

Combining Aspect-Oriented and Model-Driven

Development for Supply Network Monitoring

Alexander Hornung, Jörg P. Müller

Department of Informatics

Clausthal University of Technology

Julius-Albert-Str. 4

38678 Clausthal-Zellerfeld, Germany
{alexander.hornung, joerg.mueller}@tu-clausthal.de

Abstract. The dissemination of sensor network

infrastructures as well as the application of

positioning and automatic identification technologies

enables a comprehensive monitoring of business

processes in supply networks. However, a method

which allows specifying monitoring requirements

related to business processes in a computation-

independent manner is still missing. We propose a

method based on model-driven software development

to model and implement supply network monitoring

applications. To specify event aggregation

requirements we enhance a model of a business

process by applying model modification techniques in

order integrate models of monitoring aspects. The

integration of monitoring aspects into a process model

is illustrated by an example.

Keywords. Model-driven software development,

aspect-oriented modeling, supply network monitoring

1. Introduction

In his vision of ubiquitous computing [15] Mark

Weiser describes sensor-equipped computing devices

seamlessly integrated into the environment providing

useful services. The realization of the ubiquitous

computing vision enables an end-to-end monitoring of

business processes in supply networks. To be able to

implement supply network monitoring (SNM)

applications it is required to integrate numerous

sensors (event publisher) into a software system. To

detect business-relevant events and thus filter the

flood of events it is necessary to specify appropriate

event aggregation processes. We present a model-

driven software development process for SNM

applications. We describe in detail the reusable and

maintainable encapsulation of aspect models for event

aggregation in SNM.

The paper is structured as follows. Section 2

summarizes the theoretical background of our work.

In Section 3 we present the design of a model-driven

software development process for SNM applications.

Section 4 describes the combination of aspect models

for event aggregation and a model of a business

process. Section 5 contains discussions and related

work. In Section 6 we conclude the work and discuss

areas of future research.

2. Background

2.1 Supply network monitoring

SNM refers to the monitoring of the state of physical

objects transformed by business processes [14].

Furthermore SNM is a subset of supply network event

management (SNEM). SNEM is about detecting and

correcting disruptive events and malfunctions in

material transforming business processes [16]. The

task of detecting disruptive events based on

measurements obtained during process execution is

solved by SNM. Examples of disruptive events in

supply networks are out-of-stock situations, machine

breakdowns, a breakdown of an air conditioning

system or the delay of transportation functions or

manufacturing functions. Additionally an SNM

application is able to detect regular events like the

arrival of products at a products receipt. The goals of

SNM are the visibility of work in process and stock

amounts using localization information of products,

more reliable material flows by monitoring

environmental conditions and reduced exception

handling costs by quicker detection of disruptive

events. The visibility of stock amounts in a supply

network removes one of the causes of the well-known

bullwhip effect.

2.2 Aspect-oriented programming

We exploit ideas of aspect-oriented programming

(AOP) on the instrumentation of business process

models. Programming with aspects enables the

encapsulation of cross-cutting concerns [7]. A cross-

cutting concern like logging is functionality which

cross cuts the main control flow of an application.

AOP defines several language constructs. A join point

is a well-defined point within program execution. It is

selectable by a point cut. A point cut results in a set of

selected join points. The point cut is basically a

selection expression to determine where the

application code has to be instrumented by advices.

An advice is the implementation of an aspect using a

point cut. An aspect is a reusable module consisting

of advices and point cuts implementing a cross-

cutting concern. We shall discuss computation

independent models of aspects on event aggregation

for SNM in Section 4.1. AOP deals with models of

aspects and applications at code level. It avoids code

duplication and increases maintainability and clarity.

AOP also makes design decisions concerning cross-

cutting concerns explicit, like every result of a method

should be logged first before returning.

2.3. Model-driven software development

Model-driven software development (MDSD) takes

advantage of formal models in order to support the

implementation and documentation of software

systems. A model is the description of (parts of) a

system [8]. A well-defined language is applied to

create models. A metamodel is a model of the

language describing the elements of the language.

Models contain instances of elements of the

metamodel. A metamodel itself conforms to a meta-

metamodel which is self describing. The Fig. 1

summarizes the main ideas of MDSD.

