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Abstract. Multiagent systems have been proposed in the literature as a
suitable architectural and implementation approach for cross-enterprise
collaboration, due to their support for decentral decision-making and
peer-to-peer coordination, loosely coupled interaction, modeling support
for the notion of electronic institutions, and built-in adaptability mech-
anisms. While we agree with this general view, we argue that different
application domain and different market constellations require different
types of architecture. In this paper we look at the specific problem of
selecting an information and communication technology (ICT) architec-
ture for cross-enterprise business process (CBP) design and enactment.
Therefore we identify three important architectural patterns for CBP en-
actment. We then propose a decision method for architecture selection
based on the analytic hierarchy process (AHP) approach. Finally we il-
lustrate the method by applying it to two application scenarios with
differing characteristics. Robustness of the decision method is analyzed
by performing a sensitivity analysis.

1 Introduction

Under the pressure of globalization, companies are urged to constantly adapt
to new market situations and and competitors innovations. Focusing on their
core business and core competencies, they engage in cross-enterprise business
processes (CBPs) with new partners all over the world in ever changing con-
stellations. Companies are organized into global networks and outsource those
activities that can be performed quicker, more effectively, or at lower cost, by
others.

These developments create new challenges for enterprise information and
communication technology (ICT), requiring ICT systems to support constantly
changing enterprise collaboration relationships and to create application systems



that support or automate business process enactment starting from business level
descriptions and models of CBPs.

Multiagent systems [18] have been proposed in the literature as a suitable ar-
chitectural and implementation approach for cross-enterprise collaboration [19,
20], due to their support for decentral decision-making and peer-to-peer coor-
dination, loosely coupled coordination, modeling support for the notion of elec-
tronic institutions [14], and built-in adaptability. However, while we agree that
the distributed and sometimes decentral topologies require some kind of multi-
agent organization principles, we argue that different application domains and
different market constellations require different types of system architecture.

Let us look at the following example of collaborative product development
in the automotive sector (see [35]). The scenario (see Figure 1) describes the
interaction between an automotive Original Equipment Manufacturer (OEM)
and its supplier network consisting of multiple tiers of suppliers, during the
process of Strategic Sourcing. Strategic Sourcing is an early step within Coop-
erative Product Development, where OEMs set up strategic partnerships with
the larger (so-called first-tier) suppliers with the aim of producing specific sub-
systems (e.g., powertrain, safety electronics) of a planned car series. In the use
case considered for this paper, the OEM shares Requests for Quotations with
its first-tier suppliers (1). First-tier suppliers serve as gateways to the supplier
network; specifications are reviewed and conditions negotiated with second-tier
suppliers (2), and feasibility of the requests are checked. First-tier suppliers then
issue quotes or suggest changes to the OEM (3). This cycle is repeated until all
parties agree on a feasible specification. Finally, first-tier suppliers submit quotes
to the OEM.

Fig. 1. Application example: Collaborative product development

Figure 1 gives a high-level (business-level) model of the cross-enterprise busi-
ness processes involved in this scenario. Trying to map this model into an exe-
cutable ICT model, several non-trivial questions need to be answered regarding



the ICT architecture. In particular, the question that we address in this paper is
the following: What is the most appropriate architectural choice to model the in-
teractions between the OEM and the 1st tier suppliers? A decentral, peer-to-peer
messaging architecture where each role in each process instance is mapped into
an agent-like entity to run and control it? An architecture with a central broker
(e.g. located at the OEM) that centrally enacts and controls the cross-enterprise
business processes? Or a mixture of both, a decentral broker architecture where
each enterprise provides a publicly visible instance (agent) to control and coor-
dinate their business process roles while hiding other, private, elements.

Thus, we can see using this scenario that there are different architectural
choices / paradigms possible for underlying information and communication
technology (ICT) system design. Intuitively, none of these choices is per se better
than any other; making the right decision depends on a number of environmental
characteristics (called contingencies in [10]). In this paper we propose a model
for decision support suitable for enterprise architects to derive an appropriate
supporting architecture paradigm for a given use case / application domain.
Assuming some model-driven design paradigm [17, 4], we start from business
level models and (semi-automatically) transforms these models into (platform-
independent) ICT models (so-called PIMs); these PIM models are then subject
to further transformation via platform-specific models (PSMs) down to the code-
level.

In this paper, we address the problem of selecting a suitable ICT architecture
at the PIM level, thus resulting in an architecture-driven approach to CBP mod-
eling and enactment. The contribution of this paper is fourfold: First, we identify
three important architectural patterns for CBP enactment; second we propose a
decision method for architecture selection based on the analytic hierarchy pro-
cess (AHP [31]); third, we show the applicability of the method by applying it
to application scenarios with differing characteristics; fourth, we investigate the
robustness of the decision method by performing a sensitivity analysis.

The paper is structured as follows: In Section 2, we provide the background on
service-oriented architecture, model-driven engineering, and decision methods.
Section 3 presents three ICT-level architecture patterns for CBPs. The decision
method is proposed in Section 4; Section 5 analyzes the applicability of our
method to two application scenarios. The paper ends with a discussion and
outlook in Section 6.

2 Background

2.1 Model-driven engineering

Software engineering currently witnesses a paradigm shift from object-oriented
implementation towards model-driven implementation. This carries important
consequences on the way information systems are built and maintained [4].
Model-driven Engineering (MDE) treats models as first class artifacts, which
are used for modeling and code generation. This raises the level of abstraction



at which developers create and evolve software [16] and reduces complexity of
software artifacts by separating concerns and aspects of a system [17]. Thus
MDE shifts the focus of software development away from the technology do-
main towards the problem domain. Largely automated model transformations
refine (semi-)automatically abstract models to more concrete models or simply
describe mappings between models of the same level of abstraction. In particu-
lar, transformation engines and generators are used to generate code and other
target domain artifacts with input from both modeling experts and domain ex-
perts [32]. MDE is an approach to bridge the semantic gap that exists between
domain-specific concepts encountered in modern software applications and stan-
dard programming technologies used to implement them [6].

Two prominent representatives of MDE are the OMG’s Model Driven Archi-
tecture (MDA) and the software factory initiative from Microsoft.

