
Using Onion Routing to Secure Peer-to-
Peer Supported Business Collaboration

Fabian STÄBER, Udo BARTLANG, Jörg P. MÜLLER

Siemens AG, Corporate Technology, Information and Communications
Otto-Hahn-Ring 6, Munich, D-81739, Germany

Tel: +49 (0)89 636-41619, Fax: +49 (0)89 636-41423
e-mail: {fabian.staeber, udo.bartlang, joerg.p.Mueller}.ext@siemens.com

Abstract: Peer-to-Peer computing provides reliable self-organizing adaptable
architectures, fitting perfectly as a foundation for enabling enterprises to seamlessly
inter-operate with one another in a loosely coupled fashion. However, the absence of
hierarchical structures in P2P architectures raises security challenges, especially in
scenarios that are of “co-opetitive” nature, i.e., where the involved business partners
may be cooperating and competing, at the same time, and where there is only limited
trust between the partners. This paper addresses some of these security issues. We
propose an approach using onion routing, which is a well known algorithm,
originally used for anonymous email communication. We present a real-world use
case regarding business integration in the automotive industry, and show how onion
routing can be integrated into our peer-to-peer platform to meet the security
requirements of business collaboration environments.

1. Introduction
Over the past few years, the peer-to-peer paradigm received broad attention in academic
research and industry. Offering easy to use plug-and-play networks in combination with
resilience, reliability, and the capability of decentral management and loosely coupled
control, peer-to-peer systems have become target platforms for a growing number of
applications, ranging from Internet file sharing over IP telephony to distributed corporate
information management. While first progress has been made in studying the applicability,
benefits and challenges of the peer-to-peer paradigm in the context of business
applications [1], it is still an open topic how business interoperability can benefit from this
potential in a secure environment.
 When implementing business collaboration on top of peer-to-peer systems, security
challenges need to be met, as the involved business partners may be cooperating companies
and competitors, at the same time. This paper identifies and addresses important challenges
to be met when applying peer-to-peer systems in business integration. Starting from a use
case in the automotive industry, we describe the security requirements and provide a
solution based on the onion routing algorithm.
 The use case described in this paper was originally developed in the context of the
ATHENA programme [2], an Integrated Project funded by the European Commission,
aiming at business interoperability. A key outcome of the analysis of the use case was the
need to support a class of application scenarios that we call “coopetitive”, i.e., scenarios
where business partners cooperate / collaborate in a market in which they are at the same
time competitors. In such as scenario, trust between the partners is limited, and there are
requirements for security and confidentiality that need to be taken into account during the
collaboration process.

 We propose a solution enabling confidential communication between business partners
in these “coopetitive” scenarios. Our solution builds on and extends onion routing, a well-
known algorithm, originally implemented in anonymous Remailers [3]. In our case, onion
routing is applied to allow business partners to communicate, but to prevent their
competitors from learning who is talking to whom.
 The paper is structured as followed: In Section 2 we give an overview of the technology
used in our framework. Section 3 presents our use case and derives two exemplary threat
scenarios. A technical solution is outlined in Section 4; it is compared with related work in
Section 5. In Section 6, we present and discuss the results, benefits, and trade-offs from our
work; the paper ends with conclusions and outlook in Section 7.

2. Technology Description
The communication platform underlying our work is the Business Resource Management
Framework (BRMF) [1], a peer-to-peer framework based on a Distributed Hashtable (DHT)
mechanism. From the user’s point of view, the BRMF maintains an abstract collaboration
space where business objects (resources) can be published, subscribed, modified, and
renewed. To date, the BRMF has been used to manage and share business documents,
distributed business events, to facilitate distributed cooperative work on product models,
but also to provide a decentral business service registry.
 In this Section, we briefly introduce the technical architecture of the BRMF. We will
show that the layered architecture makes it possible to replace the underlying peer-to-peer
protocol without the need of modifying the onion routing extension or any higher level
business application.