System S Model M

MetaModel MM

Meta-MetaModel

MMM

conforms to

representation of

conforms to

conforms to

Figure 1. Model-driven software development
[2]

The model-driven architecture (MDA) is a framework

for MDSD provided by the OMG [8]. The MDA

defines three levels of abstraction containing the

models which describes a software system. The level

of the computation independent model (CIM)

describes business-process-related requirements. The

platform independent model (PIM) contains a model

of a software system implementing the CIM-level

requirements. The PIM does not depend on a certain

implementation technology. One or more platform

specific models (PSM) are generated using a PIM. A

PSM describes the software system in a technology-

specific manner. The code of the software is

generated by a tool which transforms a PSM to code.

Applying MDA has several advantages. The

productivity of developers will enhance due to

technology-independent programming on the PIM

level. Portability increases by using a PIM and several

transformation definitions to transform to different

PSM. Also interoperability between systems will

improve using a common PIM for converting between

the entities of different systems created using different

PSMs.

A model transformation is a function which accepts

one or more source models and results in one or more

target models [8]. Model transformations are realized

by a transformation engine. The transformation

engine is controlled by a transformation definition. A

transformation definition consists of a set of

transformation rules. A transformation rule defines a

mapping between elements of the source model’s

metamodel elements and the target model’s

metamodel elements. A model modification is another

model operator. It manipulates elements of a given

model. Also new model elements (instances) are

created by a model modification.

3. Development process overview

3.1. Abstraction levels and model types

Table 1 illustrates the MDA-related abstraction levels

and the proposed model types.

Table 1. Model types

Abstraction

level

Model types

CIM models of event aggregation for

supply network monitoring and

a model of the business process

to monitor, both modeled as

extended event driven process

chains

PIM a model of a supply network

monitoring application in

conformance to a metamodel

for event-based software

architectures

PSM PSM of a supply network

monitoring application, e.g.

based on a CORBA event

service metamodel or java

message service metamodel

Section 4 contains explanations concerning the CIM

for SNM applications. In the following Section 3.2 we

sketch the design of a metamodel for the event-based

software architecture which will be used as a

language for PIMs. Section 3.3 contains the general

steps necessary for modeling, implementing and

deploying SNM applications. We do not describe a

PSM-level metamodel in that paper because this is a

subject of future research.

3.2. A PIM-level metamodel for supply

network monitoring applications

In order to obtain the advantages of the MDA we

model a metamodel for PIMs of SNM applications.

The metamodel is presented in Fig. 2. The PIM is

restricted to the event-based software architecture.

Software architecture defines the structure of a

software system in terms of system components and

relationships among system components. The event-

based software architecture constitutes of system

components communicating business-process-

relevant events utilizing a message-based

communication infrastructure [9].

Figure 2. PIM-level metamodel for event-
based architecture

During business process execution potentially many

events will be generated. An event is a detectable

condition that can trigger a notification [5]. A

complex event is an event created by aggregation on

other events. The aggregation is performed utilizing

spatial and time-based conditions. A notification is a

signal which is triggered by an event. The recipients

of notifications are determined at runtime.

The subscription is the process of linking event

publisher with event subscriber. Subscriber and

publisher are the two roles of an event-based software

system. An event publisher is able to detect and

publish events. An event subscriber consumes events

according to event filter conditions specified during

subscription. Applying direct subscription a

subscriber subscribes directly to event publishers.

Event publishers are responsible for event generation

and optionally for event filtering. In the case of

indirect subscription there is a third component which

takes the role of the event filter.

We model SNM applications at PIM-level as event-

based software systems with indirect event

subscription. The intended software architecture

comprises of the component types: event generator,

event filter and process engine. The event generator is

able to measure attributes of its physical environment.

For this purpose it is able control sensor hardware. An

event generator executes plans for preprocessing and

correcting measurements. Furthermore he is

optionally able to filter events. An event generator

takes the role of an event publisher only. An event

filter is at the same time event publisher and event

subscriber. The event filter is a subscriber for events

in event generators and publishes events to subscribed

process engines. He is able to filter events and create

complex events using filter rules. The behavior of an

event filter type is modeled by an instance of

RuleBasedBehavior. The ComputerExecutableRuleset

is a RulebasedBehavior.

