform-
independent ICT-level models for a service-oriented
environment can be derived from business process
models. We identified a number of modelling con-
structs allowing us to derive platform-independent
architectures that can be mapped to different ICT ar-
chitectures.

Having implemented both central, decentral and
brokerless approaches, the major insights we gained
are as follows: While all three approaches can be de-
rived from a CIM description without an explicit de-
scription of the CBP, we found it important that CBPs
be explicitly modelled; otherwise, model transforma-
tion results are likely to be of poor quality. The decen-
tral broker architecture relies on the existence of a
CBP model to a higher degree than the central broker
architecture and the brokerless architecture do: the
latter can be derived more easily from the process
flow; in the former, the appropriate grouping of proc-
esses to view processes in a decentralized broker must
be specified explicitly.

Future work comprises developing model transfor-
mations and mechanisms for deriving runtime ICT-
models from the conceptual models described in this
paper. Also, it is yet unclear, which constraints on a
runtime infrastructure of a brokerless approach can
satisfy quality attributes already guaranteed by plat-
form-independent decentralized broker architectures.

Part of the work reported in this paper has been

funded by the ATHENA IP under the European grant

FP6-IST-507849. It does not represent the view of
E.C. nor that of other consortium members, and au-
thors are fully responsible for the paper's content.

REFERENCES
[1] ATHENA IP project web site. www.athena-ip.org.
[2] ATHENA A6. Specification of a basic architecture ref-

erence model. Deliverable D.A6.1, ATHENA IP, 2005.
(downloadable from [1], Public Documents).

[3] Bass L., Clements P., Kazman R.: Software Architec-
ture in Practice. Addison Wesley, 2003.

[4] Bauer B., Müller J.P., Roser S.: Adaptive design of
cross organizational business processes using a model-
driven architecture. 7. International Conference on
Business Information Systems, Physica-Verlag, 2005.

[5] Bauer B., Müller J.P., Roser S.: A model-driven ap-
proach to designing cross-enterprise business processes.
Volume 3292 of LNCS, Springer, 2005.

[6] Bauer B., Müller J.P., Roser S.: A Dezentralized Broker
Architecture for Collaborative Business Process Model-
ling and Enactment. Accepted at I-ESA’06, 2006.

[7] Benguria G., Larrucea X., Elvesæter B., Neple T.,
Beardsmore A., Friess M.: A platform-independent
model for service-oriented architectures. Submitted for
I-ESA’06, 2006.

[8] Elvesæter B., Hahn A., Berre A.-J., Neple N.: Towards
an Interoperability Framework for Model-Driven De-
velopment of Software Systems. I-ESA’05, 2005.

[9] Frank, Gardner, Johnston: Business Process Definition
Metamodel – Concepts and Overview. IBM, 2004.

[10] Frankel D.S.: Model Driven Architecture – Applying
MDA to Enterprise Computing. Wiley, 2003.

[11] IBM, Business Process Execution Language for WS,
http://www.ibm.com/developerworks/library/ws-bpel/.

[12] Lippe, Greiner, Barros: A Survey on State of the Art to
Facilitate Modelling of Cross-Organisational Business
Processes. In Proc. of XML4BPM 2005, 2005.

[13] Liu D.-R., Shen M.: Modeling workflows with a proc-
ess-view approach. Proc. 7th Internat’l Conf. on Data-
base Systems for Advanced Applications, 2001.

[14] Model-Driven Architecture homepage. Object Man-
agement Group, www.omg.org/mda.

[15] OMG: UML2 superstructure, formal/05-07-04.
[16] Scheer A.W.: ARIS – Business Process Modeling, 3rd

edition. Springer, 2000.
[17] Schulz K.A., Orlowska M.E.: Facilitating cross-

organisational workflows with a workflow view ap-
proach. Data & Knowledge Engineering 51(1), 2004.