Business Resource Management Framework (BRMF)
• support for passive business objects (such as documents)
• support for active business objects (such as webservices)

Resource Management Framework (RMF):
• publish, modify, update, delete
• subscription and notification
• search and retrieval

As part of the RMF:
• Peer Locator
• Transport Sockets

Peer-to-peer algorithm, such as Chord or Kademlia

VPN providing public key infrastructure

Business Resource Management Framework (BRMF)
• support for passive business objects (such as documents)
• support for active business objects (such as webservices)

Resource Management Framework (RMF):
• publish, modify, update, delete
• subscription and notification
• search and retrieval

As part of the RMF:
• Peer Locator
• Transport Sockets

Peer-to-peer algorithm, such as Chord or Kademlia

VPN providing public key infrastructure

Figure 1: Architecture of a Business Resource Management Framework (BRMF) Environment

 The architecture of the BRMF environment is shown in Figure 1. On the top level the
Business Resource Management Framework (BRMF) provides explicit support for business
objects, maintaining a repository for passive business objects (i.e. documents), as well as
active business objects (i.e. web-service lookups).
 Underneath the BRMF, the Resource Management Framework (RMF) provides an
application-independent abstract collaboration space, where resources can be published,
searched, and subscribed. It uses a notion of peer locators and transport sockets, abstracting
the details of the actual peer-to-peer algorithm in use. The onion routing approach described
in this paper is implemented using these features.

 Below the RMF, we have the actual peer-to-peer protocol implementation, providing
the topology and the routing algorithm of the overlay network. Our publish/subscribe
algorithm relies on Distributed Hash Tables, as used in Chord [4] or Kademlia [5]. We use
Chord in our prototype implementation.
 On the lowest level, we propose a Virtual Private Network (VPN) to be used as the
underlying network infrastructure. This prevents eavesdroppers from intercepting the peer-
to-peer protocol data and ensures that no unsolicited participants join the network. The
public key infrastructure provided by the VPN for encryption and authentication can be
integrated in our security solution.
 To sum up, the BRMF provides a layered architectural framework, where onion routing
can be implemented independently of the underlying peer-to-peer protocol, and without the
need of adapting the higher level business applications.

3. Problem Statement
From the user’s point of view, the BRMF environment provides an abstract collaboration
space that is implemented on top of an underlying peer-to-peer system. This offers plug-
and-play functionality as well as an adaptable resilient architecture. The business partners
run equal peers in the BRMF, none of the peers can actually act as a central trusted entity
controlling the actions of the others. This absence of hierarchical structures on the peer-to-
peer level raises security challenges.
 Coming from the overview of a BRMF environment in the previous section, we will
now present our use case and analyze the implications at the peer-to-peer layer. We then
derive two concrete threat scenarios that we will deal with in this paper.

publish notify

Supplier
(Peer ID 3)

Supplier
(Peer ID 4)

Supplier
(Peer ID 6) Supplier

(Peer ID 8)

OEM
(Peer ID 9)

Supplier
(Peer ID 10)Supplier

(Peer ID 12)
Supplier

(Peer ID 13)

Supplier
(Peer ID 14)

Supplier
(Peer ID 15)

publish notify

Supplier
(Peer ID 3)

Supplier
(Peer ID 4)

Supplier
(Peer ID 6) Supplier

(Peer ID 8)

OEM
(Peer ID 9)

Supplier
(Peer ID 10)Supplier

(Peer ID 12)
Supplier

(Peer ID 13)

Supplier
(Peer ID 14)

Supplier
(Peer ID 15)

Figure 2: The BRMF Collaboration Ring in the Automotive Example

3.1 Use Case Description

The use case is taken from a car manufacturer’s strategic sourcing process. The car
manufacturer (OEM, Original Equipment Manufacturer) issues Requests for Quotations
(RfQs). After negotiating technical specifications1 the first tier suppliers send their bids to
the OEM.
 The business partners interact using the BRMF, which means that the OEM as well as
the suppliers provide peers in the peer-to-peer network. The communication is implemented
via a publish/subscribe mechanism, enabling resilience if peers go offline.
 Unlike flooding-based peer-to-peer systems, the BRMF uses keywords to determine the
peer where a certain resource is stored. Each peer is responsible for a certain range of
keywords. Additionally, there is a replication group for each keyword, as illustrated in grey.
If a peer leaves the network, the next peer in the replication group takes over the
corresponding keyword range.

 In Figure 2, the peer with id 3 issues a quotation and the peer with id 12 is responsible
for the keywords associated with that quotation. All bids for a certain RfQ have the same
keyword, such that the OEM subscribing this keyword will receive all bids for this RfQ. As
all bids have the same keyword, they are all stored on the same peer, and backup copies are
kept in the same replication group.