The ComputerExecutableRuleset is a metaclass of the

production rule representation metamodel [10]. A

production rule specifies the conditional execution of

one or more actions. A RuleAction instance is for

example the detection and creation of a complex

event. The production rules work on a set of facts of

certain types. This set of facts should be able to

represent the state of the environment during business

process execution. A process engine is able to enact

several information transforming business process

instances. The behavior of a process engine can be

described by several types of business processes

(instances of the Process metaclass). We can use the

pim4soa process view (cf. [1]) to further detail the

Process metaclass.

A business process (process metaclass) is triggered by

events and may generate events of certain types. We

can conclude that only the detection of business

process related events is relevant in SNM

applications. Also graphical client applications which

display the execution state of business process

instances are only interested in business process

related events. This leads to the following

consequences in modeling the requirements of event

aggregation performed by the aforementioned event

filters.

Event aggregations for SNM should be modeled by

domain experts and modeling experts because they

are in most cases able to describe appropriate event

types. Thus a well-known modeling language should

be applied for event aggregation specification.

Models of business processes instrumented with event

aggregation should be readable and maintainable by

domain experts and modeling experts.

Additionally, models of event aggregation may be

reusable for the monitoring of other business

processes.

3.3. Overall development process for

supply network monitoring applications

The process which is necessary to model, implement

and deploy a SNM application consists of the

following steps:

1. Create a model of the business process to

monitor.

2. Combine the business process model with a set of

predefined reusable models of event aggregations

for SNM on CIM level.

3. Create a data model for event aggregation on

PIM level containing entity types (instances of

the BusinessEntity metaclass) to represent the

execution environment of a business process.

4. Transform the instrumented business process

model to instances of ProductionRule and Event

in order to specify the behavior of an event filter

type for the given type of business process.

5. Refine the production rules by adding additional

fine-grained events and rules accessing facts on

the data model.

6. Model instances of event generators and process

engines on PIM level.

7. Transform the PIM to a PSM and finally to

source code.

8. Instantiate and initialize the software components

necessary for the monitoring of an instance of the

business process modeled in step 1.

9. Execute the subscription process to wire all

software components.

The remainder of this paper reports on ongoing work

realizing the presented development process. In

particular the implementation of the steps 1 and 2 are

described in Section 4.

4. Combining models of monitoring

aspects and a business process

model

The steps 1 and 2 of the development process

presented in Section 3.3 will be illustrated by an

example. Section 4.1 describes a simplified cross-

enterprise business process and three aspect models of

event aggregations for SNM. The implementation of

the combination of the business process model and

several aspect models by model modification is

explained in Section 4.2. The aspect models and the

business process model are created using the notation

of extended event-driven process chains (EPC). We

refer to [11] and [12] for further information on EPCs.

4.1. Business process model and aspect

models

A specification of business-process-related events is

created by combining a model of the business process

under consideration with aspect models containing

event aggregations for SNM. The elements of the

aspect models contained in the resulting model of that

combination are very similar but are treated as

definition copies i.e. as different objects. We use the

example of the business process given in Fig. 3 to

illustrate the model modifications necessary to

combine aspect models with a business process

model. To ensure reusability, maintainability and

clarity monitoring aspects are modeled in separation

to the business process model.

The example in Fig. 3 describes a cross-enterprise

business process between a supplier for central

processing units (CPU supplier, left swim lane) and a

computer manufacturer (right swim lane). Other

business processes like the delivery of food may have

a similar structure. Note that this business process

contains information flows as well as material flows.

For example, if shipping units are packed, they will be

transported to the products issue of the CPU supplier.

Also the packed shipping units are the precondition

for posting a dispatch notification to the computer

manufacturer. The dispatch notification contains the

delivery date, the estimated lead time of delivery and

the identifications on all products contained in the

shipment units of one delivery. Information-

transforming functions like “Register products issue”

have to be implemented by sub processes running on

process engines. Neither the aspect models nor the

model of the business process contain control flows

for handling failure events. Also the reaction on

regular events is only modeled by a function. Further

modeling of reactions on event types will be

contained in behavioral models for process engines

and the business processes they enact.

