
A Data-Centric
Information

Architecture for Power
Systems

Doctoral Thesis
(Dissertation)

to be awarded the degree of

Doctor rerum naturalium (Dr. rer. nat.)

Submitted by

Christoph Gerdes

approved by the Faculty of Mathematics/Computer Science and

Mechanical Engineering, Clausthal University of Technology

Supervised by:

Prof. Dr. Jörg P. Müller

Prof. Dr. Sven Hartmann

Date of oral examination

TBA

ii

iii

EIDESSTATTLICHE ERKLÄRUNGEN

Hiermit erkläre ich an Eides Statt, dass ich die bei der Fakultät für Mathematik/Infor-

matik und Maschinenbau der Technischen Universität Clausthal eingereichte Dissertation

selbständig und ohne unerlaubte Hilfe angefertigt habe.

Die benutzten Hilfsmittel sind vollständig angegeben.

Christoph Gerdes

Hiermit erkläre ich an Eides Statt, dass ich bisher noch keinen Promotionsversuch unter-

nommen habe.

Christoph Gerdes

Abstract

Over the last decades, changes in society, economy and technology have let to the emer-

gence of new requirements for industrial systems [16] [12]. In the near future, new kinds

of systems will appear that differ from their precursers by their inherent organisation and

the kind and number of system entities.

In particular the size and heterogeneity of the new systems give rise to a high level

complexity. In contrast to large-scale systems in other domains, e.g. media or communi-

cation, the industrial domain has particular (non-functional) requirements, e.g. stability

and safety, that must be addressed essentially.

In this work, a data-centric information architecture for large-scale industrial systems

is developed to address the complexity issues. The architectural approach allows for a

system model which is not top down engineered but rather implements a bottom-up

design. Based on scenarios from present power systems, key requirements are identified

and used to validate structures, methods and algorithms of the architectural design.

This thesis makes the following scientific contributions:

• Concept. The concept of the Service Ecosystem for Energy Services provides a model

for the creation and operation of large-scale power infrastructures. It provides meth-

ods for collaboration, communication and exchange. This concept for power infras-

tructures can be utilised also for other types of large-scale industrial systems.

• Architecture. Motivation and elaboration of a data-centric architecture as founda-

tion for distributed intelligence for large power networks. Closing the gap between

lower level networking and control applications this approach lays the foundation for

advanced control algorithms required, e.g., in de-central power generation context.

• Data model. A minimalist canonical data model is developed which allows for com-

munication and co-operation of individual entities.

• Programming language. The Service eCoSystem Query Language (SCSQL) enables

the declarative specification of information flows between entities. Furthermore large

volume data streams can be pre-processed in-network reducing utilisation of the

communication infrastructure.

iv

• Peer-to-Peer protocols. Transition of P2P protocols originally developed for data

sharing in the Internet to the energy automation domain for monitoring and control

purposes.

v

Acknowledgements

This work would not have been possible without the help and support of many people.

I would like to thank my supervisors at university, Prof. Dr. Jörg P. Müller and Prof.

Dr. Sven Hartmann for their support and valuable feedback. Furthermore, I would like to

thank the current and former members of the peer-to-peer and grid computing program

at Siemens Corporate Technology for their support and enlightening discussions, namely

Dr. Kolja Eger, Christian Kleegrewe, Stephan Merk, Sebnem Rusitschka, Alan Southall

and Dr. Gerd Völksen. My thanks also go to my former department head Dr. Burghardt

Schallenberger and division head Prof. Dr. Hartmut Raffler for supporting my publica-

tions and conference participations. When presenting my results at scientific conferences,

I noticed excellent contributions by other researchers that chose a similar domain for the

motiviation of their work. However, often the motivations of these contributions suspected

that their problem to solve is rather hypothetical and does not appear as such in the real

world. My personal requirement for this thesis was to create solutions for real-world prob-

lems. Numberous discussions with colleagues from the Siemens Sector Energy helped me

to identify the key research challenges. Moreover the close cooperation with the business

units allowed me to validate the concepts of the thesis on concrete scenarios and hardware.

Particulary, I would like to thank Gerhard Lang, Dr. Götz Neumann and sector CTO Dr.

Michael Weinhold.

The work on this thesis continued over a five year period. It took many nights, weekends

and holidays to develop concepts, implement simulations, present the results to the sci-

entifc community, and write the final report. Without the support of my family I would

not have been able to complete this thesis. I thank my parents and particularly my wife

Lisa Ann for support, tolerance, motivation, and out of the box perspectives.

Contents

1 Introduction 1

1.1 Large-scale Industrial Systems . 3

1.1.1 Large-Scale System . 3

1.1.2 Industrial System . 3

1.1.3 Example: Large-scale Power Systems 5

1.2 Motivation: Towards a new Communication Architecture for Power Infras-

tructures . 5

1.2.1 Electric Power Infrastructures Today 5

1.2.2 Future Electric Power Infrastructures 6

1.3 Technical Requirements . 7

1.4 Architectural Patterns of Industrial Systems 9

1.5 Challenges and Research Questions . 13

1.5.1 Design and Evolution . 13

1.5.2 Coordination and Control . 14

1.5.3 Monitoring and Assessment . 14

1.6 Hypothesis . 15

1.7 Contributions of this Thesis . 15

1.7.1 Publications . 16

1.7.2 Patents . 17

1.8 Structure of this Thesis . 18

2 Technologies for Data-Centric Systems 21

viii CONTENTS

2.1 Software Architectures for Complex Systems 21

2.1.1 ISO/IEC 42010 IEEE . 22

2.1.2 Ultra Large Scale Systems and the Open Source Model 24

2.2 Databases . 26

2.2.1 Relational Database Management Systems 27

2.2.2 Data Stream Management Systems 29

2.2.3 Real-Time Data Processing . 30

2.3 Data Management Beyond The Relational Model 33

2.4 Peer-to-Peer Systems . 36

2.4.1 Structured, Unstructured and Hybrid Networks 36

2.4.2 Support for Complex Queries . 38

2.4.3 Application Layer Multicast . 40

2.5 Publish-Subscribe Systems . 43

2.5.1 Topic Based Subscriptions . 43

2.5.2 Content Based Subscriptions . 44

2.5.3 Type Based Subscriptions . 44

2.5.4 Quality of Service . 44

2.6 Declarative Networking . 45

2.7 Summary . 48

3 Power System Infrastructures 51

3.1 Power Systems Essentials . 51

3.1.1 Power System Key Concepts and Components 52

3.2 Power System Control . 57

3.2.1 Control Centres . 58

3.2.2 Control Architectures for Distributed Generation 59

3.3 The Smart Grid . 63

3.3.1 Surrounding Conditions . 64

3.3.2 Challenges and Requirements for Smart Grid Deployment 65

CONTENTS ix

3.4 Summary . 67

4 Scientific Framework: Methods and Tools 69

4.1 Architecture and Model . 70

4.2 Methods for Architecture Selection and Evaluation 72

4.3 Simulation . 73

4.4 Methods for Language Selection and Evaluation 79

4.5 Summary . 82

5 An Ecosystem for Energy Services 85

5.1 The Ecosystem Metaphor . 86

5.2 Core Services . 88

5.2.1 Identification . 89

5.2.2 Registration . 89

5.2.3 Incentive . 89

5.3 Interaction and Actor Model . 90

5.4 Data Model . 91

5.4.1 Data Types . 93

5.4.2 Quality Attributes . 94

5.5 Network Model . 95

5.6 Rules and Policy . 96

5.6.1 Rule Specification . 97

5.6.2 Quality Attributes . 98

5.7 Summary . 99

6 A Data Centric Architecture for Large-Scale Industrial Systems 101

6.1 Scenarios . 101

6.1.1 Scenario 1: Remote Backup Protection 102

6.1.2 Scenario 2: Automated Outage Management 108

6.2 Architecture Overview . 112

x CONTENTS

6.3 Node Architecture and Query Processors 116

6.3.1 Communication . 116

6.3.2 Memory . 118

6.3.3 Query Processor . 119

6.3.4 Event Kernel . 129

6.3.5 Monitoring . 134

6.4 Index Cloud . 134

6.4.1 Formation . 135

6.4.2 Index Data Management . 139

6.4.3 Query Execution . 142

6.5 Query Language for Service Ecosystems 144

6.5.1 Foundations . 145

6.5.2 Programs . 146

6.5.3 Queries . 147

6.5.4 Numbers . 147

6.5.5 Strings . 147

6.5.6 Conditional Execution . 148

6.5.7 User Defined Funtions . 148

6.5.8 Quality Attributes . 148

6.5.9 Compiler Architecture . 149

6.6 Implementation View . 150

6.6.1 Asynchronous Request Handling . 150

6.6.2 Data Discovery . 152

6.6.3 Role-based Access . 153

6.7 Summary . 155

7 Evaluation 157

7.1 Architecture Evaluation . 157

7.1.1 Identification of Architectural Styles 157

CONTENTS xi

7.1.2 Influence on Quality Attributes . 159

7.1.3 Quality Attributes . 161

7.1.4 Summary . 166

7.2 A Measure of Complexity . 166

7.2.1 Higher-Order States . 167

7.2.2 Entropy . 168

7.2.3 Summary . 169

7.3 Nodes . 169

7.3.1 The MONk Operator . 169

7.3.2 Query Execution . 172

7.4 Index Cloud . 180

7.4.1 Performance . 181

7.4.2 General Behaviour . 185

7.4.3 Availability . 187

7.5 Programming Language . 190

7.5.1 Completeness . 191

7.5.2 Control Loop . 191

7.5.3 Complexity . 193

7.6 Summary . 194

8 Conclusions and Future Work 199

8.1 Design and Evolution . 200

8.2 Coordination and Control . 200

8.3 Monitoring and Assessment . 201

8.4 Future Work . 202

Bibliography 204

Appendices 220

xii CONTENTS

A Cost Functions 220

B SCSQL Grammar 221

C Value Networks 230

D Acronyms 232

Show me your flowcharts and
conceal your tables, and I shall
continue to be mystified. Show

me your tables, and I won’t
usually need your flowcharts:

they’ll be obvious

Fred Brooks, The Mythical
Man-MonthChapter 1

Introduction

Over the last decades changes in society, economy and technology have let to the emergence

of new requirements for industrial systems [16] [12]. In the near future, new kinds of

systems will appear that differ from their precursors by their inherent organisation and

the kind and number of system entities.

