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Abstract: This paper describes a scalable, adaptive architecture for cloud 
computing. The platform allows a company to benefit from many advantages of low-
cost virtualisation, while still providing control mechanisms to ensure security, 
compliance, reliability and consistency. We assume the utilised hardware is 
heterogeneous and potentially unreliable. We therefore adopt Internet proven peer-
to-peer (P2P) algorithms, i.e., distributed hash tables (DHTs) and gossip algorithms 
to cope with the dynamics. In order to reduce setup and maintenance costs we 
present built in self-configuration and optimization algorithms. A flexible execution 
environment based on spontaneous group formation ensures reliable service 
execution even in the event of hardware failure. We show the benefits and 
performance of the proposed platform by a concrete use case and simulation results. 

1. Introduction 
Recently, the term cloud computing has been receiving attention as major companies like 
IBM, Microsoft, Amazon, Google, HP, and others declared their respective vision and 
strategies. However, yet no clear definition of the term “cloud computing” exists. What is 
common is the notion of a distributed infrastructure capable of providing services or 
applications in a location and vendor transparent manner over a public network, usually 
assumed to be the Internet. Often this includes the combination of massive amounts of 
dedicated computer hardware distributed globally in various data centres to form a 
“computing cloud”. The data centres themselves are owned and maintained by the service 
vendors. While some vendors, e.g., Google focus on the massive computing power 
capabilities [1], others, e.g., Amazon define the benefits in economic terms through on 
demand service fees and reduction of data centre costs [2]. 
     We identified as one major drawback of rising cloud computing solutions - or any other 
type of service on demand architecture − the requirement to transfer possibly sensitive data, 
e.g., prototype specifications or simulation parameters to a third party service provider, i.e., 
a prospective competitor. Usually, this violates corporate compliance as such great amount 
of trust cannot be mustered. Hence, the cloud-computing paradigm as sketched above is 
restricted to only a few applications. 
 However, for corporate internal simulations and prototype tests, cloud computing seems 
to be an ideal fit. For example, our research and development requires highly sensitive 
simulations of large distributed systems. Similarly, test platforms need to scale up to 



thousands of entities. Most tests and simulations are project-based meaning the 
infrastructure is allocated only for a short time period and then released to other projects. It 
is therefore not feasible to buy dedicated hardware for each project. In addition, due to 
different project requirements it is very desirable to be able to constantly add or remove 
computer hardware from the cloud. This leads to pursuit of a decentralized infrastructure 
being able to deal with such dynamics as demanded by the self-x properties of autonomic 
computing systems [3]. In this paper, we try to close the gap by introducing a peer-to-peer 
(P2P) software architecture to build a self-configuring, self-healing, and self-optimizing 
backend to enable corporate cloud computing. 

The rest of this paper is structured as follows: In Section 2 we summarize the objectives 
of our solution. Section 3 outlines the employed methodology and places our solution into 
the context of related work. Section 4 sketches the overall system architecture and provides 
a technical description of the major components. Section 5 illustrates the benefits utilising a 
concrete use case. Section 6 and Section 7 evaluate the platform performance and reliability 
as well as highlight the business benefits. We conclude by pointing to ongoing and future 
work in Section 8.  

2. Objectives 
The primary aim of this paper is to show how the cloud computing paradigm may be 
adapted to develop a highly scalable and adaptive distributed computing platform for 
reliable service execution at corporate sites. We propose the novel approach of a P2P 
backend to ease the building of a corporate site cloud computing infrastructure. 

We assume the underlying hardware to be heterogeneous and potentially unreliable. 
Hence, the P2P solution should be able to adapt to different hardware and operating 
systems to exploit existing corporate IT infrastructure and reduce total cost of ownership 
(TCO). It should ensure reliable execution of dynamically deployed services and consistent 
data management. The platform must offer a generic application interface not only to 
deploy generic service tasks and necessary artefacts but also to pass policies specifying 
quality of service (QoS) requirements. All internal processing should be completely 
transparent to standard users but allow detailed configuration and fine-tuning if required. 