Figure 3. Cross-enterprise business process

Functions of the presented business process are

monitored by other functions contained in aspect

models of monitoring concerns. Table 2 shows the

assignment relationships between aspect models for

SNM and functions of the business process to be

monitored. In the following, we present aspect models

used by this example.

executes & supports executes & supports

o
rg

a
n

iz
a

ti
o

n
a

l
..
.

.

Products
ready for
packing

Packaging
ready for
packing

Pack shipping
units

Shipping
units

packed

Transport
shipping units to
products issue

Shipping units
transported to
products issue

Register
products issue

Transport
shipping units
to customer

Logistic departement
CPU supplier

Logisitic departement
computer manufacturer

Post dispatch
notification

Dispactch
notification

posted

Register
dispatch

notification

Dipatch
notification
registered

Shipping units
transported to

customer

Receive shipping
units at products

receipt

Shipping
units received

Register
products
receipt

Unpack Shipping
Units and stock

products

Products
issue

registered

Products
stocked

Products
receipt

registered

Table 2. Assignment of aspect models

Function Aspect-models to assign

Transport shipping

units to products

issue

Shipping unit localization

aspect model

Receive shipping

units at products

receipt

Shipping unit localization

aspect model

Transport shipping

units to customer

Temperature control

aspect model, delay

detection aspect model

Unpack shipping

units and stock

products

Temperature control

aspect model

The aspect model in Fig. 4 describes the fact that the

temperature in the execution environment of a

function (placeholder Function#) is monitored in

parallel to the execution of that function. If the

increase of the temperature value is higher than a

predefined threshold, a temperature failure event will

be raised. With the help of this aspect model one can

also specify aspect models to monitor other

continuous attribute types.

Figure 4. Temperature control aspect model

The delay detection aspect model is presented in Fig.

5. In order to detect the delay of a monitored function

(placeholder MonitoredFunction#) a timer is set. The

time is set according to the start date and the

estimated lead time of the monitored function. This

information has to be accessible during the execution

of the function “Determine start date D and lead time

ld of the monitored function”. If the timer expires

before the end of the monitored function a delay event

is generated. The post condition for functions

transporting shipping units is monitored by constructs

contained in the shipping unit localization aspect

model of Fig. 6. The aspect model describes that a

function can be treated as finished only if all shipping

units of that function can be localized at a certain

location (placeholder place#). If the localization fails

for a predefined number of localization cycles a

localization failure event is created.

Figure 5. Delay detection aspect model

Figure 6. Shipping unit localization aspect
model

4.2. Implementation approaches for model

modification

Having described all aspect models and the business

process to monitor we are now ready for describing

the combination of the various models which is called

Monitor
Temperature

T

Initialize
Temperature

T

T initialized

T measured
and stored

Measure and
store T

delta(T) > C
?

Temperature
failure delta(T)
> C function #

delta(T) <= C

Continue
Monitoring

T

Execute
Function #

Start-Event #

End-Event #

Determine start date D
and lead time ld of the

monitored function

D and ld
determined

Set timer to
now - D + ld

Timer set
Delay monitoring

initalized

Monitor
Delay

Timer
expired?

Timer not
expired

Timer
expired

Create Delay
Event

Delay Event
#

Continue
Monitoring

T
MonitoredFunction

#

End Event
Monitored
Function #

Start Event
Monitored
Function #

Register
received Start-

Event #

Start-Event
registered #

Start-Event #

Locate products
at place #

Products
localized at

place#

Shipping unit
completly
localized?

Shipping units
not comletly

localized

Maximum
localization

cycles reached?

Localization
failure

occured

Max. localization
cycles not
reached

Start-Event #

End-Event #

weaving in AOP terms. By model modification it is

possible to combine aspect models and a business

process model. We apply that combination of models

on CIM level.