Daniel Bell describes in “The Coming of Post-Industrial Society”, the transition from a

manufacturing based economy towards an economics of information [13]. Instead of culti-

vating farms, producing steal or mining coal, post-industrial societies generate educated

people and large organisations. Doubtlessly his vision became reality in the late eighties

and nineties of the last century when business conducted in the finance sector grew be-

yond worldwide exports [153] [47]. The transition of society was fostered by the emergence

of digital systems like the personal computer and the Internet which enabled knowledge

sharing and collaboration at a global scale.

Information technology started to digitise manufacturing systems to achieve higher effi-

ciencies and support new production management strategies such as built to order [57]

and mass customisation [109]. Driven by the new needs of the information society and

the capabilities of modern information technology, industrial systems have been evolving

from central assembly-lines towards dispersed, digital and automated batch production

systems.

However, in order to construct and operate these new industrial systems, several conflict-

ing requirements need to be balanced. Globalisation and growing competition among mar-

ket players require extended differentiation. Customers demand products that precisely

match their individual needs. Individual production, however, conflicts with increased

pricing pressure as a result of competition among players. The production of customised

goods boosts the complexity and dynamics of product management, production and mar-

1

2

keting. Hence new systems must offer both the efficiency of automated mass-production

and the delivery of customer specific products. Moreover, the change in production pro-

cesses demands co-operation among autonomously acting players, the ability to quickly

react to evolving requirements as well as the integration of third parties, e.g., the con-

sumer into the production process. Consequently, a recent McKinsey report [31] states

that, in order to gain market share, corporations require information and communication

architectures with the flexibility to quickly react to changes in demand, the support of

agile implementation of new business models and the ability to seamlessly co-operate with

third parties.

The Internet fosters rapid development of Information and Communication Technologies

(ICT) to create computer networks that connect millions of people world wide. Originally

developed for scientific and consumer applications, in the last decade, standardised com-

munication technologies influenced industrial applications as well. However, a variety of

challenges explicitly the complexity [16] [12] [29] of the new technology hinders thorough

adoption of ICT in industrial systems.

In recent years two parallel worlds established. The world of business processes and of-

fice applications versus the automation world with control equipment, data acquisition

systems and engineering tools. Both worlds are largely isolated silos without unified and

integrated interfaces [70]. The separation is not only highly inefficient, but also inhibits

thorough implementation of cross-enterprise business processes and hence limits partner

co-operation. However, even with vertically integrated automation and business systems,

new challenges arise due to the sheer size of systems. These large-scale systems consist of

thousands of heterogeneous platforms, controllers, sensors and actors connected through

heterogeneous wire-line and wireless networks. The challenges inherent to these kind of

systems are not limited to technical issues like huge code repositories with millions of

lines of code or very large data volumes, but also include non-technical issues like the

large number and diversity of people involved in using as well as creating these systems.

Individual parts of the system will be owned and maintained by different players with,

potentially, conflicting business goals. To overcome these challenges, new architectures for

large-scale industrial systems are required.

In this work, a data-centric Information architecture for large-scale industrial systems

is developed by the example of a large-scale power system. The architectural approach

allows for a system model which is not top down engineered but rather implements a

bottom-up design. Based on scenarios from present power systems, key requirements are

identified and used to validate structures, methods and algorithms of the architectural

design.

1 Introduction 3

This introductory chapter is structured as follows: First, the systems under investiga-

tion are introduced. The research questions and challenges addressed in this work are

extracted by analysing architectural approaches and requirements of the target systems.

Subsequently, the research hypothesis is formulated. The chapter concludes with a sum-

mary of contributions of this thesis and outline of this thesis.

1.1 Large-scale Industrial Systems

This work targets large-scale industrial systems. In compliance with general systems the-

ory, a system is understood as being comprised of a set of interacting or interdependent

entities forming an integrated whole [154]. The particular systems investigated in con-

text of this work, are characterised by their size and inherent complexity on the one

hand, and by their critical requirements in regard to safety and reliability on the other.

The systems are open, meaning that they can be accessed, manipulated and extended by

computers, people and organisations. Instead of a formal system definition, the following

summarises the key characteristics of the systems under investigation. The definitions are

used throughout this work.

1.1.1 Large-Scale System

A large-scale system consists of thousands of entities connected by some kind of network.

Entities are controlled by at least two different parties. The system executes several pro-

cesses in which one or more entities may be involved. Successful operation of the system

may depend upon collaboration of entities as well as their controlling stakeholders. The

emerging properties of a large-scale system are usually not obvious from the properties of

individual entities. Due to the size of the system, a globally exact system state cannot be

assessed. An example of a large-scale system is the Internet which is comprised of millions

of nodes each operated by a different legal entity. Another example are product lifecy-

cle management (PLM) systems which co-ordinate product development and production

processes on a cross-organisational scale. PLM systems often manage entire supply chains

with a multitude of different legal entities.

1.1.2 Industrial System

An industrial system consists of multiple entities (sensors, controllers, actors) engaged in a

controlled environment to achieve a specific production goal. Entities are manufactured to

4 1.1 Large-scale Industrial Systems

reliably work even under extreme conditions, e.g. heat, dust, radiation. Hard- or software

failures of individual entities may cause physical damage to equipment and threat life or

health of personnel.

Production Process

Input- & output signals

Control level

Supervisory control level

Manufacutring Execution System

Enterprise Resource Planning

Field level

SPS / PLC

SCADA

MES

ERP

Figure 1.1: The automation pyramid. A layered model of an industrial automation system.

Industrial systems are often structured according to a multi layered model frequently

referred to as automation pyramid (Figure 1.1). At the top levels, business applications

like Enterprise Resource Planning (ERP) and Manufacturing Execution Systems (MES)

visualise and process data from the factory floor. Supervisory Control And Data Acqui-

sition (SCADA) systems collect data and provide Human Machine Interfaces (HMI). At

the lower levels, actuators and sensors are controlled by, e.g., Programmable Logic Con-

trollers (PLC) which directly control the production processes. The pyramid shape is due

to the fact that number of devices and vendors in lower levels exceed those in higher

levels. Recently, e.g. by Vogel-Heuser et. al. [146], this model has been found to be no

longer accurate. For instance, as the capabilities of sensor hardware increases, intelligence

migrates to lower levels. Additionally, technologies like industrial Ethernet allow for direct

access from MES to the field level thereby bypassing the control level.

In context of this work, industrial systems are not restricted to the automation pyramid

model. Rather the structure of the system is assumed to emerge dynamically based on

the qualitative description of system entities as will be explained in Chapter 6. This

approach allows for a system model independent of the physical details of the underlying

communication infrastructure.

1 Introduction 5

1.1.3 Example: Large-scale Power Systems

Power infrastructures are an example of large-scale industrial systems. As a matter of

fact, power systems belong to the class of the largest machines built by man. They are

absolutely critical for modern societies. A power system consists of thousands of devices

ranging from power generation via transmission and distribution to consumption. Power

systems are highly connected with other power systems operated by separate legal enti-

ties. Hence considerable communication and co-ordination effort is required to guarantee

stable operation. Today power systems are in profound change. Driven by regulatory

and economic factors [152], power system operators must adopt new business models like

individual tariffs and value-addded services in order to remain competitive [147]. The

following section introduces the state of power systems today and provides an outlook to

the fundamental change that will occur in the near future.

1.2 Motivation: Towards a new Communication Ar-

chitecture for Power Infrastructures

Electrical energy constitutes the backbone of modern society and therefore is of utter

importance for all residential, commercial, industrial and transportation infrastructures.

Global pressure to reduce green house gases as well as ongoing unbundling and liberal-

isation of energy markets together with the emergence of new and disruptive business

models, make power systems an urgent area of research. Similarly to other industries,

e.g., telecommunication [148], liberalisation [152] starts to transition energy generation

and distribution into competitive and cross-organisational business.

1.2.1 Electric Power Infrastructures Today

Power infrastructures belong to the largest, most complex and therefore most difficult to

control machines humans have ever built. The peculiarity of power systems is based on

a set of technical and physical characteristics. Among the most significant are: first, the

fundamental properties of electricity itself which make power systems difficult to control.

Electricity travels at nearly the speed of light. This means that any consumer connected

to the grid has instantaneous effect on the network since for every electron “consumed”,

a new one needs to be injected into the grid in real-time. Second, today electricity cannot

be stored or can only be stored at a very limited scale. As a result, network operators

must maintain almost exact balance of generation and consumption at all times. Third,

6 1.2 Motivation: Towards a new Communication Architecture for Power Infrastructures

the power grid is highly complex. Power received by a consumer cannot be traced back to

a single generator. In the past, in many regions of the world the grid grew continuously

thereby integrating small local grids into the main grid. Therefore, today a labyrinth of

paths exists between generator and consumer. If one transmission line fails, its load is

automatically rerouted through alternative lines. If these lines operate already at their

maximum capacity, they will overload and shutdown as well, causing cascading effects

and region wide blackouts. The power grid therefore requires constant supervision and

control in order to maintain stable operation and quality of service.

Traditionally, power generation was fully decentralised. Spread over large geographic ar-

eas, isolated generators and small networks provided electrical energy to cities and in-

dustrial plants. Power quality ([126] p. 45ff.), i.e., constant frequency and voltage, was

considerably below today’s standards with frequent blackouts and fluctuations in volt-

age and frequency. To increase quality and efficiency, in the first half of the last century,

isolated networks and generators were gradually centralised and nationalised. Today, elec-

tricity networks are strictly hierarchical with a top-down flow of electric power from a few

large power plants down to a large number of consumers. Power is generated usually at

11-25KV at the power plant and then stepped up to 200-400KV for transmission over long

distances. Transformers at substations transform power to 110KV for industrial consumers

or small scale power plants. At load centers such as citites, power is again transformed

to 1-50KV before it passes the final transformation to 220V to reach the end customer.

The main challenge, keeping generation and consumption in balance, is a complex control

task that relies on accurate measurements or estimates of the current network state at all

voltage levels. Today, however, power networks are partially black boxes due to the lack of

sensor equipment and communication infrastructure. Hence, load efficiency is sub-optimal

and the flow of power is often unknown. However, based on static models, flows and states

can be estimated and, at least, robust operation can be achieved.

1.2.2 Future Electric Power Infrastructures

The situation is changing dramatically as power generation shifts again from a central

structure towards distributed generation. With the increased usage of renewable energy

sources such as wind, sun and geothermal sources, former consumers now feed electrical

energy into the distribution network. Consequently, power flows reverse, flowing from bot-

tom to top, causing unforeseen dynamics and unstable operation. Due to the stochastic1

behaviour of the sources and the modern highly meshed electricity network, the situation

1The output of renewable sources often cannot be precisely forecasted due to non-deterministic envi-
ronmental influences, e.g wind or sun intensity.