In MDE, models and model transformations, which can be also treated as
models, embody critical solutions and insights to enterprise challenges and hence
are seen as assets for an organization [21]. Assets are artifacts that provide so-
lutions to problems, should be reusable in and customizable to various contexts.

2.2 Service-oriented multiagent architectures

In recent years, a new generation of integration solutions has been developed
under the service-oriented paradigm, which lends itself to develop highly adapt-
able solutions and to reuse existing applications. In a service-oriented world, sets
of services are assembled and reused to quickly adapt to new business needs.
However, service-orientation does not provide an integration solution by itself.
Service-oriented integration introduces the concept of service (which can be im-
plemented through Web Services) to establish a platform-independent model
with various integration architectures. Service-oriented architecture (SOA) can
be realized by an agent-oriented architecture. However, agents have additional
features, services usually not have, like high-level, speech-act based communica-
tion, pre-defined interaction protocols (e.g. the ContractNet protocol or auction
mechanisms) and goal-oriented composition of agents. In other words, agents are
more sophisticated services. See also [33].

Service While, from an economic point of view, a service is the non-material
equivalent of a good sold to a costumer, we use the term service from an ICT
point of view, where a service is seen as a business or technical functionality. We
define service ”as a well-defined, self-contained function that does not depend on
the context or state of other services” [5]. Service-orientation is based on this
concept of service.

Agents Software agents are computer systems capable of flexible autonomous
action in a dynamic, unpredictable and open environment [18]. These character-
istics give agent technology a high potential to support process-centered model-
ing and operation of businesses. Consequently, starting with ADEPT [19], there
have been various research efforts of using agent technology in business process



management. However, the focus of ADEPT was on communication and collab-
oration in business process management. It was not geared to being a directly
usable business process support platform. Migrating agent technology success-
fully to business applications requires end-to-end solutions that integrate with
standards, that preserve companies’ investment in hardware, software platforms,
tools, and people, and that enable the incremental introduction of new technolo-
gies. The OMG has set up a new standardization effort called UML Metamodel
and Profile for Service (UPMS). The UPMS RFP requests a services metamodel
and profile for extending UML with capabilities applicable to modeling services
using a SOA3. Within this standardization effort a new RFP is prepared for the
integration of agent technology in a service-oriented world. This can provide a
first step towards solving this problem.

2.3 Cross-enterprise business processes

Many people and organizations participate in the construction of a software sys-
tem, and impose different concerns and requirements on the system, in particular
in CBPs. Business considerations determine non-functional qualities that must
be accommodated in the system architecture. Quality attributes like availabil-
ity, modifiability, performance, security, testability, usability, or business quali-
ties are orthogonal to functional attributes describing the system’s capabilities,
services, and behavior. Since quality attributes are critical to the success of a
system, they must be considered throughout design, implementation and deploy-
ment. Beyond these quality attributes, costs e.g. for hardware, software licences,
and software development have to be considered when choosing the right ar-
chitecture. In our work we investigate how service-oriented or agent-oriented
architecture of software systems for CBPs can be derived from business level
descriptions. The architecture variants and model transformations we describe
are independent of functional attributes, since they can be applied to (nearly)
any models describing CBPs. We investigate how three architecture variants for
realizing CBPs in service-oriented software systems can be derived from busi-
ness level descriptions and how to evaluate the right architecture for different
contexts, thus supporting the enactment of high-level CBP specifications.

Orchestration & Choreography Orchestration and choreography describe two
complimentary notions of a process. In orchestration a central entity coordi-
nates the execution of services involved in a higher-level business process. Only
the coordinator of the orchestration is aware of this composition. Choreography
describes the interactions of collaborating entities (e.g. services or agents), each
of which may have their own internal orchestration processes. These interac-
tions are often structured into interaction protocols to represent the conversa-
tion between the parties. [27] An important distinction between orchestration
and choreography is the fact that orchestration is generally owned and operated
by a single organization while in a choreography no organization necessarily
controls the collaboration logic [11].
3 see http://adtf.omg.org/adptf info.htm



Process modeling In process modeling it is common to distinguish between an
internal and an external view of business processes. Depending on the viewpoint,
a process is described either as an executable, abstract, or collaborative process:
The internal view models the ’how’ of a business process from the modeler’s
view. As the flow of an executable process [26] is described from the viewpoint of
a single process coordinating its sub-processes, this is often referred to as process
orchestration. Abstract processes model the external view on and the ’what’ of
a business process. Each process specifies the public interactions it performs
in relation to its roles in collaborations. A collaborative process describes the
collaboration between abstract processes in the case of process choreography. The
collaborations between the involved parties are modeled as interaction patterns
between their roles from the viewpoint of an external observer.

2.4 ICT architecture variants for CBP enactment

Service-oriented integration solutions can be categorized by their topology (see
Figure 2). In a purely decentralized MAS topology services of the participating
organizations implicitly establish the collaborative process through direct mes-
sage exchange; this is a realization of choreography. In a hierarchical topology a
controller service defines the steps necessary to achieve the overall goal and maps
these steps to services provided by the contributing organizations; this is kind
realization of orchestration. However, in many cases, a mixture of hierarchical
and decentralized MAS topology, i.e. a heterogenous topology, is used to realize
complex multipartner collaborations [23].

Fig. 2. Coordination topologies

2.5 Architecture evaluation and decision methods



Architecture evaluation Scenario-based ICT architecture evaluation is used
to determine quality of software architecture. In architecture evaluation meth-
ods like ATAM, SAAM, or ARID [1, 8] quality attributes are characterized by
scenario descriptions.

Quality attributes are part of the non-functional requirements and therefore
properties of a system. They can be broadly grouped into two categories [9].
Qualities like performance, security, availability, and usability are observable via
execution at run-time, and qualities like extensibility, modifiability, portability,
or reusability, which are not observable via execution [3].