The model modification is performed using

openArchitectureWare (OAW) [4]. OAW provides

the Xtend language for model modification and model

transformation. Xtend is an object constraint language

(OCL)-based language. Unlike OCL Xtend supports

the creation and manipulation of model elements. In

order to create EPC models for model modification by

OAW and Xtend the EPC metamodel was

implemented using the ecore eclipse modeling

framework (ecore EMF) meta-metamodel [13]. In the

following we discuss three approaches for combining

aspect models and a business process model.

(1) Aspect models contained in the model

modification source code and generated during

model modification,
(2) Aspect models and model modification in

separate and
(3) Applying aspect models, a model weaver and

post processing operations.

4.2.1 Aspect models generated during model

modification

This type of model modification contains the

instructions for constructing aspect models in the

source code of the model modification. For example

to create model elements (instances) contained in a

localization aspect model the

localizationProcess operation has to be

invoked during model modification. The

localizationProcess operation is shown in

Fig. 7.

localizationProcess(Process process, String param, Integer

occId):

createFunctions(process, param, occId) ->

createEvents(process, param, occId) ->

createOperators(process, occId) ->

createEdges(process, occId)

;

createFunctions(Process process, String param, Integer occId):

process.processElems.add(

createFunction("Locate product at " + param ,

"LocateProduct", occId)) ->

… ;

create Function createFunction(String name, String id, Integer

occId):

this.setName(name) ->

this.setIdentifier(id) ->

this.setOccurrenceId(occId);

...

Figure 7. Operation localizationProcess

The model modification process which instruments

the given business process model with the entire set of

aspect models works as follows.

1. Read the business process model from a file and

instantiate all model elements.

2. Call the first model modification operation which

creates elements of the temperature control aspect

model for each function a temperature failure has

to be monitored.

3. Call the second model modification operation

which creates elements of the delay detection

aspect model for each function to monitor a

possible delay.

4. Call the third model modification operation

which creates elements of the location aspect

model for each function to monitor. This

operation will replace the function to monitor by

the event aggregation for shipping unit

localization.

5. Serialize and store the modified business process

model.

4.2.2 Separation of aspect models and model-

modification

This type of model modification separates model

modification code and aspect models. As well as the

EPC model of the business process the EPC models of

the monitoring aspects are serialized and persistently

stored. The Fig. 8 shows the shipping unit localization

aspect model in an EMF-based editor for EPC

models.

Figure 8. Shipping unit localization aspect
model

For each aspect model we invoke the operation

add<AspectName>Aspect during model

modification. The Fig. 9 depicts the

addLocationAspect operation. The functions

“Transport shipping units to products issue” and

“Receive shipping units at products supply” are each

instrumented by a shipping unit localization aspect

model. Instrumentation is performed by the

overloaded
weaveElemsLocationMonitoringElements

operation. The input parameters of that operation are

model elements which connects the business process

model with an aspect model. These parameters are

similar to point cuts in AOP.

addLocationAspect(ProcessModel baseProcessModel, ProcessModel

aspectProcessModel):

baseProcessModel.addAspectModel(aspectProcessModel,0) ->

baseProcessModel.addAspectModel(aspectProcessModel,1) ->

baseProcessModel.process.weaveElemsLocationMonitoringElements();

private Void weaveElemsLocationMonitoringElements(Process process):

process.weaveElemsLocationMonitoringElements(

process.processElems.select(e|e.identifier == "AndSplit00").get(0),

process.processElems.select(e|e.identifier ==

"TransportShippingUnitsToProductsIssue").get(0),

process.processElems.select(e|e.identifier ==

"ShippingUnitsTransportedToProductsIssue").get(0),

1)

->

process.weaveElemsLocationMonitoringElements(

process.processElems.select(e| e.identifier == "AndJoin01").get(0),

process.processElems.select(e|e.identifier ==

"ReceiveShippingUnitAtProductsReceipt").get(0),

process.processElems.select(e|e.identifier ==

"ShippingUnitsReceived").get(0),

0);

Figure 9. Operation addLocationAspect

The Fig. 10 contains an excerpt of the overloaded
weaveElemsLocationMonitoringElements

operation. The operation shows that the edges

between aspect model elements and the model

elements of the business process model have to be

created. For example the reference to the monitored

function has to be removed from the successor

collection of the startElement parameter. The

value of the startElement parameter is the point

cut selected in the business process model (which is

the original predecessor of the monitored function,

e.g. AndSplit00). A new reference has to be inserted

into that collection to create an edge to the first

element in the aspect model (Locl-XorJoin00).