3.2 Threat Scenarios

When joining the network, a malicious supplier might deliberately choose an id matching
the hashed keywords for a certain RfQ2. Then all the bids for that RfQ will be published on
the supplier's peer. That means that the supplier routes the bids of all of its competitors
through its peer. In Figure 2, the attacker would be the peer with the id 12.
 That way, malicious competitors can establish intermediate peers, intercepting the
quotations sent from suppliers to the OEM. Of course, encryption can be used to make the
content of the bids only visible for the OEM. But even though the competitor cannot see the
content of the bids, two threat scenarios remain:
1. An attacker can observe whether a certain business rival places a bid, and lower the

price in reaction to this knowledge.
2. An attacker can keep track of its competitors and raise the price in case none of them

places a bid.
 In the following section, we will present a solution that allows us to deal with these
scenarios.

4. Our Solution
In the previous section, we derived two concrete threat scenarios when applying BRMF as
the underlying collaboration platform in our use case. In this section we show how onion
routing can be implemented in a straightforward way to meet these challenges.
 The basic assumption underlying our approach is the existence of a public key
infrastructure (PKI), such that each peer has a signed key pair. Each supplier must have one
and only one signed public key. As each supplier has only one signed public key, it is
possible to recognize if a single supplier runs more than one peer. This prevents the so-
called Sybil attacks [6]. The PKI can be imported from an underlying VPN, as
recommended in Section 2. Alternatively, we can use the PKI from a security extension of
the RMF that was originally developed for enabling restricted access to resources.

Supplier
(Peer ID 3)

Supplier
(Peer ID 4)

Supplier
(Peer ID 6) Supplier

(Peer ID 8)

OEM
(Peer ID 9)

Supplier
(Peer ID 10)Supplier

(Peer ID 12)
Supplier

(Peer ID 13)

Supplier
(Peer ID 14)

Supplier
(Peer ID 15)

Supplier
(Peer ID 3)

Supplier
(Peer ID 4)

Supplier
(Peer ID 6) Supplier

(Peer ID 8)

OEM
(Peer ID 9)

Supplier
(Peer ID 10)Supplier

(Peer ID 12)
Supplier

(Peer ID 13)

Supplier
(Peer ID 14)

Supplier
(Peer ID 15)

Figure 3: Publishing a Resource using Onion Routing

 The basic idea behind onion routing is illustrated in Figure 3. As in the example in the
previous section, the peer with id 3 needs to publish a resource on the peer with id 12.
Using onion routing, peer 3 does not contact peer 12 directly but chooses a random path

through the peer-to-peer network. Then peer 3 encrypts the resource recursively, as shown
in Figure 4.

Resource to be published
on peer 12.
The resource contains the
quotation wich is
encrypted for the OEM.

encrypted for peer 13

encrypted for peer 4

encrypted for peer 6

encrypted for peer 14
fo

rw
ar

d
to

 p
ee

r1
4

fo
rw

ar
d

to
 p

ee
r6

fo
rw

ar
d

to
 p

ee
r4

pu
bl

is
h

on
 p

ee
r1

2

fo
rw

ar
d

to
 p

ee
r1

3 Resource to be published
on peer 12.
The resource contains the
quotation wich is
encrypted for the OEM.

encrypted for peer 13

encrypted for peer 4

encrypted for peer 6

encrypted for peer 14
fo

rw
ar

d
to

 p
ee

r1
4

fo
rw

ar
d

to
 p

ee
r6

fo
rw

ar
d

to
 p

ee
r4

pu
bl

is
h

on
 p

ee
r1

2

fo
rw

ar
d

to
 p

ee
r1

3

Figure 4: Resource Before Traversing the Onion Path

 Each peer on the path decrypts the resource and forwards it to the next hop. The idea is
that each node on the path just forwards some opaque, encrypted piece of information from
one hop to the next, not being able to tell where the resource originally comes from and
where it will finally go to. This is called onion routing, because the decryption is analogous
to peeling the layers of skin off an onion. Finally, the last peer on the path publishes the
resource. Note that the content of the resource may still be encrypted with the OEM’s
public key.
 The number of hops used for the onion path is a trade-off between performance,
reliability, and security. The Mixmaster anonymous Remailer uses a default path length of
four hops, which is a reasonable value for our solution as well. In our prototypical
implementation for the BRMF, we used a path length of five hops.
 The identity of the original sender must not be known to the peers on the path.
Therefore, it is important that the sender establishes the onion path silently, without
interacting with the peers on the path. Therefore, peers maintain a cache containing peer
locators and public keys in order to be able to build the onion path locally.
 As a result, onion routing can be used to enable confidential communication between
business partners, while the competitors are not able to tell who is talking to whom. The
algorithm described here was implemented prototypically in the BRMF supporting our
scenario. However, the ideas can easily be applied in other business collaboration platforms
as well, supporting “coopetitive” scenarios.