According to Bass et al. [1], scenario descriptions consist of a stimulus (a
condition that needs to be considered when it arrives at a system), a source of
stimulus (some entity that generates the stimulus) , an environment (the stim-
ulus occurs within certain conditions), an artifact (the part of the system that
is stimulated), a response (the response is the activity undertaken after arrival
of the stimulus) and a response measure (defines how the result of the response
is measured). General scenarios [2] are applicable to many software systems and
have architectural implications; they establish sets of scenarios which are con-
figured to the respective application domain (for which evaluation is performed)
by varying the expected response value scales of the scenarios.

To be able to decide how good a quality attribute or a scenario is supported by
a software architecture pattern and to compare architecture patterns, it is crucial
to understand how an architecture influences quality attributes. According to
Bass et al. [1] architects use so-called tactics to achieve quality attributes. A
tactic is a design decision that influences the control of a quality attribute.
The software architecture patterns described in this article make use of the
following tactics (non-exclusive list; for detailed description see also [1] p.99ff):
Maintain semantic coherence, anticipate expected changes, generalize module,
restrict communication paths, use an intermediary, maintain existing interfaces,
and hide information.

Tactics are used by an architect to create a design using design patterns,
architectural patterns, or architectural strategies. An architect usually chooses
a pattern or a collection of patterns designed to realize one or more tactics.
However, each pattern implements multiple tactics, whether desired or not. The
following list provides an overview of architecture patterns, design patterns,
and design principles used to realize the above described tactics (non-exclusive
list compiled from [1], [12], [11], and [13]): Wrapper, broker, abstraction, loose
coupling, and orchestration.

Analytic Hierarchy Process The Analytic Hierarchy Process (AHP) [31] is
a decision making approach, which decomposes a decision problem into a hi-
erarchical network of factors and subfactors. Factor decomposition establishes
a hierarchy of first level and second level factors cascading from the decision
objective or goal. AHP applies pairwise comparisons to the factors and the al-
ternatives in the decision making process. Pairwise comparisons lend themselves
to solving problems with limited number of choices, where each choice has a



number of attributes and it is difficult to formalize some of those attributes.
Finally the ratings of the second level factors are aggregated to first level factors
and the final rating.

Contingency theory The contingency theory for organizations [10] is used to
rationalize how the various aspects of organizations’ environment (called con-
tingency factors) influence organization structure. It suggests, that there is no
unique or best way to organize an organization, but the design of an organization
and its systems must ’fit’ with its environment. The ”organizational effectiveness
results from the fitting characteristics of the organization, such as its structure,
to contingencies that reflect the situation of the organization” [10, p.1]. ”Contin-
gency theory (...) sees maximum performance as resulting from adopting, not the
maximum, but rather the appropriate level of the structural variable that fits the
contingency. Therefore, the optimal structural level is seldom the maximum, and
which level is optimal is dependent upon the level of the contingency variable”
[10, p.4]. Translating this into the terms of companies and their business systems,
a maximum of centralization, decentralization, or some of the ICT system ar-
chitectural qualities like modifiability, security, etc., will seldom yield maximum
performance of an ICT system for the overall business goals.

3 Architecture paradigms for CBPs

In Sections 2.4 and 2.2 we have introduced the abstract topologies for CBP
enactment and described how service-orientation and agents fit together. Now
we have a closer look at these coordination architectures and how they can be
applied to realize service-oriented integration solutions. These architectures are
used to control the conversation flow between the participating organizations. In
an agent world this is comparable to interaction protocols. For the description
of the coordination architecture we assume, that each organization willing to
participate in a cross-organizational collaboration supported by ICT systems,
has a set of elementary services (ES), which are as far as possible realized by
agents. These elementary services are application, business, or hybrid services.
In our descriptions we also assume without loss of generality, that the elementary
services are realized as process services, so that we can use the distinction be-
tween executable and abstract process. Nevertheless, elementary services could
be realized by arbitrary code fragments. An elementary service can only be a con-
troller service with regard to the organizations’ internal service composition, but
not with regard to the collaboration process. Cross-organizational business pro-
cesses (CBPs) represent the conversation flow and message exchange between
the organizations participating in the collaboration (in particular in an agent
communication language).

– Brokerless architecture: A brokerless coordination architecture (see Figure
3) can be used to realize the decentralized MAS topology, where messages
are exchanged directly between the elementary services of the participants



as usual in an agents world. Due to the mutual exchange of messages the
elementary services depend on each other. Control flow logic of CBPs is
realized by the executable process of the participants’ elementary services.
Changing the business protocol would result in changing multiple elemen-
tary services, i.e. their executable processes. Further, the abstract process of
the elementary services are directly exposed to the collaboration space and
therefore are directly accessible by entities outside enterprise boundaries.

Fig. 3. Brokerless architecture

– Central broker architecture: Figure 4 depicts the central broker coordination
architecture. Messages are no longer exchanged directly between the elemen-
tary services, but over a central broker component, which is realized by a
controller service. The controller service is a process that orchestrates the
elementary services of the participating organizations. It acts as a global ob-
server process coordinating the partners as well as making decisions on the
basis of data used in the CBP. In the case of a change to the CBP proto-
col’s messages and semantics, only the broker process needs to be modified.
Since the broker process is not necessarily owned by one of the participat-
ing partners, organizations may hide their elementary services from their
collaborators. However, they have to reveal them to a third party instead.

– Decentral broker architecture: The decentralized broker architecture intro-
duces elements of the decentralized MAS topology in the hierarchical topol-
ogy of the central broker architecture. It splits the single broker component
into several controller processes jointly providing the broker functionality
(note the boundaries in Figure 5). Each organization provides one controller
service, also called view process (VP), which orchestrates the organization’s
internal elementary services. Messages across organizational boundaries are
only exchanged by the view processes, which encapsulate the elementary
services. In this architecture the elementary service can be seen as kind of
private processes (PP).



Fig. 4. Central broker architecture

4 A method for evaluation of ICT architecture
applicability

This section presents an evaluation and decision method that helps to select ap-
propriate ICT architectures for CBPs enactment. The evaluation method takes
into account the trade-offs between coordination structures, which are imple-
mented by the ICT system architectures in terms of coordination costs and
vulnerability costs (see [24]). As visualized in Figure 6 the evaluation model dis-
tinguishes between quantitative factors, that are measurable by concrete figures
(objective factors), and qualitative (subjective factors), which are difficult or
impossible to measure. Coordination costs to establish and maintain communi-
cation links between collaborating patterns are included as quantitative factors
in terms of software, hardware, and labor in the evaluation model. Coordination
costs like costs for exchanging messages between collaborating partners are taken
into account by qualitative factors. Vulnerability costs, which are ”the unavoid-
able costs of a changed situation that are incurred before the organization can
adapt to a new situation” [24], are qualitative factors in the evaluation model.