1 Introduction 7

is fundamentally different from the de-central generation scenario of the first part of the

last century.

While power systems are capable to compensate a certain degree of de-central feeders,

once de-central generation reaches a critical threshold, new communication and control

infrastructures are needed to maintain continuous supply of power. The static estimation

models will no longer deliver accurate results such that the availability of real-time infor-

mation on the grid status becomes a mandatory requirement for stable control decisions.

To retrieve an accurate snapshot of the system, information must be sampled at high rates

at thousands of nodes, yielding high volume streams of data that need to be collected and

processed in a timely manner.

Data sources are highly heterogeneous with many hardware platforms and different com-

munication standards operating concurrently. Sources are not restricted to sensors and

automation equipment, but rather the diversity of data reaches from meteorological data,

power measurements, temperatures of power lines and equipment to pricing information

and other economic data.

The challenges cannot be addressed individually by electric utilities but rather a co-

ordinated effort is required. Electrical networks of different utilities are highly connected

and thus cannot be looked at in isolation. Actions taken by one utility, e.g. shutdown of

a high voltage line, has immediate effects on the networks of other utilities. It is therefore

mandatory that utilities provide efficient and transparent communication endpoints for

cross-enterprise data exchange.

1.3 Technical Requirements

In this section, key requirements to further characterise large-scale industrial systems

are explained. The analysis is based on the example of power infrastructures as briefly

introduced in the previous sections. An in-depth analysis of requirements and tactics to

achieve associated quality attributes is conducted in Chapter 6.

• Performance. The time required to generate a response to a given stimulus is critical

for successful operation of the system. If, based on the sensed situation, a decision

is delayed equipment damage or even harm of human life may be the consequence.

• Predictability. Entities participating in control applications must behave determin-

istically. An entity must guarantee to respond within a specified time window. Not

meeting this constraint renders the entities’ contribution useless as the response

cannot be processed and will be discarded.

8 1.3 Technical Requirements

• Modifiability. Automation devices are deployed to operate for decades. The environ-

ment and the requirements of a production system, accordingly, may change over

time requiring adaption to the new situation. Modification includes deployment of

new control algorithms as well as rules to discover and connect to new entities that

participate in the system.

• Security. Enabling modification of system functionality introduces the possibility of

malicious manipulation of entity functionality. Furthermore, opening networks for

third parties, e.g. for suppliers or service providers makes entities vulnerable for

denial of service attacks which may interrupt the system functionality.

• Adaptability. Although industrial devices can be assumed to be very reliable, in-

creasing the number of entities in the system also increases the probability of fail-

ure. Individual devices need to adapt to internal as well as external conditions and

their dynamic change over time. The quality attribute of Adaptability can be further

classified as

– Scalability. The ability to adapt to a changing number of entities in the system.

– Flexibility. The adaption of the application to environmental conditions during

runtime.

– Stability. The capability of a system to maintain its functionality even in the

presence of frequent adaptions.

• Observability. Individual entities may undergo complex state evolution when exe-

cuting processes in the system. Often entities must co-operate to achieve a common

goal. Failure detection and state assessment of remote entities rely on open interface

to state and performance information.

• Awareness. Entities are highly connected. Actions taken by one entity may have

effect on other entities. Complex cascading effects may influence system performance

and stability. Individual entities must be aware of either the full system state or an

estimation thereof, when making control decisions.

• Availability. Industrial systems require individual entities to be reliable and highly

available. The requirement includes the availability of function as well as data.

• Integrability. Entities directly interface with the business process infrastructure of,

e.g. a plant operator or utility. Aiming for fully automated processes, seamless in-

tegration into the existing IT infrastructure is mandatory.

1 Introduction 9

1.4 Architectural Patterns of Industrial Systems

By examining the infrastructure of industrial systems such as the ones described in pre-

vious sections, a variety of architectural approaches can be identified. However, before

we can discuss the different architectural patterns, the term architecture needs further

clarification. Throughout this work2 the term information architecture describes the con-

cept and definition of the structure of an information system [155], e.g. a computer based

system. The description is non-technical and focusses on universal schemes for structur-

ing and classifying the interaction of system entities. The term software architecture is

understood as defined by Bass et. al. [11] which state:

The software architecture of a program or computing system is the structure or

structures of the system, which comprise software components, the externally

visible properties of those components, and the relationships among them.

Hence, the term software architecture is more technical while the information architecture

describes the system at a level independent of a concrete technical mapping. In order to

provide a compact description, the following often uses simply the term architecture when

it is clear from the context whether an information or software architecture is referred to.

This remainder of this section briefly3 summarises current approaches applied to industrial

automation systems, elaborates their deficiencies in context of the requirements discussed

in Section 1.3 and identifies the gap this work is aimed to bridge.

Client-Server

The client-server model is used by most current systems. In a client-server based system,

clients send requests to a single server where a respective action is executed and a response

is passed back to the client. While being simple and efficient in small, static environments

client-server architectures rarely resemble the modelled system structure and, as a cen-

tralised approach, lack the flexibility and scalability to support the new requirements

described in the previous sections.

Distributed Objects

Distributed objects support models closer to the actual system circumstances. Objects

usually represent a physical entity or process of the system. Compared to client-server

2Note: the concept of an architecture is further classified in the context of this work by Chapter 4
3An extensive analysis of requirements is conducted in Chapters 6 and 7

10 1.4 Architectural Patterns of Industrial Systems

architectures, they are more flexible and scalable. The functionality provided by an object

is encapsulated by a well-defined interface. This allows for replacement or extension of the

implementation leaving other parts of the system untouched. However, communication

in distributed object systems is often synchronous due to the lack of pro-activeness of

individual objects.

Service Oriented Architectures

In Service Oriented Architectures (SOA), entities are described by the service, i.e. the

function, they provide. Services encapsulate resources which execute the service func-

tions. The service interface provides a consistent view of the resource. Besides the service

interface, a service description provides information about the interface as well as qual-

ities of its operation. In order to use a service, a service consumer states his interest in

a service query and issues the query at a service registry which maintains all available

service descriptions. Once found, the service consumer binds to the service first and then

executes the desired functions. A key advantage of the service oriented approach is the

different temporal options for service binding. Early binding is referred to at design time

when requirements are mapped to service descriptions. Late binding, in contrast, renders

a system more flexible as the service consumer binds the service at runtime. Ultra-late

binding takes the concept one step further as applications are created by composing ser-

vices dynamically for each invocation and removing services from the application after

they are no longer needed. Complex functionality is implemented by orchestrating several

services. To architect loosely coupled systems, service orchestrations are usually specified

declaratively in standardised orchestration languages.

Similarly to distributed objects, the request/response communication model of services

is synchronous. Services are not expected to forward pro-actively information to other

services.

Multi-Agent Systems

The intelligent agents paradigm [96] is a modern approach that has had influence on

the industrial sector in the recent past but has not yet reached major applicability. In-

telligent agents provide a higher level of autonomy as each agent operates with its own

thread of control. Provided with high level communication languages, agents can resemble

closely the structure of modelled systems. In the process of modelling industrial automa-

tion systems either functional or physical decomposition is utilised [105] [19]. Functional

decomposition breaks the system into tasks and subtasks that are each represented by

1 Introduction 11

an agent. In contrast, physical decomposition breaks the system down to physical objects

that are represented by agents. Consequently agent models provide intuitive abstractions

to industrial systems.

For data intensive applications efficient data exchange is important. For instance, in cer-

tain situations a utility might not be interested in individual devices or tasks to perform.

Of interest is rather the state and dynamics of the system. The operator needs to know if

the system is fully operational, if there exists an error or whether the system operates at

maximum efficiency. These kind of queries demand a high level abstraction of the system.

For example, the operator cannot know which device might have recorded an error nor is

it practical to query all devices. He wants to issue complex queries of the form “show me

all regions where voltage has been unstable within the last 20 minutes”. In other words,

the operator needs a declarative interface to the industrial system, where he can describe

what he requires in which quality rather than where from and how.

In an agent architecture this functionality resides between lower level networking and

application layer intelligence. As agents are usually hosted by a container or platform,

which provide this communication layer, no explicit data centric modelling is undertaken.

Therefore, the flexibility of the model is reduced and the methodologies seem to miss an

important aspect of the target systems.

Data-Centric Architectures

The architectural patterns and paradigms introduced so far envision software systems

as a set of tasks, designed as functions, objects, services or agents. The emphasis on

functionality is problematic in data intensive domains [61]. Complex data models and

non-functional data qualities often have considerable influence on functional interfaces.

Hence, if not considered at an early phase in the design process, severe design flaws may

be the result.

Data-centric approaches promote data to a first class citizen in the architecture. In the

data-centric approach, a system is modelled by defining data elements that describe the

components and characteristics of the system. In other words, focus is set on data flow and

transformation within system, rather than the processes, i.e. functions, that perform these

actions. As one of the first steps in designing a data-centric architecture, the architect

creates a domain model by answering the following questions: what are the entities of the

systems and what kind of data do they consume, generate or transform? What qualities

are associated with the data? In succeeding steps, the domain model is mapped to concrete

data structures and types. Eventually, the data structures are mapped to implementation

artefacts.

12 1.4 Architectural Patterns of Industrial Systems

In heterogeneous scenarios several domain models may exist. In order to enable commu-

nication and exchange of data between functional entities a canonical data model, i.e. a

lingua franca is designed. Hence individual components can keep on using their internal

domain specific data model. Translators accomplish the conversion between the internal

and the canonical data models. The approach gurantees application flexibility and ensures

lose coupling between components.

OSI
I-VI

Control Intelligence

Data Model

Overlay

Node
Physical Host

Figure 1.2: Data-centric architecture based on the Open System Interconnection Reference

model (OSI)

Figure 1.2 illustrates a data-centric architecture for a large-scale distributed system. At

the outer layer, components of higher level applications, such as MES or ERP software

are defined. A shared data model describes the characteristics of inter-component com-

munication. The data model is mapped to concrete data structures, e.g. overlays with

distributed hashtables. Finally data structures are associated with software components

that represented physical hardware devices. Standard networking techniques such as the

Internet Protocol (IP) implement the lower level communication infrastructure.

The newly emerging industrial systems constitute a challenging field of research. Due

to the characteristics of these systems, research requires interdisciplinary approach that

includes both technical as well as social sciences. The research area of so called Ultra

Large-Scale Systems (ULS) [98] could be a suitable starting point as well for research

on large-scale industrial systems. Following the line of argumentation in [98] p. 21ff., the

subsequent section elaborates the research questions and challenges that will be addressed

by this work.