private Void weaveElemsLocationMonitoringElements(

Process process, ProcessElement startElement, ProcessElement

functionToMonitor, ProcessElement endEvent, Integer occurrenceId):

startElement.setSuccessor(createList(

startElement.successor.select(e|e.identifier !=

functionToMonitor.identifier)))

->

startElement.setSuccessor(createList(

startElement.successor,

process.processElems.select(e|e.identifier ==

"Locl-XorJoin00" && e.occurrenceId == occurrenceId).get(0)))

->

process.processElems.select(e|e.identifier == "Locl-XorJoin00" &&

e.occurrenceId == occurrenceId).setPredecessor(

createList(process.processElems.select(e|e.identifier == "Locl-

XorJoin00" && e.occurrenceId == occurrenceId).predecessor,

startElement))

-> …

;

Figure 10. Operation
weaveElemsLocationMonitoringElements

4.2.3 Aspect models, model weaving and model

modification

For this type of model modification we use the

Xweave model weaver which is part of OAW. To

insert model elements of aspect models into the

business process model model-elements from both

models must match. Matching works either by

defining a point cut expression to select model

elements in the base model (the business process

model in this case) or by the equality of the names of

the model elements. The temperature control aspect

model of Fig. 11 states that processElement

instances from the temperature control aspect model

have to be inserted into the processElems

collection of Process instances (Process *) of the

base model.

Figure 11. Aspect model applicable for model
weaving

Model elements with the same name in both models

(e.g. the function “Transport shipping units to

customer”) are merged into one instance containing

all the attribute values from its originating instances.

5. Discussion and related work

We compare the approaches presented in Sections

4.2.1–4.2.3 with respect to maintainability and

reusability of the aspect models.

The first approach (Section 4.2.1) negates the

opportunities of aspect orientation. By directly

encoding the model in the modification code the

definition of complex aspect models becomes unclear

and poor maintainable in conclusion. Like all other

approaches the first approach provides the advantage

of an automatically created model of the instrumented

business process. This modified model contains a

specification of business-relevant event types. The

advantages of the second approach (Section 4.2.2) are

a clear separation between aspect models and model

modification code, the possibility to graphically edit

aspect models and the opportunity to reuse aspect

models in other business process models. Creating or

modifying complex EPC models in a simple EMF-

based editor is problematic. The third approach for

combing a model of a business process and aspect

models (Section 4.2.3) provides the same advantages

as the second approach. The disadvantage of applying

this approach is that an aspect model is now directly

dependent on model elements in a business process

model. Additionally the model resulting from model

weaving has to be post processed in order to update

relationships between model elements of the business

process model and the model elements of the added

aspect models.

Having implemented three approaches for combining

aspect models for SNM and a business process model

it points out that the separation of aspect models and

the business process model without using a model

weaver (the second approach) provides the greatest

opportunities for reusability and maintainability of the

event aggregation aspect models.

There are also other known approaches combining

aspect models and a base model utilizing aspect

oriented principles. The authors of [6] describe how to

enhance core functionality of a software system by

further functionality encapsulated in aspect models.

Unlike our approaches [6] shows how to enhance a

metamodel for home automation systems using

aspects affecting the structure of that metamodel. [3]

describes an approach of applying and deriving aspect

models in agent-oriented requirements specifications.

They use the Tropos formal language in order to

create models of requirements on the interaction and

on the task structure of plan-based intelligent software

agents. The structure of certain aspects is extracted

and separated into a new model element. The paper

[3] contains algorithms to combine aspect model

elements and models of agents. In comparison to this

work we focus on modeling of the behavior and the

structure of SNM applications. With the help of the

development process of Section 3.3 we have

explained how the result of weaving a business

process model and several aspect models fits into a

model-driven software development approach for

SNM applications.

6. Conclusion and outlook

The contributions of the paper are threefold. First, we

introduced a model-driven development process for

SNM applications. Second, a PIM-level metamodel

for models of SNM applications restricted to the

event-based software architecture has been presented.