To be able to compare the architectural CBP approaches in the face of archi-
tectural decisions, it is necessary to get a quantitative measure from qualitative
actors. Thus, we apply, extend and customize the multi-criteria decision model
of Ghandforoush et al. [15], which is a modified version of Brown and Gibson’s
model [7]. As it is a quantitative model, it is useful for selecting one alternative
from a given set of alternatives based on quantitative and qualitative factors.
Figure 6 depicts the design of our multi-criteria decision model developed to
evaluate ICT architectures for CBP enactment. The rating of the quantitative
factors is determined by the means of cash-flow analysis of the predicted costs.



Fig. 5. Decentral broker architecture

Fig. 6. Multi-criteria decision model for ICT architectures



For rating the qualitative factors we combine AHP and scenario-based software
architecture evaluation methods. First, based on the AHP, the factors, which
have to be considered in the evaluation, are determined by decomposing the
evaluation problem and arranged in a hierarchy decomposition tree. The factors
are described by the means of quality attributes and scenarios. Rating the sce-
narios and the alternatives is done by pairwise comparison. The ratings, i.e. the
pairwise comparisons, are based upon how good the alternatives realize tactics
supporting the respective scenarios.

4.1 Multi-criteria evaluation and decision model

The multi-criteria evaluation and decision distinguishes between objective (quan-
titative) factors and subjective (qualitative) factors.

– Objective factors are evaluated in monetary terms, and as such are eas-
ily quantifiable. Our quantification is based on the cash flow approach and
therefore on the discounted present value. The evaluation model considers
costs for software, hardware and labor.4

– Subjective factors are characterized by the fact that they are qualitative
measures that typically cannot be quantified. When evaluating software ar-
chitecture, quality attributes and scenarios are measures in qualitative terms.

The underlying principle of the model is to combine the two evaluation factors
into a common evaluation measure. This requires that quantitative considera-
tions and qualitative considerations, where the latter have to be transformed
in common measurable units. The model allows to select one software architec-
ture pattern from a given set of alternatives. Following [15], for each software
architecture pattern i an architecture evaluation measure AEMi is defined:

AEMi = X ·OFMi + (1−X) · SFMi (1)

where

AEMi = architecture evaluation measure, 0 ≤ AEMi ≤ 1

OFMi = objective factor measure, 0 ≤ OFMi ≤ 1 and
n∑

i=1

OFMi = 1

SFMi = subjective factor measure, 0 ≤ SFMi ≤ 1 and
n∑

i=1

SFMi = 1

X = weight assigned to the objective factor, 0 ≤ X ≤ 1
n = total number of software architecture patterns evaluated, 1 ≤ i ≤ n

4 The focus of the evaluation model is on the viewpoint of an integrator. The integrator
takes into account purchase, licensing, set up, and maintenance costs for hardware
and integration and maintenance costs for software. Development of software it-
self plays a secondary role, since the service or agent software has to be developed
independent of the chosen architecture.



AEMi is a measure between 0 and 1 for a particular software architecture
pattern, where software architecture patterns with a higher measure score better
than patterns with a lower measure. The measure depends to large extend on
the choice of the weight X assigned to the objective factors OFMi and the
subjective factors SFMi. This parameter can be used for sensitivity analysis.

Objective factors are quantified in terms of monetary units. In order to make
them comparable to subjective factors, the objective factors have to be converted
to a dimensionless index, i.e. an index with the dimension of one:

OFMi =
1

OFCi ·
∑n

i=1

(
1

OFCi

) , i = 1, 2, . . . , n (2)

where

OFCi = total objective factor costs for software architecture pattern i

Brown and Gibson [7] ensure through three principles that the objective
factor measure is compatible with the subjective factor measure: the software
architecture pattern with the highest cost will have the minimum OFMi, the
relationship of OFCi for each pattern relative to all other patterns is preserved,
and the sum of all OFMi is equal to 1.

The subjective factors can be grouped into a hierarchy of factors. A first
level factors is an aggregation of a set of second levels factors. Within one first
level factor the relative importance of a second level factor is rated by assigning
a weight SSWkj

to each of the second level factors. Similar the weight SFWj

specifies the relative importance of one first level factor to the other first level
factors. Both factors weights depend on the organizational context and the col-
laboration for which the software architecture patterns are evaluated. The factor
weights are independent of software architecture patterns, and can also be used
for sensitivity analysis. The subjective factor measure SFMi is defined as follows:

SFMi =
m∑

j=1

(
SFWj ·

oj∑
k=1

(
SSWkj · SAWikj

))
(3)

SFWj =
SFW ′

j∑m
j=1 SFW ′

j

(4)

SSWkj
=

SSW ′
kj∑oj

k=1 SSW ′
kj

(5)

SAWikj =
SAW ′

ikj∑n
i=1 SAW ′

ikj

(6)



where

SFWj = normalized weight value of first level factor j

SFW ′
j = weight of first level factor j to each first level factor

SSWkj
= normalized weight value of 2nd level factor kj for one 1st level factor j

SSW ′
kj

= weight of second level factor kj to all second level factors

in first level factor j

SAWikj = normalized rating of architecture variant i for subjective factor kj

SAW ′
ikj

= rating of architecture variant i for subjective factor kj

m = total number of first level factors among the subjective factors
oj = total number of second level factors in a specific first level factor j

All, the first level factor weight SFWj , the second level factor weight SSWkj
,

and the architecture variant rating SAWikj are normalized measures and sum
up to one. Thus also the subjective factor measure SFMi sums up to one and is
represented in the same numerical scale as the objective factors. SFWj , SSWkj

,
and SAWikj

are defined as follows:

4.2 Measuring qualitative factors

The part of the evaluation and decision model concerned with measuring qualita-
tive factors is supposed to deal with two main challenges. First it has to provide
concepts to evaluate software architecture patterns with respect to organiza-
tions’ demands. Second the model has to provide means to support people using
the model by rating factors and alternatives in order to achieve reasonable and
consistent measurements throughout the evaluation process.