1 Introduction 13

1.5 Challenges and Research Questions

The complexity of traditional power systems is further amplified by regulatory policies, e.g.

liberalisation and unbundling [152]. Future power systems will be characterised by thou-

sands of platforms, sensors, devices and software systems, each controlled and maintained

by autonomously acting business players and connected via heterogeneous networks. Cor-

respondingly, new systems will have more actors using them for different purposes. The

amount of data will increase dramatically; the number of connections and interdependen-

cies between software components which will be based on an increased number of hardware

components will multiply. These systems will not be designed by an individual company

but rather developed by multiple stakeholders with, potentially, conflicting needs as well

as diverse and evolving requirements. In the following, the challenges for building and

operating such systems are identified and grouped into three categories namely: Design

and Evolution, Coordination and Control and Monitoring and Assessment.

1.5.1 Design and Evolution

The traditional approach to system design in the context of many individual contributions

is by standardisation and development of reference models. This process is time consum-

ing, not agile and agnostic to change and evolution. With individual contributors pursuing

non-technical, i.e., strategic agendas in the standardisation consortium the efficiency of

the process is often sub-optimal especially with increasing size of the consortium.

The design of large-scale industrial systems calls for new methods beyond standardisation.

Extending the technological perspective on system design with economic, legal and social

considerations will yield a decentralised design process closely oriented to the goals of

the individual contributor while being founded upon a lowest common denominator. Such

processes are already in practice as can be observed in several open-source projects, e.g.

JBoss application server [44] or the Linux kernel (www.kernel.org).

Due to the size of a large-scale industrial system, traditional engineering approaches seem

less suitable. In the context of designing these new kinds of power systems, the following

questions need to be addressed: How can a system be designed that addresses all individual

needs of its users and contributors? How can the system designed be evolved and adapted

to changing policies and requirements?

14 1.5 Challenges and Research Questions

1.5.2 Coordination and Control

Having large numbers of autonomously acting players concurrently using the system, calls

for techniques to harmonise individual requirements and ensure achievement of overall

system goals. Entities in the system may interact with each other directly or indirectly at

design time or during runtime. Coordination and control are required to integrate design

and development efforts as well as ensure stable and fair resource utilisation. Interactions

may change over time, requiring mechanisms to be able to adapt patterns of coordination

and cooperation.

Key questions to be answered in the context of the coordination and control challenges

are: How can efficient resource sharing be implemented? How can the system be modi-

fied to adapt to new requirements or changes in the environment without considerable

interruptions? How can users customise their interaction with other users?

1.5.3 Monitoring and Assessment

During operation the system state may consist of thousands or millions of individual entity

states. Using an incomplete or wrong runtime model of the system may yield unwanted

responses to control and co-ordination efforts. As an example, consider the management

of shared resources, like a CPU or memory. If a resource state is unknown or incorrect, e.g.

the measurement of it’s utilisation, certain resources may overload while others are not

utilised at all. Moreover, if load is shifted between two resources, constant reallocations

may introduce unnecessary overhead.

Assessing the state of a highly complex system, however, is not trivial. States emerge glob-

ally distributed and may evolve quickly over time. Component interdependencies cause

complex transient states. Consequently, complete state assessments are impossible in large

scale systems. Advanced methods are required to provide meaningful indicators of the sys-

tem behaviour.

Key questions to be answered are: What are meaningful indicators that characterise the

current system state? How can be determined what effect a control action will have?

Since complete state assessment in not possible and hence information is imprecise and

uncertain, how do monitoring and assessment mechanisms cope with the constantly and

quickly evolving states?

1 Introduction 15

1.6 Hypothesis

In previous sections the type of system that is in the focus of this work was characterised.

Key challenges and requirements for large-scale industrial systems of the near future were

introduced. Examining existing architectural patterns, several deficiencies were identified

that hinder achievement of requirements. Large-scale industrial systems pose considerable

challenges for information architectures. The aim of this work is to elaborate an archi-

tecture consisting of structures, interaction models and algorithms which addresses the

challenges and answers the research questions stated above. Taking all previous sections

into consideration, the hypothesis made in this work is summarised as:

Using future power infrastructures as reference system, the research problems

emerging in order to create, operate and maintain large-scale industrial sys-

tems are addressed by the design of an open information architecture called:

Ecosystem for Energy Services. As lowest common denominator for all inter-

acting entities, it builds upon semi-structured data augmented with quality

attributes. The architecture enables all actors to interact, provide and consume

services. Supporting a continuous, decentralised and agile design process, the

ecosystem can be adapted by its users to meet new regulatory and individual

business requirements.

By establishing a data-centric architecture for large industrial systems the gap between

lower level networking and control applications can be closed. Data availability at the

right place and time, localises control problems and therefore reduces control system

complexity. A global perspective on all data available in a distributed system enables

de-coupling of processes from the communication infrastructure and provides the basis

for future extensions on the control layer. By providing mechanisms to adapt to network

specifics such as declarative specification of information flows, it ensures scalable real-

time availability even for large-scale wide area installations. This enables automation of

all controllable equipment under one concise paradigm.

1.7 Contributions of this Thesis

This thesis develops several concepts and a concrete information architecture in order

to address the challenges identified in previous sections. The following summarises the

building blocks and lists the contributions made to scientific conferences, journals and

books.

16 1.7 Contributions of this Thesis

• Concept. The concept of the Service Ecosystem for Energy Services provides a model

for the creation and operation of large-scale power infrastructures. It provides meth-

ods for collaboration, communication and exchange. This concept for power infras-

tructurs can be utilised also for other types of large-scale industrial systems.

• Architecture. Motivation and elaboration of a data-centric architecture as founda-

tion for distributed intelligence for large power networks. Closing the gap between

lower level networking and control applications this approach lays the foundation for

advanced control algorithms required, e.g., in de-central power generation context.

• Data model. A minimalist canonical data model is developed which allows for com-

munication and co-operation of individual entities.

• Programming language. The Service eCoSystem Query Language (SCSQL) enables

the declarative specification of information flows between entities. Furthermore large

volume data streams can be pre-processed in-network reducing utilisation of the

communication infrastructure.

• Peer-to-Peer protocols. Transition of P2P protocols originally developed for data

sharing in the Internet to the energy automation domain for monitoring and control

purposes.

1.7.1 Publications

• Christoph Gerdes and Jörg P. Müller. Data-centric Peer-to-Peer Communication in

Power Grids. Proceedings of KiVS Global Sensor Networks (GSN09), 2009. [Online].

Available: http://eceasst.cs.tu-berlin.de/index.php/eceasst/article/view/228.

• Fabian Stäber, Christoph Gerdes, and Jörg P. Müller. A Peer-to-Peer-based Ser-

vice Infrastructure for Distributed Power Generation. In Proc. of 17th IFAC World

Congress, Seoul, Korea, Intl.l Federation of Automatic Control, 2008. [Online].

Available: http://www.ifac-papersonline.net.

• Christoph Gerdes, Christian Kleegrewe, and Jörg P. Müller. Declarative resource

dis- covery in distributed automation systems. In I. Troch and F. Breitenecker,

editors, MathMod, volume ARGESIM Report, 2009.

• Christoph Gerdes, Christian Kleegrewe, and Jörg P. Müller. Declarative resource

dis- covery in distributed automation systems. Simulation News Europe. To appear.

1 Introduction 17

• Christoph Gerdes, Udo Bartlang and Jörg P. Müller. Vertical Information Integra-

tion for Cross Enterprise Business Processes in the Energy Domain. In K. Fischer, A.

Berre, J. P. Müller, J. Odell, eds. Agent Technologies for Enterprise Interoperability.

Lecture Notes in Business Information Processing (LNBIP), Springer-Verlag, pages

1-28, 2009.

• Kolja Eger, Christoph Gerdes, and Sebnem Öztunali. Towards P2P Technologies

for the Control of Electrical Power Systems. In P2P 2008: Proceedings of the 2008

Eighth International Conference on Peer-to-Peer Computing, pages 180-181, Wash-

ington, DC, USA, 2008. IEEE Computer Society.

• Christoph Gerdes, Udo Bartlang, and Jörg P. Müller. Decentralised and reliable ser-

vice infrastructure to enable corporate cloud computing. In Paul Cunnigham and

Miriam Cunnigham, editors, Collaboration and the Knowledge Economy: Issues,

Applications and Case Studies, volume 5 of Information and Communication Tech-

nologies and the Knowledge Economy, pages 683-690, Nieuwe Hemweg 6B, 1013

BG Amsterdam, The Netherlands, October 2008. IIM, IOS Press. Proceedings of

eChallenges e-2008 Conference.

• Christoph Gerdes, Christian Kleegrewe, Stephan Merk, Kolja Eger, and Jörg P.

Müller. Automation Grid. In proceedings of VDI Kongress AUTOMATION 2009.

VDI Kongress AUTOMATION 2009, Baden-Baden, Juni 2009, pages 25-28, 2009.

Full paper on CD.

• Christoph Gerdes, Christian Kleegrewe, Stephan Merk, Kolja Eger, and Jörg P.

Müller. Automation Grid. In Automatisierungstechnische Praxis, atp. To appear.

• Vivian Prinz, Florian Fuchs, Peter Ruppel, Christoph Gerdes, and Alan Southall.

Adaptive and fault-tolerant service composition in peer-to-peer systems. In DAIS,

pages 30 - 43, 2008.

1.7.2 Patents

• Autonomous Database for Large Scale Industrial Systems, pending, 2010, [Germany]

• Gossip-based Distributed Demand Side Management, pending, 2009, [Germany]

• Declarative Control System for Industry Automation, pending, 2008, [Germany]

• Hierarchische Aggregations- und Steuerinfrastruktur auf Peer-to-Peer Basis,

pending, 2007, [Germany, Europe, US]

18 1.8 Structure of this Thesis

• Verfahren zur Synchronisation in parallelen, diskreten und ereignisorientierten Sim-

ulatoren von Peer-to-Peer Systemen, 10 2007 024 900, 2007, patent granted, [Ger-

many]

• Verfahren zur Synchronisation in parallelen, diskreten und ereignisorientierten Sim-

ulatoren von Peer-to-Peer-Systemen mit integriertem dynamischen Load Balancing,

10 2007 024 900, patent granted, [Germany]

• Verteilte Komposition und verteilte Ausführung zusammengesetzter Dienste in Peer-

to-Peer Netzen, patent pending, 2007, [Germany, Europe, US]

• Execution of a Distributed Transaction with Temporary Inconsistencies, patent

granted 10 2006 014 909, 2006 [Germany, Europe, US]

• Self-organizing infrastructure for reliable service execution, patent pending, 2006

[Germany, Europe, US]

1.8 Structure of this Thesis

Figure 1.3 depicts the structure of this work. Starting with this introduction (Chapter 1),

Chapters 2 and 3 present the context for this work by surveying the current state of the

art of technologies for large-scale data-centric systems and describing essential concepts

of power systems as well providing an outlook on the Smart Grid. The technologies de-

scribed in Chapters 2 and 3 are clustered and matched against the characteristics of the

Smart Grid. The classification motivates the architectural approach and integrates the

contributions of this work into the context of background and research questions.