5. Related Work
While security in peer-to-peer networks is a relatively new topic (see [7] for an overview of
current security issues in peer-to-peer networks), onion routing itself has existed for about
25 years. In this section, we review other implementations and discuss what features could
be implemented in our business collaboration platform, and what features should be left
out.

 Originally developed for implementing anonymous email communication, onion
routing nowadays is used in a large number of applications. Currently, the most popular
anonymous Remailer is Type II, as implemented by Lance Cottrell [8]. Type III
Remailers [9] are still work in progress. Onion routing is also applied in the Java Anon
Proxy [10], which is an http proxy making it possible to surf the Internet anonymously. A
more general approach is taken by Tor [11], implementing onion routing on the TCP layer,
such that any network application can be anonymized by installing Tor on the underlying
TCP layer.
 In the peer-to-peer world, the traditional pragmatic focus is on anonymously publishing
and downloading information, such as music and video files. Currently, rather sophisticated
peer-to-peer systems implementing security features are available, like Gnunet [12],
Freenet [13], and Crowds [14]. However, these systems lack the feature of notifications and
the flexibility of being customizable to support different types of resources and business
applications, which makes them less suited for implementing negotiation protocols than the
BRMF.
 Looking at the existing implementations, one frequently employed concept is the use of
fixed-length messages, dummy traffic and random delays. That way, applications protect
themselves against attackers who are able to trace the whole traffic in the entire network.
As this is an unrealistic scenario in our use case, we leave this out in favor of simplicity,
better performance, and lower overhead.
 Another interesting concept is Circuits, as implemented in Tor, which has been
mentioned above [11]. When forwarding a message, a random ID is sent together with the
message. Each hop on the route maintains a table as shown in Table 1.

incoming id Sender Outgoing id receiver
… … … …

Table 1: Routing Information for Anonymous Acknowledgements Using Circuits

 Using that information, reply messages can be routed back along the onion path, while
still no hop on the path can tell where the reply message originally comes from and where it
will finally be sent to. It would be possible to extend this feature to implement anonymous
subscriptions in the BRMF.
 Of course, apart from these examples, there are a lot more interesting concepts and
related work, and it is worthwhile investigating what features could provide business
benefits, and what features should be left out in favour of better performance.

6. Discussion of the Approach
In the previous sections, we presented a use case from the automotive industry regarding
collaborative product design, and determined two threat scenarios when using the peer-to-
peer based Business Resource Management Framework as the underlying integration
platform. We introduced a solution based on onion routing and gave an overview of
features of related work that could be included in our implementation.
 Devising security architectures, concepts, and solutions always involves trade-offs [15].
In this section we will discuss the key trade-offs entailed by our solution and conclude with
the next steps towards implementing a secure peer-to-peer based platform for business
collaboration.

6.1 Confidential Communication

By analyzing the use case scenario, we saw that confidential communication among
business partners is not guaranteed when using a peer-to-peer system as the underlying

collaboration platform. Adding our security extension, we enable confidential
communication, making peer-to-peer available for electronic collaboration and marketplace
scenarios. By means of this extension, we claim that we have taken one step ahead towards
enabling businesses to benefit from decentral management and coordination, self-
organization and resilience of peer-to-peer systems without loosing the ability to
communicate confidentially.

6.2 Performance

Onion routing relies on routing resources through a random path instead of publishing them
directly. We propose using a path length of four to five hops, which means that resources
need to be transmitted four to five times, as opposed to a single transmission without onion
routing. Additionally, peers need to maintain a cache with current public keys and peer
locators, requiring periodical update traffic. Preliminary simulation experiments provide
evidence that it is not unrealistic to achieve acceptable system performance using these
settings.

6.3 Reliability

When publishing resources directly, the sender gets direct feedback if the resource reached
the destination successfully. Using onion routing, the resource is sent to the first hop and
there is no way for the sender to learn whether a resource finally reaches its destination
successfully, or if a node on the path fails forwarding the resource. Implementing
acknowledgements via circuits would solve this problem, as discussed in Section 5.
However, doing so would imply other security risks, as malicious peers could acknowledge
messages and discard them anyway. Therefore we do not implement acknowledgements in
the BRMF, and prefer application level acknowledgements, sent from the OEM directly to
the suppliers. Finding an efficient way to solve the problem within a P2P framework is an
open research issue.