We use scenario-based evaluation for software architecture patterns, which is
a good way to determine quality attributes of software architecture. The AHP
[31] first decomposes a decision problem into a hierarchical network of factors
and subfactors before it aggregates second level factors to first level factors. In
scenario-based evaluation, first level factors are represented by quality attributes
and second level factors are represented by scenario descriptions.

Since it is problematic to provide sensible scales for measuring the response
value of our high level software architectural patterns, we make use of pairwise
comparison (see AHP [31]) to rate the qualitative factors and the evaluated
software architecture patterns. The decisions for the comparisons are made on
the basis of which tactics the evaluated software architecture patterns support
and the contingency factors influencing organizations and the collaboration.

Scenario-based ICT architecture evaluation Scenario-based ICT archi-
tecture evaluation is used to determine quality of software architecture. Hence
desired architectural quality attributes are refined by general usage scenarios.
These allow a detailed rating of how good quality attributes are supported by
software architecture pattern. Quality attributes and scenarios descriptions are
used to determine the qualitative factors measure.



Quality attributes Our evaluation model considers the strategic quality attributes
modifiability, privacy, reusability and interoperability. For the quality attribute
privacy we evaluate the privacy of corporate data and knowledge, which has to be
exposed by the enterprises due to the applied software architecture pattern. We
do not consider execution related topics like intrusion, denial of service attacks,
etc. In the case of interoperability, which can be observed both at execution and
build time, we only consider strategic issues like change and reuse of functional-
ity or interaction protocols; we do not consider e.g. conversion of message data
at runtime. Furthermore, the evaluation model addresses some more run-time
related issues like efficiency and manageability of process execution.

Scenario descriptions The evaluation model is supposed to be suitable for a di-
versity of systems supporting businesses collaborations. Thus, general scenarios
have to be developed, which can be applied to classes of systems rather than to
one concrete system. Scenarios represent the characteristics of quality attributes
and are used to determine how good quality attributes can be satisfied by sys-
tems realizing certain software architecture patterns. The following list gives
an overview of the quality attributes (printed in boldface) and the associated
scenarios defined for our evaluation and decision model.

– Modifiability

• Scenario 1: Modification of CBPs
• Scenario 2: Change of partners in CBP
• Scenario 3: Incremental development of CBPs
• Scenario 4: Change of elementary services
• Scenario 5: Development of CBP variants

– Privacy

• Scenario 6: Privacy of internal ESs related data
• Scenario 7: Privacy of internal CBPs realizations

– Reusability

• Scenario 8: Reuse of CBPs
• Scenario 9: Reuse of elementary services

– Interoperability

• Scenario 10: Change of CBP protocol specification
• Scenario 11: Change of ES’s interfaces

– Efficiency

• Scenario 12: Bottle-neck
• Scenario 13: Security overhead

– Manageability

• Scenario 14: Versioning
• Scenario 15: Monitoring

Table 1 depicts the description of the ’Modification of CBPs’ scenario. De-
scriptions of the other scenarios can be found in [28].



Scenario 1 – Modification of CBPs

Source Management

Stimulus Due to the constant and rapid change in business existing
CBPs have to be adapted to the new business models.

Environment Design-time

Artifact Cross-organizational business process

Response The necessary changes in order to enact the new CBP affect a
minimal number of existing modules. Necessary change of ex-
isting modules should have no side-effects on other processes
(e.g CBPs).

Response
Measure

Without broker: up to n ESs of the partners are affected
Central broker: the central broker is affected
Decentral broker: VPs of the respective partner(s) are
affected
Table 1. Scenario 1 – Modification of CBPs

Factor decomposition and pairwise comparisons Factor decomposition
and pairwise comparisons of our evaluation model are based on the Analytic
Hierarchy Process (AHP) [31].

Factor decomposition Factor decomposition establishes a hierarchy of first level
and second level factors cascading from the decision objective or goal. The hier-
archy for our decision method is structured as follows (see Figure 7): At the top
level one can find the overall goal to have the best architecture quality. At the
first level contains quality attributes like modifiability, privacy, reuse, etc., which
contribute to the quality of an architecture. The scenarios are used at the second
level to give a more detailed description of how the quality attributes have to
be established. At the bottom level we can find the architectural variants which
have to support the scenarios.

Fig. 7. AHP decomposition rree for CBP evaluation model



Pairwise comparisons AHP uses pairwise comparison for both determining the
priority for the subjective factors and rating the architectural alternatives.

Weighting the subjective factors To determine the weights for subjective factors,
i.e. which scenarios or quality attribute is more important than another, pairwise
comparisons are conducted between the first-level factors and the second-level
factors. Therefore the factors are arranged in a matrix a and the evaluators have
to determine the ratings aij of the factors by pairwise comparisons. They use a
scale to measure relative importance ranging from one to nine (one means that
both factors are equally important; nine means that one factor is extremely more
important than another). To calculate the ratios of the factors vi, the entries of
the matrix aij have to be normalized to aij . Then the normalized matrix entries
aij of each row are summed up and divided through the number factors, i.e. the
average value of the normalized matrix entries for each row is determined.

vi =
∑n

j=1 aij

n =
∑n

j=1
aij∑n

i=1 aij

n

As a result, vi is the weight for the respective SFW ′
j or SSW ′

kj
for the first

and second level factors. It holds that SFW ′
j = SFWj and SSW ′

kj
= SSWkj

since the weights of the factors vi are already normalized. The aggregation of
the factor weights is achieved by multiplying the second level factor weight with
the respective first level factor weight.