Before the actual concepts and architecture are described, Chapter 4 presents the scientific

methods and tools applied to create and evaluate the contributions.

Chapter 5 explains the concept of the Ecosystem for Energy Services. The description

includes a definition of the ecosystem and its principles. Several abstract models lay the

foundation for a technical implementation of the ecosystem metaphor and its key prin-

ciples. Chapter 6 presents a software architecture implementing the concept previously

introduced. In the beginning of the chapter two scenarios of existing systems are identi-

fied. By analysing concrete use cases, functional as well as non-functional attributes are

extracted. The remainder of the chapter introduces the modular architecture of nodes,

the node processing model, query execution and optimisation, the index cloud and consis-

tency models. In a brief section, the main concepts of the SCSQL programming language

and the corresponding compiler framework are introduced.

1 Introduction 19

Context

Target systems,
requirements, challenges,
and research questions

Concept

Metaphors,
abstract models,
principles

Architecture

Scenarios,
models,
components, laguage

Evaluation

Architecture evaluation,
implementation,
simulation, validation

Figure 1.3: Structure of this thesis

Chapter 7 evaluates the concepts and architecture described in Chapters 5 and 6 using

the evaluation methods described in Chapter 4. The evaluation starts with a qualitative

analysis of the architecture and the achievement of quality attributes. In subsequent

sections, nodes and index cloud are quantitatively evaluated with the simulation methods

described in Chapter 4.

Chapter 8 concludes with a summary and outlook for future work. In the appendix,

cost functions as well as the full Enhanced Backus-Naur Form (EBNF) of the SCSQL

programming language are provided.

Chapter 2

Technologies for Data-Centric

Systems

A considerable body of research has been conducted in the area of data-centric systems.

From standard database systems like relational databases (RDBMS), new approaches like

highly distributed databases and data stream management systems as well as specialised

solutions for large-scale and loosely coupled systems like publish-subscribe systems, Peer-

to-Peer (P2P) overlays and application layer multicast systems emerged. More than 30

years of research led to a variety of commercial products and applications.

This chapter presents the current state of the art in data-centric systems. The discussion

includes architectural, algorithmic and implementation issues. Additionally, social, envi-

ronmental and economic effects as well as their architectural influence are reviewed in the

context of Ultra Large-scale Systems (ULS).

The contributions of this work extend the current state of the art in data-centric paradigms

to large-scale industrial environments. Consequently, the discussion starts with a review of

architectural approaches to tackle complex systems. Subsequently, database technology,

publish-subscribe, and P2P systems are covered before networking aspects and declarative

information collection and dissemination are introduced. The chapter concludes with a

summary and alignment with the key contributions of this work.

2.1 Software Architectures for Complex Systems

Already in the year 1968 at the NATO conference [97] in Garmisch-Partenkirchen, Ger-

many, the problem of building software reliably and cost efficient was recognised. The

conference led to a new research area and the promotion of a new engineering discipline

22 2.1 Software Architectures for Complex Systems

which, since then, has been called software engineering.

Software architectures constitute a crucial part of system design. Architectures determine

the structure of large systems by identifying a set of key components and their rela-

tionships. Diagrams and textual descriptions establish a common taxonomy for everyone

involved in creating, negotiating and implementing the architecture.

A design process of a large-scale system involves many stakeholders from management,

marketing, users, maintenance and customers. Commonly the business relationship to

create a software product is that a single party, i.e. the customer, contracts a software

company to create a software product according to its needs. Bass et. al. [11] summarise

the relationship and the iterative process to create a software architecture in the “Archi-

tecture Business Cycle” (Figure 2.1).

Figure 2.1: The architecture business cycle [11]

The following section provides an introduction to a standardised architecture descrip-

tion thereby defining key terms and concepts. For very large-scale systems, however, the

inherent complexity makes the standard design processes less suitable. Ultra large-scale

systems (ULS) (Section 2.1.2) paradigms might suggest an alternative to the Architecture

Business Cycle, following an open source model.

2.1.1 ISO/IEC 42010 IEEE

The ISO/IEC 42010 standard is a recommended practice for analysis, design, creation

and maintenance of software intensive systems. Its conceptual framework shall be the

foundation for further discussion on architectural aspects of large-scale systems.

According to IEC 42010, a system can be anything from individual applications to subsys-

2 Technologies for Data-Centric Systems 23

tems, systems of systems or entire product lines. Systems are located in an environment

which may influence the system. The environment determines the boundary and scope of

the system.

A system has one or many stakeholders. A stakeholder has concerns relative to the system

such as performance, reliability or security requirements. The purpose or mission is the

use the system is designed for, given the environment. Stakeholders may have different

roles during the design process. Roles include customer, user, developer, architect and

evaluator.

IEC 42010 concentrates on architectural descriptions rather than the actual architecture

for a concrete system. An architectural description is organised into architectural views.

Each view targets one or more concerns of the stakeholders. A view captures system

properties like process communication, physical deployment or integration. Views are

frequently also referred to as architecture models.

While the concept of a view is rather abstract and hence can vary between different

architectures, a set of standard views are widely accepted. The following lists the most

common architectural views providing a brief introduction for each.

• Conceptual View : This view point includes all aspects necessary to describe the

functional requirements of the software system. The conceptual view point is not

bound to any concrete implementation but rather focusses on the entities and their

relations within the problem space.

• Module View : The module view covers the structure of the software system in terms

of modules and respective relations. The organisation of modules is determined by

the application of design principles, e.g. information hiding, layering or compiler

implied organisation. In contrast to the conceptual view, the module view is tightly

coupled with concrete implementations.

• Process View : The process view includes non functional requirements e.g. perfor-

mance or resilience, of the software system. Additionally, it defines how the abstrac-

tions of the conceptual view are mapped to processes. A process itself is defined as

a set of tasks which can be local or distributed in a network. Processes and tasks

constitute an executable module. In other words, the process view describes the in-

teraction of processes and tasks with connectors such as messages, remote procedure

calls or events.

• Physical View : The physical view describes how software processes are mapped

to the execution environment. Particularly non-functional system requirements are

24 2.1 Software Architectures for Complex Systems

considered. The mapping is determined by the control flow, which was sketched in

the conceptual view and is detailed in the process view.

• View Model : The four view points above can be described in a so called 4 + 1 view

model [80]. Here, scenarios are used to identify characteristic system entities and

their relations. Scenarios are also used for validation of the architecture.

The key roles involved in the architecture description are the architect and the customer.

The architect’s job is to satisfy the customers requirements by creating or maintaining the

architecture. While the role of the architect is not limited to a single person but can be

filled by entire teams of architects, the one-to-one business relationship between customer

and architect, poses problems in large-scale systems with potentially tens or hundreds

of different customer/architect pairs. While the traditional approach is rather centralis-

tic, alternative models like the open source model allow de-centralised co-ordination of

partners. Consequently, the borders between roles and different phases of the software de-

velopment process, e.g. analysis, design, implementation, become blurred. The following

section illustrates how the research on ULS suggests this model to address the challenges

in the design for ultra large-scale systems.

2.1.2 Ultra Large Scale Systems and the Open Source Model

Financed by the U.S. Department of Defense (DoD), Carnegie Mellon University (CMU)

researches conducted a study on so called ultra-large-scale systems (ULS). The aim of the

study was to establish a research agenda for ULS. An ULS is characterised by consisting

of thousands of platforms, decision nodes, weapons, and warfighters which are connected

by heterogeneous wired and wireless networks. The challenges inherent with these kind

of systems are not limited to technical issues like huge code repositories with millions of

lines or code or large volumes of data but also include socio-political issues like the large

number and diversity of people involved in using and creating theses systems.

The size of ULS prohibits centralised approaches and calls for de-centralisation start-

ing from planning to development and operation. Large numbers of stakeholders need to

co-ordinate their, potentially, conflicting interests, integrate evolving requirements and

heterogeneous soft- and hardware. Since with increasing numbers of system entities, fail-

ures become the norm rather than an exception, particular attention is required to deploy

robust mechanisms to compensate failures.

To tackle the challenges, the report suggests to move from traditional engineering to de-

centralised design of complex systems. Similarly to cities, where individual houses are

2 Technologies for Data-Centric Systems 25

engineered but entire cities are not built by individual organisations, and firms, which

are hierarchically engineered but the economy is not, de-central concepts can be applied

to ULS. The factors that enable cities and the economy to function are mechanisms to

regulate local actions such that global co-ordination can be achieved.

The report uses the metaphor socio-technical ecosystem to describe the necessary shift

in perspective that is required to build ULS. Similarly to biological ecosystems, where

individual organisms compete for resources in complex environments, in socio-technical

ecosystems people and organisations compete for limited resources, e.g. budget, band-

width, storage or sensors. From the report [98]:

“The concept of an ecosystem connotes complexity, decentralized control,

hard-to-predict effects of certain kinds of disruptions, difficulty of monitor-

ing and assessment, and the risks in monocultures, as well as competition

with niches, robustness, survivability, adaptability, stability, and health.”

One approach to achieve de-centralised, co-ordinated software development has already

been proven in numerous projects. With its prominent representatives Linux and JBoss,

the open source model (OSM) [116] has been deployed as the development process model

in many industry grade projects. In the OSM, source code is freely distributed among

stakeholders under an open source license which allows everyone to adopt and modify

the source code. Depending on the concrete license, changes to the source code must be

shared within the developer community. Hence, the project is driven by self-motivated

contributors which, often, are based around the world.

The OSM differentiates itself in several aspects from the traditional software model.

Sharma et. al [129] analysed the OSM using a theoretical framework from organisation

theory [119]. The work examines the OSM environment along three axes namely struc-

ture, culture and process (Figure 2.2). Unlike traditional organisations, OSM communities

have de-centralised control and decision making, shared governance and allow free flow

of information. The position of an individual within the open source community is solely

based on reputation. Individuals are hence encouraged to meet quality requirements to

gain reputation.

The open source community is just one example of a de-centralised development model.

Others, less code centric, can be found under the umbrella of the “Web 2.0” phenomenon.