Requirements on event aggregations have to be

modeled with respect to business processes

monitored. The implementation and discussion of

three approaches for combining a model of a business

process to monitor and several aspect models for

SNM is the third contribution of that paper.

Specifying aspect models for business-process-related

event aggregation in SNM provides advantages in

reusability, clarity and model maintenance.

There are several areas of future research. First of all

we have to investigate algorithms for the

transformation from the EPC model of the

instrumented business process into production rules

specifying the behavior of an event filter type on the

PIM-level. To do so it is necessary to recognize

certain structures of EPC metamodel elements and

transform them into suitable ProductionRule instances

of the metamodel proposed in Section 3.2. This

transformation will generate coarse-grained event

types and aggregation among them. Another area of

future research is the transformation from the PIM of

a SNM application into a PSM. Evaluation of this

transformation should be done by determining an

implementation technology (e.g. Java Message

Service) and an appropriate PSM-level metamodel.

Furthermore we have to demonstrate a complete tool

chain for the MDSD process for SNM applications

applied to a detailed implementation example.

7. References

[1] Bauer, B., Müller, J., P., Roser, S., A

Decentralized Broker Architecture for

Collaborative Business Process Modelling and

Enactment, Proc. of the 2
nd

 IESA, Bordeaux,

France, 2007, pp. 115-126.

[2] Bézivin, J., Barbero, M., On the Applicability

Scope of Model Driven Engineering, Proc. of the

4
th

 Int. Workshop on Model-Based

Methodologies for Pervasive and Embedded

Software, Braga, Portugal, 2007, pp.3 -7.

[3] Chakrawarthy, K., Joshi, R., Capturing Task and

Dependency Aspects in Agent Oriented

Requirement Specifications, Proc. of the 7
th

AAMAS, Estoril, Portugal, 2008, pp. 25 - 36.

[4] Efftinge, S., Open Architecture Ware

Framework, available at:

http://www.openarchitectureware.org,

Accessed: 1
st
 June 2008.

[5] Faison, T, Event-Based Programming, Apress,

New York, USA, 2006.

[6] Groher, I., Voelter, M., XWeave: Models and

Aspects in Concert, Proc. of the 10
th

 Int.

workshop on Aspect-oriented modeling,

Vancouver, Canada, 2007, pp. 35-40.

[7] Kiczales, G., Irwin, J., Lamping, J., Loingtier, J.,

M., Lopes, C., Madea, C., Mendhekar, A.,

Aspect-Oriented Programming, Proceedings of

the European Conference on Object-Oriented

Programming, Jyväskylä, Finnland, 1997, pp.

220–242.

[8] Kleppe, A, Warmer, J., Bast, W., MDA

explained, Addison-Wesley, Boston, USA, 2003.

[9] Michelson, B., M., Event Driven Architecture

Overview, Patricia Seybold Group, 2006.

[10] OMG, Production Rule Representation

Specification, 2007.

[11] Scheer, A., W., ARIS – Vom

Geschäftsprozessmodell zum

Anwendungssystem, Springer, Berlin, 2002.

[12] Seel, C., Vanderhaeghen, D., Meta-model based

Extensions of the EPC for Inter-Organisational

Process Modelling, Proc. of 4. GI-Workshop,

Hamburg, Germany, 2005.

[13] Steinberg, D., Budinsky, F., Paternostro, M.,

Merks, E., EMF – eclipse modeling framework,

Addision-Wesley, Boston, USA, 2008.

[14] Strassner, M., Schoch, T., Today’s impact of

Ubiquitous Computing on Business Processes,

Proc. of Pervasive2002, Zürich, Switzerland,

2002, pp. 62-74.

[15] Weiser, M., The Computer for the 21st Century,

Scientific American, Vol. 265, No. 3, USA, 1991,

pp. 94-104.

[16] Zimmermann, R., Winkler, S., Bodendorf, F.,

Agent-based Supply Chain Event Management –

Concept and Assessment, Proc. of the 39
th

HICSS, Hawaii, USA, 2006, pp. 1-10.