3. Methodology 
We show that by combining P2P technologies with the cloud-computing paradigm, we can 
realise a reliable service infrastructure for heterogeneous hardware environments.  
    The usage of standard techniques offered by sophisticated grid computing platforms, e.g., 
[4] would be one approach to manage such infrastructure. But completely adoption and 
deployment of such grid computing platforms may be very complex and combined with 
high maintenance costs. Our approach differs from standard grid techniques as we focus on 
the dynamic character of the platform, the ad hoc and self-organizing features and the 
adaptability to heterogeneous hardware. Furthermore, our approach is more lightweight and 
focuses on performance through specialization, e.g., we target to conform to interface 
standards like OSGi and web services wherever possible but use own internal protocols to 
improve communication efficiency. 
     As underlying communication platform we built and utilise the P2P Resource 
Management Framework (RMF, [5]). The RMF maintains a virtual application-independent 
abstract collaboration space where metadata (so called resources) can be published, 
searched, subscribed and modified using certain keywords. RMF employs a Distributed 
Hash Table (DHT) topology as routing mechanism of the P2P overlay network to run on 
top of arbitrary physical networks. Here, we use Chord [6] in our prototype implementation.  



We follow a service oriented system design approach to support dynamic service 
deployment. Every peer in the network is modelled as a service providing access to the 
different computational resources of its host. Similarly each peer provides a container to 
host other services. We motivate a flexible service model optimised for the dynamic 
domain of P2P systems. In the respective literature the term “service” is often used 
ambiguously and hence requires clarification. In our case, a service is simply defined as a 
self-contained computer program that exports its functionality through a well-defined 
interface. Services can be parameterized with a task and executed thereby producing a 
result in a predefined format. A service is not bound to a physical location or specific peer. 
The location of execution is solely determined by the task and the service description and 
may change dynamically as the state of the cloud changes over time. A deployment is often 
transient with the peer removing the service once execution is complete.  

As already suggested, the service execution platform offers a generic interface to the 
outside. This includes a generic web service system interface to deploy services. Internally, 
we introduce the concept of dynamic P2P service groups to enable reliable service 
execution. This requires mechanisms to consistently set up service groups and to maintain 
their inherent structure in order to ensure QoS throughout the operation. Subsequently, we 
present major techniques how the pure RMF has to be extended in order to deal with the 
raised requirements of a P2P-based reliable service execution platform. 

4. Technology Description 
This section elaborates our approach on the technical level. First the overall system 
architecture is introduced and a brief description of major components is given. With the 
key concepts introduced, the service execution lifecycle is detailed and finally the 
mechanisms to achieve high availability and reliable execution are described. 
 

 
Figure 1: Overall System Architecture of the P2P-based Reliable Service Execution Platform 

Figure 1 illustrates the overall system architecture. Each computer node in the cloud is 
represented by a peer in the RMF. Conceptually, there exist two types of peers: indexing 
peers and service peers. The reason lies in the nature of DHTs. DHTs provide a simplified 
interface to efficiently store and retrieve data by keywords; unfortunately they perform 
miserably for more complex queries such as range queries and semantic queries over large 
data sets. Therefore, we use indexing peers as a special peer group to concentrate metadata 
as well as status information of all peers in the RMF. This approach enables the platform to 
efficiently determine current best peers for service execution, e.g., peers with certain 
capabilities or idle hardware resources. Indexing peers provide advanced querying 



interfaces for complex queries required by our internal peer selection process. To enhance 
communication speed, indexing peers maintain a separate pool of connections to other 
indexing peers in addition to “normal” DHT connections. The set of indexing peers are 
referred to as indexing group. Metadata may be injected at an arbitrary peer of the indexing 
group. Afterwards, it is internally disseminated through a gossip-based protocol [7]. 