Here, web-based platforms attract communities that enable individuals to create and

share artefacts collaboratively. Examples include social media sites and directories like

Facebook. While community participation may be triggered by altruistic and idealistic

motivations, modern community platforms enhanced and implement sound business op-

26 2.2 Databases

Figure 2.2: The open source software model as examined by Sharma et. al. [129]

portunities. On the one hand, large communities with personal profiles allow targeted

advertising and, on the other hand, by opening the platform to independent software

vendors and provision of core services like payment and user management, development

of additional platform services is motivated which in turn increase the attractiveness of

the platform causing yet more individuals to participate. Revenue streams are generated

by the service providers as well as the platform providers which earn a share from each

transaction between service consumer and service providers.

With this introduction to architectural aspects of large-scale complex systems, in the

following, the discussion covers the technical foundation of suitable platforms and open

systems. It starts from traditional databases systems and proceeds with advanced data

management solutions for large-scale open systems.

2.2 Databases

Databases belong to the first software products available. In 1968, IBM introduced the

information management system (IMS), one of the first database systems. Now, nearly

four decades later, hundreds of database vendors and systems exist. Databases manage

the lifecylce of data, i.e. creation, update, deletion and provide data discovery and search

2 Technologies for Data-Centric Systems 27

functionality. Due to their maturity and broad applicability, databases constitute an es-

sential component of a large spectrum of applications.

Databases usually provide strict guarantees regarding Atomicity, Consistency, Integrity

and Durability (ACID) of data management. While in the last 20 years Relational

Database Management Systems (RDBMS) established as a de facto standard, require-

ments of recent applications like search engines or web sites with heavy write loads brought

up alternative designs with simplified data models. This section starts with a quick re-

view of RDBMS and the relational model. Subsequently, data stream management systems

which are often implemented as extensions to traditional RDBMS are introduced. A sec-

tion on real-time databases introduces current state of the art approaches to an important

requirement of the systems investigated in this work.

2.2.1 Relational Database Management Systems

An RDBMS can be found in almost any application from social media to health care,

finance, e-commerce and multimedia services. The relational model has been introduced

by Codd et. al. in 1970 [27]. It defines a relational algebra consisting of definitions for

objects, rules, and operations. A relation, often illustrated as table, describes logically

connected entities of information. The information is structured by attributes, columns in

the table, and a set of tuples, i.e. entities or rows of the table. A relation enforces several

properties:

• A tuple is unique. There are not two tuples with the same attribute values.

• The sequence of tuples with a relation is not defined.

• The sequence of attributes of a relation is not defined.

• Attribute values are atomic.

Besides these properties, a RDBMS must enforce entity and referential integrity. Entity

integrity ensures that every entity is addressable via a unique key whereas referential

integrity ensures the integrity of keys between relations. For example, given a relation

R1 having a foreign key pointing to the primary key of a relation R2, then the RDMBS

ensures that (i) every value of the foreign key in R1 equals the value of a primary key in

R2, or (ii) the value of the foreign key is NULL.

The majority of RDBMS available on the market implements the relational model strictly.

Occasionally, e.g. in case of MySQL, slight deviations are implemented for the sake of

28 2.2 Databases

usability. Architecturally, a typical RDBMS is composed of five major components [62]

namely:

1. Client communication manager. Depending on the overall application architecture,

a database must be able to communicate with a variety of clients, e.g. application

servers or transaction monitors. The client communication manager provides the

required set of protocols to communicate with different client types. It receives re-

quests from clients and passes them to other components of the database. Moreover,

the communication manager transfers generated result sets back to the client and

controls access by client authentication.

2. Process manager. Once a request has been received, resources to handle the request

must be allocated. The process manager manages the internal resources by deciding

whether to handle the request immediately or defer it until more resources are

available.

3. Relational query processor. If the decision is made to execute the request, the rela-

tional query processor proceeds by compiling the user query into an execution plan.

Once compiled, the plan is passed to the plan executor which implements typical

relational operators like joins, selections, aggregations, projections and sorting. The

query processor manages the interface to lower level storage layers by passing and

requesting data records.

4. Transactional storage manager. The storage system includes algorithms to manage

and access data on physical disks. The storage manager can receive access functions,

i.e. read as well as data manipulations functions, i.e. write, update, delete. It enforces

the ACID properties of the database.

5. Shared Components and Utility functions. Once the query has been processed, its

results are returned back to the client. Resources are de-allocated and locks are

freed. Depending on the size of the result set, it may be transferred gradually back

to the client causing multiple invocations of process manager, query processor and

storage manager.

Although the relational model has been widely adopted, its strict enforcement of the ACID

criteria causes substantial problems for large-scale systems. Consequently, a RDBMS is

less suited for the handling of very large volumes of transient data. Applications such as

sensor monitoring, finance, trading and network monitoring have in common that they

need to process continuous, potentially unbounded sequences of data in a timely man-

ner. The subsequent section introduces data stream management systems which extend

standard RDBMSs to handle continuous flows of data.

2 Technologies for Data-Centric Systems 29

2.2.2 Data Stream Management Systems

Data stream management systems (DSMS) extend the classic processing model of

RDBMSs with capabilities to handle large volumes of transient data also referred to

as data streams. The characteristics of such a stream based processing model can be

summarised as follows:

• Data streams are potentially unbounded sequences of data items, i.e. stream ele-

ments, generated at an active data source.

• Stream elements are pushed by the active data source. The DSMS has neither control

over the arrival rate nor the order of arrival.

• Stream elements are transmitted only once and are ultimately lost if not explicitly

stored.

• Queries over data streams run continuously. New results are produced upon arrival

of new stream elements.

DSMS are already utilised in a variety of applications ranging from traffic management

to power quality monitoring. A considerable body of research has been conducted in

respective research communities. Golab and Özsu provide an overview of current research

topics on DSMS in [54]. D. Kucuket et al. [81] introduce a streaming database solution

to monitor power quality. Sampled at high frequency, Power Quality (PQ) data [2] grows

to large volume already for small installations. The approach is deployed in a scenario

covering the Turkish Electricity Transmission System with data sampled at feeders and

bus-bars located at transformer substations. Mariposa [139] introduces an architecture

for wide area distributed databases. The database features a micro economic paradigm

used for query and storage optimisation. AURORA [25], STREAM [48], Cougar [49] and

others discuss general query processing in sensor networks. AURORA allows users to

create queries in a graphical representation. STREAM and Cougar extend the SQL with

temporal semantics.

The wide adoption of DSMS in the industry is proof of their maturity. Most products

and projects seem, however, limited to small numbers of nodes and unidirectional flows of

data. Despite aggregations, processing is concentrated at central locations. Access meth-

ods range from graphical tools to extensions of the SQL. All systems lack functionality

to implement user defined distributed functions and the ability to scale to large hetero-

geneous systems.

Particularly in industrial domains timely processing of data is mandatory. Delayed pro-

cessing of data may yield equipment damage or harm human life. Real-time capabilities

30 2.2 Databases

are rarely found in RDBMS nor DSMS. Therefore, their deployment is often not practical.

The following section presents real-time systems, starting with a general definition and

standard processing models. Subsequently, real-time databases are introduced as data-

centric solutions with real-time capabilities.

2.2.3 Real-Time Data Processing

Timely processing of data is a key requirement for industrial applications. If, for example,

an over-current measurement signal is not processed in time, a transformer may be dam-

aged thereby endangering surrounding personnel. The deployment of standard databases

on the factory floor is promising for several applications. However, databases are designed

for IT environments like offices or data centres. They usually do not provide deterministic

resource consumption and generally lack true real-time processing capabilities. However,

before the discussion on real-time systems and methods to achieve real-time capable data

processing can be started, the concept and notion of “real-time” itself must be introduced.

The term “real-time” is often confused with an operation executing very fast1, leaving a

certain time period for recovery in case of failure or unforeseen delay. Surely, this is not

enough in industrial domains because once a function failed to meet a deadline, there

might not be a second chance. A widely accepted definition of a real-time system is given

in [75]:

“a computer system in which the correctness of the system behaviour depends

not only on the logical results of the computations, but also on the physical

instant at which these results are produced.”

Generally real-time systems are classified as either being hard or soft real-time. Hard

real-time means that a violation of the time constraint yields potentially catastrophic

consequences. For instance, timely closing of a valve in a high pressure system requires

hard real-time as delayed closure might cause the system to de-compensate. Soft real-time

systems can tolerate delays momentarily causing decreased quality of service. For example,

a voice over IP (VoIP) system is a soft real-time system where delayed transmission causes

decreased audio quality.

Real-time processing capability is achieved by assuring that tasks have instant access

to all required resources. Real-time systems typically need to execute more than one

task at a time. Tasks may compete for resources such as CPU, memory and network

1For example in the context of process control real-time is understood as executing faster than the
process loop.

2 Technologies for Data-Centric Systems 31

bandwidth. Hence a scheduling mechanism is required which invokes a task for a finite

amount of time before it passes control to another task. To ensure timely execution,

tasks are usually assigned a priority value such that tasks with a higher priority are

invoked more often and before tasks with a lower priority. How priorities are assigned to

tasks has been an active research area for many years [88]. The main goal of a scheduler

is the assignment of priorities such that deadlines of all tasks are met. In [88] this is

achieved using scheduling policies i.e. rate-monotonic (RM) and earliest-deadline-first

(EDF) for pre-emptive periodic tasks. RM assigns priorities statically according to its

period, scheduling tasks with shorter periods first. Aperiodic tasks are scheduled inside

a virtual periodic task. EDF sorts at time t all ready tasks according to their deadlines.

The task with the deadline closest to t is executed first. RM as well as EDF assume that

the worst case execution time (WCET) is known a priori and that tasks are generally

pre-emptable. Since finding the optimal schedule becomes a NP-hard problem if more

than one resource is shared among tasks, most scheduling algorithms assume the presence

of just one shared resource. This is problematic in many concrete use cases as tasks

require multiple resources and need to execute critical sections in their entirety and thus

are not pre-emptable per se. Consequently, this may lead to an effect commonly referred

to as priority inversion. Thereby higher priority tasks are blocked because mid priority

tasks pre-empt low priority tasks on which the high priority task has a data dependency.

Priority inheritance and priority ceiling protocols address the priority inversion problem

by analysing the content of the different tasks to identify critical shared sections. For each

critical section the task with the highest priority p is found. If a task A with a lower

priority enters the critical section, the priority of task A becomes p and thus no task with

mid priority can interrupt A. The priority of A is reset once it leaves the critical section.

Priority inheritance and ceiling protocols are used in most real-time kernels. However,

since they have considerable memory and compute time overhead, they are not suitable

in severely resource constraint environments.