7. Conclusions and Outlook
There is a lot of potential in deploying peer-to-peer systems in business collaboration. The
business benefits of the plug-and-play functionality, adaptability and resilience in
combination with the needlessness of central servers are still to be explored.
 However, implementing peer-to-peer systems as the underlying collaboration platform
in business integration raises security challenges that need to be solved. In this paper, we
presented a scenario from the collaborative product design in the automotive industry,
applying the peer-to-peer based Business Resource Management Framework as the
underlying communication platform. We analyzed the security requirements and presented
a generalized solution that can easily be applied for securing any peer-to-peer based auction
scenario.
 A proof-of-concept implementation shows that our solution greatly enhances the
applicability of the BRMF as an adaptive, decentrally manageable, and secure platform for
enterprise interoperability.
 In this paper, we have analyzed two threat scenarios in a specific use case, and we
derived a solution ready to secure collaboration protocols running on top of peer-to-peer
based integration architectures suitable for “coopetitive” scenarios such as the collaborative
product design scenario described above. Future research will verify and extend this
solution by means of a more complete analysis of the security threats3 in different domains,
in order to extend the applicability of peer-to-peer ready to a broader set of scenarios in
real-world business integration.

Acknowledgments
Part of the work reported in this paper is funded by the European Commission within the
ATHENA IP under the European grant FP6-IST-507849. The authors are solely responsible
for the paper’s content. The paper does not represent the view of the European Commission
nor that of other consortium members.

References
[1] T. Friese, J. Müller, M. Smith, B. Freisleben, “A Robust Business Resource Management Framework
Based on a Peer-to-Peer Infrastructure”, Proceedings of the 7th International IEEE Conference on E-
Commerce Technology, IEEE Press, 2005
[2] The ATHENA Integrated Project, http://www.athena-ip.org
[3] D. Chaum. “Untraceable electronic mail, return addresses and digital pseudonyms”, Communications of
the ACM, Volume 24, Issue 2, 1981
[4] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. “Chord: A scalable peer-to-peer
lookup service for Internet applications”, Technical Report TR-819, MIT, March 2001.
[5] P. Maymounkov, D. Mazieres. “Kademlia: A peer-to-peer information system based on the XOR metric”,
Proceedings of IPTPS02, March 2002
[6] J. Douceur, “The Sybil Attack”, 1st International Workshop on Peer-to-Peer Systems (IPTPS ’02),
Springer, 2002
[7] L. Divac-Krnic, R. Ackerman, “Security-Related Issues in Peer-to-Peer Networks”, in Peer-to-Peer
Systems and Applications by R. Steinmetz and K. Werle (Eds.), Springer, 2005
[8] Mixmaster implementation by Lance Cottrell, http://mixmaster.sourceforge.net
[9] G. Danezis, R. Dingledine, D. Hopwood, N. Mathewson. “Mixminion: Design of a Type III Anonymous
Remailer Protocol”, http://mixminion.net, 2002
[10] JAP: The Java Anon Proxy, http://anon.inf.tu-dresden.de
[11] Tor: An anonymous Internet communication system, http://tor.eff.org
[12] GNUnet: GNU‘s decentralized anonymous and censorship-resistant P2P framework
http://www.gnunet.org
[13] I. Clarke, O. Sandberg, B. Wiley, T. W. Hong, “Freenet, a distributed anonymous information storage
and retrieval system”, in ICSI workshop on design issues in anonymity and unobservability, 2000
[14] M. K. Reiter, A. D. Rubin, “Crowds: anonymity for web transactions”, in ACM Transactions on
Information and System Security, 1998
[15] Bruce Schneier, “Beyond Fear”, Copernicus Books, 2003

1 Actually, the negotiation phase is tightly interleaved with an n:m-type cooperative product design process,
with multiple negotiations involving multiple RfQs and quotations running in parallel. For the sake of clarity
of the use case, we focus on the simple case where a single RfQ is answered with a single Quotation.
2 In Chord, the Peer ID is not chosen randomly but generated from the IP address, but in that case the attacker
can try several IP addresses until he obtains the desired ID. Even if there is a way to prevent this (for example
by assigning the id by a central service), the attacker can still get the desired ID by incident.
3 Some examples are: “How can a malicious node affect the topology of a peer-to-peer network, sending
forged routing information to certain other peers?” or “How can a malicious node influence the routing of
resources, sending forged lookup responses to certain other peers?”

	Introduction
	Technology Description
	Problem Statement
	Use Case Description
	Threat Scenarios

	Our Solution
	Related Work
	Discussion of the Approach
	Confidential Communication
	Performance
	Reliability

	Conclusions and Outlook
	Acknowledgments
	References