Every RMF peer not acting as an indexing peer is considered a service peer, and 
advertises its resources for service execution. Each peer hosts an OSGi service container 
with a set of standard services to manage service execution, to provide access to the P2P 
collaboration space, to store data and to provide scheduling capabilities. Additionally, user 
services can be deployed into the OSGi service container at runtime.  
 

 
Figure 2: Overview of Service Deployment and Execution 

Figure 2 illustrates service deployment and execution process. It is initiated by injecting 
a description of a particular service task together with a set of policies determining the non-
functional requirements of the execution, e.g., demanded processing resources. Tasks are 
always injected at indexing peers which act as gateways and provide standard web service 
interfaces (1). An indexing peer then triggers a selection process for possible service group 
candidates. The selection process applies the task description on the set of peer metadata to 
filter the peers that are capable of executing the task. Subsequently the set of candidates is 
further filtered by applying the set of policies. The resulting group is then ranked to find the 
most suited peers for coordination and execution. The best candidates are determined by 
their static capabilities (i.e., hardware, network bandwidth etc.), their current status (i.e., 
load, resources condition) and other criteria provided by the attached policies (2). The next 
step is to set up a service group configuration. Such configuration consists of a coordinator 
peer, potentially multiple executing peers plus a set of other peers, so called watchdogs, to 
act as backups and to monitor the coordinator peer. The number of execution peers, 
watchdogs, and their monitoring intervals can be regulated via QoS policies (3).  

If a peer selected for execution does not provide the service code bundle or other data as 
requested by the task description, it can be loaded from other DHT peers and dynamically 
deployed in the local container. Regarding the whole process of publication, look-up, 
implementation selection and the final loading of platform-specific code we extend former 
work [8] to deploy OSGi bundles. This is because each function might be available in 
various implementations with different requirements and properties. This generic and 
decentralised selection process allows identification of the best-fitting service code bundle 
for a certain host environment. Here, three categories of properties and requirements have 
to be fulfilled or at least taken into account during the selection process: the required code 
bundle service interface, functional and non-functional properties and compatibility 
requirements, e.g., the required programming language and local execution environment. 



Once a service group is formed and execution logic is available, the task description is 
transferred to the coordinating peer where the logic is parameterized and consequently the 
execution scheduled using execution peers. During execution phase the coordinator peer 
acts as group leader and checks with watchdogs (and indexing peers) to maintain the group. 
At the same time, better-suited execution peers may be discovered once they join the cloud 
and employed by the coordinator peer. 

Execution peers process stateful services by using a check-pointing mechanism to 
propagate state updates to watchdogs. Thereby the check-pointing interval is controlled by 
a policy. Should a better-suited peer be found the state may be migrated from a currently 
executing peer to the new peer. 

Process state and execution results are passed back to the user either through the 
gateway or other location specified by the service. The execution terminates if the service 
executed the task successfully or a fatal error occurred. In both cases the coordinator 
disbands the group and resources are reported idle at the indexing group.  

Regarding the overall service group operation the central role of the coordinator is 
crucial. If the coordinator fails during service execution, the group may enter an 
inconsistent state. Here, we rely on previous work to consistently elect a new coordinator 
among the watchdogs using a generic consensus protocol instance [9]. This feature is 
deployed as standard service in the platform. It is able to secure consistency of distributed 
consensus for benign or even byzantine peer failure models. This provides a superior degree 
of configurability in terms of fault model and consensus algorithm. Optimal QoS properties 
may be obtained by application- and environment-specific tailoring of policies. Each of the 
employed algorithms uses a quorum-based approach to reach distributed consensus between 
participating peers. In simple terms, progress is guaranteed as long as a quorum of 
watchdogs is working correctly. 