The concept of port-based objects (PBO) [137] belongs to the class of time-triggered

architectures (TTA) which bring timing constraints directly to the programming model

such that compilers can schedule and optimise the software to ensure timing determinism.

PBOs interconnect through communication channels thereby forming a global data space

with atomic read and write operations. The data space implements a state semantics

meaning that values remain valid until overwritten. The activation time of a PBO may

vary and the time when inputs are read and outputs are produced may not be regular from

activation to activation. The Giotto model [63] extends TTAs in that now both computa-

tion as well as communication between tasks are executed time triggered. Each task has

predetermined, i.e. at design time, start and end times. Communication is accomplished

32 2.2 Databases

between tasks activations. Inputs are obtained at the start time and are available to the

system only at the stop time of the execution even if the computation finished earlier.

On the contrary to TTAs, event driven approaches like [89] execute tasks when inputs

arrive to fulfil certain constraints predefined by the tasks. Like Giotto, time multitasking

(TM) [89] provides predictable input/output timing. TM employs an actor model where

actors are equivalent to tasks which also specify execution time and deadlines in terms of

trigger conditions. Despite traditional actor models, TM tasks may or may not have their

own thread of control. In TM the activation of a task depends either on other tasks or on

interrupts. By controlling the time at which outputs are published and by triggering tasks

with new events, start and stop times of tasks can be deduced and hence deterministic

timing properties are achieved. In TM, tasks represent a sequence of reactions, i.e. finite

pieces of computation. Tasks communicate through ports which may have various mani-

festations, e.g. interrupts, FIFO queues or rendezvous points. Task state and specific data

is private within a task. Communication through ports is asynchronous, i.e. interaction

does not yield transfer of control flow. Mutual exclusion of reads and writes on ports is

still required but tasks can always proceed on their internal state without waiting for

other tasks.

In the context of data stream management certain applications, e.g. traffic control systems,

surveillance systems or health control systems, require real-time processing and timely

availability of information. RTSTREAM [150] provides a query model called PQuery to

support soft real-time processing of periodic queries. Once a query is registered with the

DSMS, its instances are periodically triggered by the system. Upon initialisation of an

instance, a snapshot of the data stream is taken as sole input. New tuples arriving at

the system are processed by the next triggered instance. Frequencies and dead lines are

specified through extension to CQL and enforced by the execution system. In order to

cope with temporary overload RTSTREAM introduces an overload protection mechanism

called data admission. In the process, data miss ratios (MR) are continuously computed

and compared against a predefined target. The difference is passed to a Partial-Integral

(PI) controller to generate an admission signal ∆PAC controlling the current admission

ratio. The signal ∆PAC is derived by the following equation:

∆PAC = PMR × (MRST −MRthreshold) + IMR × (MRLT −MRthreshold) (2.1)

where MRST and MRLT are short and long term miss ratios and MRthreshold is the

maximum miss ratio defined by the application; PMR and IMR are weights on short and

long time miss ratios.

RTSTREAM focusses on periodic queries and assumes that no other types of queries

are handled by the query processor. This in somewhat unrealistic as target applications

2 Technologies for Data-Centric Systems 33

imply different types of queries i.e. periodic, continuous and snapshot to be executed

simultaneously. Additionally query execution time introduces additional unpredictability.

In [149] a prediction based QoS management scheme is introduced which features query

load estimators by utilising execution time profiles and input data sampling.

It is often argued that hard real-time is needed in the fewest of cases. Most hardware

is severely under-utilised leaving large time periods for failure recovery. Considering the

fact that non real-time capable hard- and software is offered at considerably lower prices

and that most industrial systems work reliably even without hard real-time systems, the

argument cannot be discarded entirely. However, real-time support is required at least for

safety critical subsystems where failures cannot be tolerated.

Unlike for RDBMS where de-facto standard query languages are established there exists

no common standard for real-time systems. Hence, additional complexity is introduced

for the application programmer in order to adapt and integrate real-time system into the

large-scale system.

2.3 Data Management Beyond The Relational Model

Driven by Internet scale databases of search engines like Google and Yahoo!, new data

models were developed that, although providing similar interfaces, differ substantially

from the standard relational model. Google’s Bigtable [24] and Yahoo!’s open source

equivalent HBase [142] are distributed storages for very large volumes of data. Both are

designed to operate on thousands of networked commodity servers. Up to a certain level

of detail HBase and Bigtable are equivalent, hence in the following discussion is focussed

on Bigtable implying that similar concepts apply for HBase.

The data model is table based with a table being a sparse, distributed, multi-key sorted

map, indexed by row key, column key and a time-stamp. Each row key in a table is a

string of arbitrary length. Rows are ordered lexicographically by the row key. Partitions of

a table, called tablets, are dynamically created and may be migrated for distribution and

load balancing. Column keys are organised into column families wherein data stored in a

particular column family is usually of the same type. Column keys are created within a

column family and hence rely on their existence. A table may have an unbounded number

of columns keys. Column families manage access control as well as disk and memory

accounting. Reads and writes for a single row key are atomic, allowing users to implement

ACID transaction semantics.

34 2.3 Data Management Beyond The Relational Model

Bigtable is only one part of the Google software stack. Data and log files are stored using

the Google File System (GFS) [53] (Hodoop file system (HDFS), is the Yahoo!/Apache

counterpart). A cluster management software co-ordinates the shared pool of servers,

schedules jobs, monitors resources and manages failed machines. Further, the distributed

lock service “Chubby” [17] is used to find tablet servers, to ensure that there is at least

one active master server to store access control lists and other concurrent operations.

Chubby operates by the provision of a namespace with atomic files and folders to be used

as locks. Robustness of the Chubby service is assured by replication, master election and

guaranteed replica consistency.

Tablets are distributed in a three-level hierarchy with the location of the root tablet at

the first level being a Chubby file. The root tablet contains a special METADATA table

which stores the location of all tablets. Tablets are stored in the METADATA table by a

row key, consisting of the table identifier and the last row in the tablet.

Although providing a rather general data model, Bigtable and Hbase are tailored for

specific problems and environments. Servers are expected to have similar networking ca-

pabilities. It is assumed that servers are controlled by trusted entities. Moreover, server

infrastructures are assumed to be rather static2 with few reconfigurations and, due to the

controlled environment, Byzantine failure models are out of scope.

While Bigtable, GFS and Chubby constitute a scalable infrastructure for very large data

volumes, the MapReduce [32] programming model allows for flexible access and procession

of the highly distributed data. The model takes as input a set of key/value pairs and

returns a set of key/values pairs as output. Users implement two functions map and reduce

wherein the former creates a set of intermediate key/values pairs which are grouped by

an intermediate key I by the framework. The reduce function takes the intermediate key

plus a set of values for that key and aims to merge the values to a smaller set referenced

by the same key. In the paper the authors provide as example the problem of counting

the number of words occurring in a large number of documents to illustrate the paradigm.

A possible map function would return the word as key plus an initial count of ‘1’. The

reduce function would sum all for the given intermediate key, i.e. the word and return the

list of words together with their count. Although minimalist, the programming model can

be applied to a great variety of problems like distributed sorts, full text search, document

clustering, machine learning, etc.

Besides the search engine space, new data management architectures emerged from other

domains. As Web 2.0 services gained popularity, traditional usage patterns of web services

changed. While in a standard Web 1.0 web service, the content was rather static, newer

2Compared to not arbitrary nodes in the Internet

2 Technologies for Data-Centric Systems 35

services allow the user to create and share their own content. This has significant impact

on the read/write performance of data management and storage systems. While for a

system that mainly serves static pages, images and videos, the content can be easily

replicated and cached, services with a high update or write rate do not scale as well.

To maintain consistency, replicas need to be updated synchronously thereby blocking the

entire system and degrading performance. Another characteristic of Web 2.0 applications

is the sudden increase in traffic, i.e. Slashdot effect, requiring a back-end system to scale

very quickly. Often, the strict relational data model and static replication model prevent

dynamic scaling causing bad service and the loss of business.

Erlang based Couch DB (http://www.couchdb.org) aims to address these challenges by

providing distribution and flexible replication. It does not enforce a schema on the data

model and provides a flat address/Id space. Couch DB is a document based database

with a MapReduce style interface allowing to query, map, index and filter data using

JavaScript. It has a RESTful JSON API that allows it to be accessed entirely via HTTP.

The fact not only allows the database to be accessed by a large number of clients and

client libraries but also enables the application of standard load balancers and caches.

Couch DB stores documents as JSON objects which consist of field names and values.

Values may be strings, numbers, ordered lists and maps. Each object is identified by a

unique ID. The database allows to implement so called views, i.e. indexes that provide

simple structures for the data. Views are representations of the documents in the database.

They are built dynamically by the back-end system. However, since the creation of a view

on a database with thousands or millions of documents may be expensive, views are

updated incrementally. Due to these delayed updates, the consistency model provided by

Couch DB is eventual consistency. Views are defined by a JavaScript code which is stored

together with a document but do not affect the document itself. Couch DB supports

full ACID for document writes and updates. Utilising a multi-version concurrency model,

reading clients are never blocked but it is ensured that a client reads the same version of

the document from start to end of the read. Documents are indexed in a b-tree using their

name and a sequence ID as key. The sequence ID is incremented for each update such that

it can be used for conflict resolution on replica merges. Couch DB follows a Peer-to-Peer

based, bi-directional replication and synchronisation paradigm. This allows to replicate

whole or parts of the database to laptops or servers with low network capacities.

Couch DB is able to handle large numbers of requests, scale quickly and adapt to changing

data models. Although replication is Peer-to-Peer based, Couch DB is not designed to run

on large clusters with thousands of heterogeneous machines. Its JavaScript based view

model allows high flexibility to retrieve and filter data in a distributed manner.

36 2.4 Peer-to-Peer Systems

In the following sections the discussion ultimately leaves the space of traditional databases

and investigates highly scalable autonomous systems capable to co-ordinate millions of

nodes.

2.4 Peer-to-Peer Systems

With the emergence of file sharing services like Napster, Peer-to-Peer (P2P) systems

gained popularity as highly scalable and robust distributed systems. While several defi-

nitions of P2P systems exist, one of the most comprehensive is found in [136] and reads

as:

“A [Peer-to-Peer system is a] self-organizing system of equal, autonomous

entities (peers), which aims for the shared usage of distributed resources in a

networked environment avoiding central services.”

The definition captures the inherent properties of P2P systems, namely: distribution (not

limited to de-centralisation), self-organisation, autonomy, i.e. individual peers are under

the control of autonomous parties and the facilitation of collaborative resource sharing.