Rating the scenarios To rate the scenarios, our decision method applies a rela-
tive measurement, which based on a scale (see above) to express preference of
one alternative over another. For example, one can say that to support a sce-
nario under certain contingencies, alternative a1 is strongly favored instead of
alternative a2. For each scenario an evaluation matrix is established, in which
the alternatives are compared. To determine the rating of the alternatives (i.e.
the priority vector), we apply the ’ideal mode’ which should be used in cases
where one alternative shall be chosen [30, 29]. The ’ideal mode’ solves the rank
reversal problem, where the number and kind of alternatives might influence the
decision. The matrix is constructed analogous to the matrix for weighting the
scenarios. Only the calculation of the priority vector’s values differs, since we
apply the ’ideal mode’ and not the ’distributive mode’. One obtains the values
of the priority vector in ideal mode vid

i by dividing vi by the maximal value of v:
vid

i = vi

max(vi)
; vid

i corresponds to the rating of the architecture variant SAW ′
ikj

.
The measurement values of how good ICT coordination architectures sup-

port the scenarios is specific to organizational and collaboration context, i.e.
the contingencies. It is possible that under certain contingencies one alternative
is the best for supporting a scenario, while under different contingencies this
alternative may be less appropriate to support the same scenario.

Rating the ICT architecture alternative To compare the ICT coordination
architectures one needs to know how good these architectures support architec-
ture quality attributes and scenarios. Therefore it is necessary to understand by



which means an architect influences the quality attributes of an architecture.
As described in [1], software architects use so-called tactics to achieve quality
attributes (see Section 2.5).

In the case of scenario 1 the architect applies tactics that reduce the number
of modules and processes (response of scenario 1 ) that are affected by changes
to processes (stimulus of scenario 1 ). Through the maintenance of semantic
coherence the architect ensures that the responsibilities among the services in
a CBP work together without excessive reliance on each other. To anticipate
expected changes reduces the services that need to be modified in case of certain
changes. Generalized services allow to compute a broader range of functions
based on the same input. An architect can apply these three tactics to CBP
architectures by using the patterns abstraction, loose coupling, and orchestration.

With this information it is, in general, possible to decide whether one ar-
chitecture variant supports a scenario better than another one. Having a look
at scenario 1 (cp. Table 1), the decentral broker architecture incorporates the
patterns abstraction, loose coupling, and orchestration for CBPs, which is the ar-
tifact of the scenario description. Thus it realizes the tactics maintain semantic
coherence, anticipate expected changes, and generalize module. The architecture
without broker instead, realizes none of these patterns and tactics for the artifact
(CBPs) of scenario 1. Thus we can infer that the decentral broker architecture
better supports scenario 1 than the architecture without broker. The remaining
question is, how contingencies influence the ratings and the distance between
the ratings of the evaluated architectures.

Contingencies In our decision method we consider contingencies within the col-
laboration network (internal contingencies) and outside the collaboration net-
work (external contingencies). Internal contingencies characterize the collabora-
tion model and the organizations participating in the collaborations. These are:
the collaboration topology, that takes into account the distribution of influence
and power among the partners; the complexity and specificity of the products de-
veloped by the collaborating organizations; the service flow that is characterized
by the amount of data and the number of messages exchanged; aspects related
with the process itself like length of the process or the estimated number of pro-
cess instance during execution. External contingencies are external factors that
highly influence organizations’ decision and strategies, and therefore impact also
the choice of an ICT coordination architecture: standardization considers the ex-
istence of industry-specific, national, or international standards; maturity takes
the existence of commonly accepted processes, protocols, etc., into account; busi-
ness semantics considers the availability of standards and their maturity with
regard to defining semantics of a specific domain; legislation comprises the reg-
ulations which impose special requirements regarding security, monitoring, and
other aspects of the collaboration. [22]

If we assume for example a high degree of standardization to rate scenario 1,
the decentral broker architecture is not much better than or even equal to the
architecture without broker. Standardized parts of the CBP and the ESs can
be reused and combined in arbitrary ways adapting to the change in business



(stimulus of scenario 1). Necessary changes affect about the same number of
modules (cp. response and response measure of scenario 1 in Table 1) in both
coordination architectures.

Of course there exist other contingencies, which are also relevant for the de-
cision about an ICT coordination architecture. For example, the dynamics of
the collaboration (internal contingency) and the industry dynamics (external
contingency) both address the aspect of change. Since change is already covered
by the scenario descriptions, this aspect has to be considered by weighing sce-
narios and quality attributes. Change is not addressed a second time in rating
the scenarios.

4.3 Measuring quantitative factors

In the decision method quantitative factors are evaluated in monetary terms on
the basis of the discounted cash flow approach.5 The discounted present value of
the future cash flows FV D

i , which corresponds to the objective factor measure
OFCi for a software architecture pattern i, is defined as follows:

OFCi =
m∑

j=1

FV D
ij

=
N−1∑
t=0

FVijt

(1 + d)t (7)

where

FV D
ij

= discounted present value of the future cash flow (FV) for factor j

FVijt
= nominal value of a cash flow amount in a future period t for factor j

d = discount rate
N = number of discounting periods
m = total number of objective factors

The decision model considers costs for software (purchasing costs and annual
licences), hardware (purchasing costs and annual leasing fees) and labor (costs
to set up the systems, maintenance costs, and costs to develop and deploy new
and modified processes).

5 Applying the evaluation method

As described in the introduction, companies organize themselves into global
networks and outsource those activities that can be performed quicker, more
effectively, or at lower cost, by others [34]. However, outsourcing and interacting
in global networks also increases overhead costs for collaboration, coordination,
and intermediation. One approach to describe the influence of organizational
structure on these overhead costs is the transaction cost model [37, 38]. In today’s
5 The description of the quantitative factors is quite short, since we focus on the

qualitative factors and contingencies in this paper.



economies, transactions for example make up more than 30% of the total costs
of an automobile [36]. Transaction costs heavily depend on the capabilities of
business systems to keep up with constantly evolving business relationships and
cross-organizational value chains. However, in the comparison to transaction
costs, IT costs are much less than transaction costs (in the Automotive example
this is about 6% of the overall costs [36]).

In this section, we apply the evaluation method to two scenarios: a virtual
enterprise scenario (Section 5.1) and to a scenario with collaborating SMEs (Sec-
tion 5.2). In doing so, the goal is to identify the collaboration architecture which
best supports the cross-organizational value chain and helps to reduce transac-
tion costs. The trade-off between reducing transaction costs (qualitative factors)
and reducing of IT cost (quantitative factors) through the choice of a collabora-
tion architecture is discussed in a sensitivity analysis.