5. Use Case: Large Scale Simulation of Distributed Systems 
One particular application of the proposed cloud-computing platform is the large-scale 
simulation of distributed systems. Large distributed systems are inherently complex 
developing high dynamics with increasing node numbers. It is therefore essential to 
simulate and validate such systems with up to millions of nodes. 
 For instance, the platform constitutes the basis for our distributed simulator. The 
simulator is constituted by three major components: the simulator code, the simulation code 
and the simulation parameters. The simulator itself is implemented as an OSGi standard 
service bundle. The simulation is also packaged as an OSGi bundle. It can be implemented 
in Java or C code. The third component is an XML formatted text file constituting the task 
description. The task description includes parameters for the number of execution peers and 
watchdogs, the number of simulated nodes, simulation runs, result post processing and 
other simulation related parameters. Additionally some simulations require data files 
describing network topologies or transmission latencies. These can be downloaded using 
the storage service or other mechanism specified in the task description. Once simulation 
bundles are deployed, the coordinator triggers the execution of the distributed simulator. 
During the execution, the coordinator assigns tasks to the different execution peers and acts 
as result aggregator. Additionally results and status information are continuously passed 
back to the user thus enabling real time monitoring of the simulation.  

6. Results 
We claim a high performance and high availability cloud computing solution. Despite the 
service to execute, the performance of the complete system depends on the performance of 



the following key elements: service monitoring, migration as well as checkpointing. In this 
section we elaborate how each of these components performs given characteristic loads.  

High availability is achieved by the watchdog mechanism. The number of watchdogs 
can be set as required by the task to be executed. Usually an execution group of three peers 
is sufficient for most applications. Highly dynamic environments such as the public Internet 
exhibit high churn rates [10], i.e., very short average online times of individual nodes of 
only a few minutes. This is not realistic in our scenario as we can safely assume that peers 
in the target environment have online times of at least a couple of hours. However, using 30 
minutes as suggested in related work as lower bound we can easily show the high 
availability of services in the platform. Given an average online time of 30min and average 
task execution time of 1min the probability for an execution failure is  
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in case no watchdogs are used. With watchdogs the failure probability can be further 
decreased such as  
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where k is the number of watchdogs. We can achieve an availability of 99.999% with only 
two watchdogs. The formula assumes the failure of watchdogs is not correlated. This is 
supported by peer groups being assembled independent of the physical location of the 
peers. 

We did extensive simulations to evaluate the performance of the system regarding our 
use case. The test cases affected nine Intel Pentium IV type commodity PCs clocked at 2,8 
GHz and equipped with 512MB of RAM. All machines were networked through a switched 
gigabyte ethernet. The operating system was SuSe Linux version 10.1. 

A key aspect of distributed simulations is state migration and check-pointing as they are 
critical for consistent and fast execution take over. Our simulations show migration times of 
clearly less than ∆t1 = 1sec for states of size 10k when migration is triggered due to 
discovery of a better suited peer. The migration times triggered for the case of unanticipated 
peer failure are slightly longer i.e. less than ∆t2 = 1sec + 0.5 * monitoring_interval. 

Figure 3 depicts the scalability of the simulator use case described in the previous 
section for different service group sizes. Utilizing eight execution peers we are able to 
simulate more than a total of 500 000 nodes. Thereby the simulation included a complete 
P2P protocol with peer discovery, resource lookup and stabilisation. The graph shows the 
number of simulated peers scaling sublinearly with the number of compute nodes, which is 
due to the fact that the algorithm utilises optimisations requiring slightly memory and 
compute nodes for larger peer groups. However, being able to simulate distributed systems 
of this size on comparatively low-end commodity hardware demonstrates what potential 
lies in the introduced techniques.  
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adaptive and dynamic service deployment to efficiently realize such infrastructure on top of 
a basic P2P system. 

As we focus on an infrastructure at corporate site we neglect security issues in this 
paper. For instance, such issues are addressed by Grid Computing which aims at a 
decentralized infrastructure build for the “open” Internet. Future work is to address 
advanced policy based security mechanisms to extend the platform for inter corporate 
collaboration. One meaningful step into this direction may be the adoption and integration 
of our already developed onion routing solution to enhance anonymity of established 
collaborations [11].  
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