5.1 Virtual enterprise scenario

This scenario deals with virtual enterprises that collaborate in big, long-running
CBPs (approx. 90 processing steps). The OEM and the big first-tier suppliers
introduced in the automotive scenario in Section 1 together form a virtual enter-
prise, which builds a temporary network of independent companies, suppliers,
customers. They are linked by information technology to share costs, skills, and
access to one another’s markets. The services the partners provide to the CBP
are to 50% legacy applications, which will be replaced within the next five years.
The services, their interfaces, and data types are not standardized, so that inter-
operability is an important issue. About 30% of the CBP are standardized and
it may be necessary to provide variants of the CBP. The privacy of the enter-
prises’ services is only medium important, since the enterprises make their profit
through economy of scale. Hence, they also participate with their elementary
services in other CBPs.

Determining the qualitative measure

Weighting the subjective factors To determine the weight of the quality at-
tributes and the scenarios pairwise comparison are applied like described in
Section 4.2.

mod. pri. reuse int. eff. man. vi

modifiability 1 7 3 1
3 3 3 0.21

privacy 1
7 1 1

4
1
9

1
5

1
5 0.03

reuse 1
3 4 1 1

5 1 1 0.10

interoperability 3 9 5 1 5 5 0.45

efficiency 1
3 5 1 1

5 1 1 0.10

managability 1
3 5 1 1

5 1 1 0.10

Table 2. Priority comparison matrix for the first level factors



Table 2 depicts the weighting of the first level factors, i.e. the quality at-
tributes, for the virtual enterprise scenario. Modifiability is considered more
important than privacy and reuse but less important than interoperability. The
column of the priority vector vi depicts the weighting of the quality attributes.

modifiability sc.1 sc.2 sc.3 sc.6 sc.11 vi

scenario 1 1 3 7 1
5

1
3 0.14

scenario 2 1
3 1 5 1

5
1
5 0.08

scenario 3 1
5

1
7 1 1

9
1
9 0.03

scenario 6 5 5 9 1 3 0.47

scenario 11 3 5 9 1
3 1 0.27

Table 3. Priority comparison matrix for the second level factor modifiability

Table 3 depicts the weighting of the scenarios are used to describe the modifi-
ability attribute in the virtual enterprise scenario. The scenarios are analogously
compared as the other quality attributes in Table 2. The column of the priority
vector vi depicts the weighting of the scenarios.

Rating the Scenarios The scenarios are rated by pairwise comparing the archi-
tecture alternatives. The decisions are based on how good the architectures sup-
port the scenarios via tactics and patterns). The rating, i.e. the values decision,
also depend on the characteristics of the contingency factors of the application
scenario for which the evaluation is performed.

scenario 1 Wo-Br. Cen-Br. Dec-Br. vid
i

Wo-Br. 1 1
7

1
7 0.14

Cen-Br. 7 1 1 1.00

Dec-Br. 7 1 1 1.00

Table 4. Rating scenario 1

Table 4 depicts the rating matrix for scenario 1. As described in Section
4.2 the central broker alternative supports scenario 1 better than the brokerless
alternative. Relevant contingencies for scenario 1 are the grade of standardization
and the maturity of the CPB and the services. Since both contingencies are rather
low in the virtual enterprise scenario, the architectural quality is important for
the support of this scenario, which leads to the comparison value 7 between the
central broker and without broker architecture. The central and decentral broker
architecture are rated equally important with the value 1. The column of the
priority vector vid

i depicts the weighting of the scenarios.

Overall Subjective Measure The overall subjective measure is computed on the
basis of the factor weights and the scenario ratings. Table 5 depicts the relevant
data. In row two one can find the weighting of the quality attributes from Table



2. The weighting of the scenarios that describe the quality attributes are specified
in row four. The scenario ratings can be found in the columns of the respective
scenarios. For example the rating, i.e. priority vector values vid

i , for scenario 1
can be found in column 2 row 5-7. The overall subjective measure is calculated
with the formula (3) and can be found in the last column.

Modifiability Sec. Reuse Int.op. Eff. Man.

S
F

M
i
d

i

S
F

M
i

0.21 0.03 0.10 0.45 0.10 0.10

S1 S2 S3 S6 S11 S7 S8 S4 S9 S11 S5 S10 S12 S13 S14 S15

0.14 0.08 0.03 0.47 0.27 0.17 0.83 0.43 0.43 0.14 0.17 0.83 0.50 0.50 0.50 0.50

Wo-Br. 0.14 0.11 0.08 0.16 0.08 0.30 0.20 0.30 0.17 0.08 0.14 0.17 1.00 0.17 0.12 0.11 0.202 0.121

Cen-Br. 1.00 0.44 0.30 0.46 0.30 0.11 0.20 0.12 0.59 0.30 1.00 0.41 0.33 1.00 1.00 1.00 0.545 0.327

Dec-Br. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.41 0.60 0.44 0.920 0.552

Table 5. Overall subjective measure

Determining the quantitative measure

Overall Objective Measure The objective measure is calculated on the basis of
the cash flow of the costs for software, labor, hardware. For the virtual enter-
prise scenario with four collaborating enterprises we have estimated the following
costs. It is important to understand, that the scale (euro, dollar, etc.) is not im-
portant for the overall objective measure, since the scale is transformed into an
dimensionless index. In Table 6 one can see that for the architecture without
broker 5075 thousand cost units were estimated (OFCi). The overall objective
measure OFMi can be found in the last column.

Software Hardware Labour O
F

C
i

O
F

M
i

Wo-Br. 45K 75K 4955K 5075K 0.127

Cen-Br. 69K 95K 1200K 1364K 0.471

Dec-Br. 118K 135K 1367K 1620K 0.399

Table 6. Overall subjective measure

Sensitivity analysis and interpretation The architectural evaluation mea-
sure AEMi for each architecture variant is determined on the basis on the objec-
tive factor measure OFMi and the subjective factor measure SFMi (see formula
(1)). The measure depends on the weight X assigned to the objective and sub-
jective factor. This weight lends itself also for sensitivity analysis.

Figure 8 depicts the sensitivity analysis chart for the virtual enterprise sce-
nario. The x-axis represents the importance of the objective factors measure



Fig. 8. Sensitivity analysis chart

and the y-axis the architecture evaluation measure for the respective architec-
ture variant.

On the basis of this evaluation result we can conclude, that either the central
broker or the decentral broker architecture variant should be selected. The vari-
ant without broker gets significantly lower rating values for all X than the other
ones. The decentral broker architecture scores better for the qualitative mea-
surement (especially for X = 0), while the central broker architecture is better
in terms of IT costs. A feasible estimation of X is to consider the relationship
between the percentage of transaction costs and IT costs of the total costs. In
the automotive industry IT costs (6%) are low in comparison to the transaction
costs (30%) (cp. [36]). This leads to an estimation of X ≈ 0.2 for the virtual en-
terprise scenario applied to the automotive industry. Thus, we would suggest to
select the decentral broker architecture in the virtual enterprise scenario. Even if
transaction costs and IT costs got equally important (X = 0.5), the architecture
evaluation measure of the decentral broker variant would be still be a bit better
than the central broker variant.

5.2 SME scenario

This scenario represents the CBPs between the second-tier (or even third- and
fourth-tier suppliers) of the automotive scenario from Section 1. The second-tier
suppliers are SMEs that manufacture parts, which can be largely standardized
and can be reused in many cars or other application domains. The SMEs pro-
duce for example screws, fuses, circuit boards, etc.. They support rather short
processes with approx. 20 processing steps. The specificity of the service is low.
Smaller and equal partners (SMEs) frequently join and leave the collaborations
and most SMEs also participate in other similar collaborations. Participating



partners have similar interfaces, data types, etc., and the services and CBPs
are de-facto standardized (e.g. already formulated in ebXML). Hence, interop-
erability is not so an important issue to these organizations. Also changes to
the existing CBPs are rare (up to three times a year). However, about 50% of
the service offer by the SMEs are legacy applications, which will be partially
replaced within the next five years.

Determining the qualitative measure The overall subjective measure can
be found in Table 7.

Modifiability Sec. Reuse Int.op. Eff. Man.

S
F

M
i
d

i

S
F

M
i

0.16 0.04 0.25 0.06 0.25 0.25

S1 S2 S3 S6 S11 S7 S8 S4 S9 S11 S5 S10 S12 S13 S14 S15

0.05 0.59 0.05 0.21 0.11 0.50 0.50 0.45 0.45 0.09 0.20 0.80 0.83 0.17 0.17 0.83

Wo-Br. 0.39 0.36 0.50 0.20 0.40 1.00 1.00 1.00 0.17 0.40 0.17 0.40 1.00 0.50 0.30 0.17 0.529 0.293

Cen-Br. 1.00 0.50 1.00 1.00 1.00 0.64 1.00 1.00 0.30 0.41 0.64 0.41 0.64 0.12 1.00 1.00 0.589 0.326

Dec-Br. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.55 1.00 1.00 1.00 1.00 0.40 1.00 0.50 1.00 0.688 0.381

Table 7. Overall subjective measure

Determining the quantitative measure The overall objective measure can
be found in Table 8.

Software Hardware Labour O
F

C
i

O
F

M
i

Wo-Br. 100K 100K 100K 300K 0.453

Cen-Br. 124K 120K 195K 439K 0.310

Dec-Br. 197K 180v 198K 575K 0.237

Table 8. Overall subjective measure

Sensitivity analysis and interpretation Figure 9 depicts the sensitivity anal-
ysis chart for the SME. One can clearly see how the contingencies standardization
and short processes influence the architecture evaluation measure. Although the
partners in the collaboration frequently change the architecture variant without
broker scores very well. For most X, the brokerless architecture has the high-
est evaluation measure and even for low X its measure is hardly lower than
the measure for the broker architecture. However, if contingencies change, like
new monitoring requirements from the government, the intersection point of the
curves would be at a higher X (it would move to the right). This would make
the broker architectures more interesting to realize the SMEs scenario.



Fig. 9. Sensitivity analysis chart

6 Discussion and outlook

The contribution of the work reported in this paper is fourfold: First, we iden-
tified three important architectural patterns for CBP enactment: brokerless ar-
chitecture, decentral broker architecture, and central broker architecture. Sec-
ond, we proposed a decision method for architecture selection based on the
analytic hierarchy process (AHP, see [31]). This method targets ICT architects
and promises a systematic way to evaluate and compare ICT level architecture
variants for a certain application scenario, based on pairwise comparison of alter-
natives. Third, we showed the applicability of our method by applying it to two
application scenarios with differing characteristics: A virtual enterprise scenario
(comparable to the relationship between the OEM and the selected first-tier
suppliers discussed in Section 1) and an SME network scenario (similar to the
second-tier network part of the example in Section 1). Finally, we investigated
the robustness of the decision method by performing a sensitivity analysis.

An area for future work is the examination and deeper evaluation of the de-
cision method. One aspect concerns the choice of making pairwise comparisons
between alternatives as described in Section 4. Our experience so far indicates
that pairwise comparisons reduce the amount of information that is necessary for
decisions. Since people can only deal with information involving simultaneously
a small number of facts (seven plus or minus two) [25], pairwise comparisons
help evaluators to make better judgements compared to methods where more
information needs to be considered. Though pairwise comparisons require more
complex calculations than other rating approaches, they promise to provide more
exact results. The AHP method involves also redundant comparisons to improve
validity, recognizing that participants may be uncertain or make poor judge-
ments in some of the comparisons. Further investigation are needed to achieve a



more fundamental understanding of the trade-offs involved in redundant pairwise
comparisons and possible alternatives.

A second area concerns the question how decision methods as the one de-
scribed in this paper can be built into existing enterprise modeling frameworks
and model-driven IDEs, to support process modelers and ICT architects in their
task of creating and managing executable CBP specifications from business level
models. Also, more fine-grained models and extensions of our decision method
need to be developed to support this process down to the platform-specific and
code levels.
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