P2P systems are implemented as overlay networks and as such provide addressing and

routing methods on the application layer of the OSI model. Consequently, they are inde-

pendent of physical network infrastructures and hence are able to create topologies based

on arbitrary criteria, i.e. semantic proximity, geographic location etc..

2.4.1 Structured, Unstructured and Hybrid Networks

P2P systems are often classified as unstructured, structured and hybrid (Figure 2.3). In

unstructured networks, nodes organise in arbitrary meshes. Routing tables are randomly

built according to any piece of information available. To route data, each node forwards

information to all or a subset of known neighbouring nodes. This way, query requests flood

the network until a node can satisfy the query or a predefined maximum number of hops is

reached. One of the most prominent unstructured networks is the Gnutella network [118].

The maturity and robustness of Gnutella networks led to a large installed base. However,

the flooding based routing mechanism hinders ultimate scaling. Unstructured networks

like Gnutella generally lack search determinism such that data stored in the network is

not guaranteed to be found.

Structured systems, on the other hand, feature deterministic searches and high scalabil-

ity. Corresponding algorithms enforce a logical topology of the overlay and implement

2 Technologies for Data-Centric Systems 37

(a) Unstructured (b) Structured (c) Hybrid

Figure 2.3: Classification of peer-to-peer overlays

structured routing mechanisms. Most structured systems fall into the category of dis-

tributed hash tables (DHT) which provide a distribute data structure for de-centralised,

self-organising key/value storage. Chord [138], Pastry [124], Tapestry [160] are DHTs

which haven been studied in great detail. They enforce ring or tree structures and retrieve

data items deterministically with logarithmic complexity (O(log N)). All algorithms utilise

binary ordered b*-trees for their searches. A uniform hashing function is applied on the

key string to gain a representation in the identifier space. The identifier space is mapped

to the peers in correspondence to the topological structure. In a Chord ring, for example,

each peer is assigned a portion of the identifier space. Therefor, each peer selects a unique

ID at random from the identifier space. Each data item having a hash value greater than

or equal to the ID of peer pi and less then the ID of the following peer pi+1 will be stored

on pi.

So called Content Addressable Networks, e.g. CAN [114], follow a geometric design to

partition a, potentially multidimensional, key space among participating peers. Keys and

values are mapped to numerically close nodes. The CAN identifier space can be under-

stood as a n-dimensional Chord key space. For n = 3 an identifier has the form < x, y, z >

whereas the multidimensional identifiers are gained by partially applying a uniform hash-

ing function, e.g. the first 32 bit map the dimension one, the second 32 bits to dimension

two and so on.

In hybrid P2P systems so called super peers exist, which accomplish dedicated tasks con-

cerning security and trust, indexing or transactional services. Almost all real-life installa-

tions of P2P system, feature slightly modified versions of standard DHTs with support of

some sort of central infrastructure, at least for bootstrapping. Version 2 of the Gnutella

network has a concept of a super node to handle queries and stabilise the system. Similarly

the eDonkey network uses a set of central services for indexing and search. The inherent

properties of structured P2P systems, i.e., robustness, determinism, self-organisation make

38 2.4 Peer-to-Peer Systems

these systems candidates for solutions for complex industrial systems. Yet, in real-world

deployments, the complexity and the corresponding dynamics of structured P2P systems

imply considerable challenges. Unstructured systems are generally easier to stabilise and

implement, yet provide only a subset of the feature set. Hybrid systems profit from the

P2P system characteristics and from the simplicity and stability of central components.

Hence they seem ideal candidates for application in the domain of large-scale industrial

systems.

While the research on P2P systems has advanced for almost ten years, only few algorithms

are used in commercial products today. One reason is the implementation complexity in-

herent in the algorithms that prevents stable industry grade systems. Another problem

are unified access paradigms beyond simple keyword searches, which is discussed in sub-

sequent sections.

2.4.2 Support for Complex Queries

A key challenge for structured as well as unstructured P2P systems is the execution of

complex queries, i.e. queries beyond keyword searches and database style queries. Scal-

ability and the lack of query languages seem thereby the major accounts for the search

limitations. While most structured systems, such as DHTs, scale very well, i.e. logarithmic

with the number of peers, queries are limited to simple keyword or string searches, i.e.

“find all items whose names include the given search string”. Others, such as Gnutella

provide advanced search mechanisms but, due to their inefficiency, non-determinism and

flooding, yield often poor results.

In [58] an extension for DHTs to support SQL style query statements is discussed. The

approach is not limited to a specific DHT algorithm but starts from a generic interface,

i.e. put(key, value), get(key), and extends it with two new functions namely: lscan, an

iterator to access all objects stored on the local node and a callback newData to notify

applications that new data has been inserted in the local portion of the DHT. Addition-

ally to the base DHT functionality, peers in this approach are equipped with a query

processing layer responsible for providing support for query operators, specifying queries

as well as iterating through result sets. Since the flat identifier space of DHTs is not suited

to support multiple data structures, e.g. tables, temporary tables, tuples, [58] suggests to

partition the flat identifier space into multiple fields each identifying objects of the same

granularity. The concepts and ideas developed in [58] let to PIER (Peer-to-Peer Informa-

tion Exchange and Retrieval) [66] [65] aiming at massively distributed query processing

and querying of Internet based data in situ without the need for database design, mainte-

nance or integration. To achieve high scalability, PIER relaxes standard database design

2 Technologies for Data-Centric Systems 39

requirements. Consequently PIER sacrifices ACID transactions and provides best-effort

results instead.

PIER is build upon a three tier architecture with a DHT as the first tier, the PIER

core at the middle layer and applications interacting with the query processor at the top

most layer. The underlying DHT is a CAN [115] implementation. The DHT functionality

is distributed over three major components, namely: routing, storage and application

interface. The routing layer manages the mapping of keywords to specific IP addresses.

It maintains local routing tables and reacts to nodes joining or leaving the network. The

storage layer is responsible for storing the portion of the data assigned locally to the

node. Data is stored either in memory, in standard databases or in the file system. PIER

implements a soft state approach meaning that data is stored for a limited time only and

must be renewed in order to remain in the system. This mechanism provides a garbage

collection feature. This is necessary as peers frequently join and leave the network without

deterministic allocation and de-allocation of storage resources. Each data item in PIER

has a namespace, a resourceID and an instanceID. The namespace and resourceID are

used to compute the hash for the DHT. The instanceID carries some semantic meaning

about the data object usually assigned by the user application. When executing a query,

PIER contacts peers that hold data in a particular namespace. The application interface

provides the scan iterator to support access to all data stored locally. It also provides the

hook for the newData callback to notify applications.

The PIER query processor supports selection, projection, distributed joins, grouping and

aggregation. However, it lacks a query parser in the current state of implementation;

thus queries can be stated through the provided programming interface only. As stated

previously, PIER’s query processing is not transaction safe. Instead, it provides best effort

results. A correct result set is defined as the slightly time-dilated union of local snapshots

published by all reachable peers at the time the query was issued. Real-time is provided

at none of the modules.

The research surrounding PIER paid particular attention to join-operators [66]. Based on

symmetric hash joins [156] each peer in namespace NR or NS performs an lscan to locate

each R and S tuple. Tuples that match to all predicates are then copied and stored in a

unique namespace NQ. Each node in NQ registers for newData, yielding notification if a

new data object is inserted into the local NQ partition. Subsequently, a get is issued on

the other table. Matches are merged with the probe tuples and passed to the next stage

of execution. Another join algorithm, Fetch Matches, is based on a standard distributed

join algorithm which works on tables that already hashed the join attributes. Here NR

is scanned and for each R tuple a get is issued for the corresponding S tuple. Once S

tuples arrive, predicates are matched and respective tuples are merged and results are

40 2.4 Peer-to-Peer Systems

passed along as before. Especially the symmetric hash variant can consume a great deal

of bandwidth. As optimisation, [66] proposes two join rewrite strategies. First, R and S

are projected to their resourceIDs and join keys before the symmetric join is performed.

Subsequently, the resulting tuples are pipelined into Fetch Matches join on each of the

tables resourceIDs. Second, Bloom filters are created for each peer for its local S and

R portion and published to a temporary namespace for each table. Filters are OR-ed

together and multicasted to all peers storing the opposite table. Upon receiving a filter,

peers begin to scan their corresponding fragment but limit rehashing only to Bloom filter

matching tuples.

PIER provides an interesting approach to large-scale query processing. However, no mech-

anisms are provided to reflect the heterogeneity of peers. Similarly, it is not reasonable to

assume that data namespaces are of uniform volume. PIER achieves scalability by relax-

ing consistency constraints. This limits application to scenarios where scalability is the

main requirement. However, for certain tasks or sub-tasks that have no scalability issue

but depend on consistent data management, PIER might not be well suited. PIER does

not provide real-time capabilities.

2.4.3 Application Layer Multicast

The Internet was designed for one-to-one communication like E-mail and file transfer.

Recently, applications like video-on-demand or live streaming and video conferencing have

emerged that feature a one-to-many or many-to-many communication model. The IP

multicast proposal [34] was aimed at providing global inter-network group communication

but did not prevail due to the complexity of the design and limited understanding of

commercial requirements [37]. For example, to implement IP Multicast specialised routers

need to be installed at several levels of the network from backbone to edge routers. This

constitutes considerable costs for Internet Service Providers (ISP).

The concept of Application Layer Multicast (ALM) implements the multicasting function-

ality at the application layer (OSI) using the unicasting functionality of the underlying IP

network. The central benefit of the application layer solution is the straightforward and

immediate deployment over large and heterogeneous networks. Although the approach is

less efficient in comparison to, e.g. IP Multicast, the disadvantage is outweighed by the

large-scale deployability, easier update and maintenance of the algorithms and adaptabil-

ity to the user application. In ALM, nodes connect to an overlay to span a multicast tree.

Links in the overlay are built using predefined metrics, e.g., delay or robustness. Node

discovery and link stabilisation require additional bandwidth but are easily balanced by

the advantages mentioned above.

2 Technologies for Data-Centric Systems 41

Since the introduction of the ALM approach, a plethora of algorithms has been proposed.

A categorisation based on the target application is presented in [37]. The categories are:

• Audio/video streaming: The distribution of audio and video content from a single

source to a large number of receivers

• Audio/video conferencing: Real-time distribution of audio and video content in small

groups

• Generic multicast service: A generic distribution service that can be parameterised

through application domain specific metrics

• Reliable data broadcast and file sharing: Distribution of large files, usually in a

distributed database or file sharing context. The metric is bandwidth.

Depending on the application domain, specific metrics apply. In the context of power net-

works, for instance, real-time distribution in smaller groups and configurable distribution

services might be of relevance. Generally, ALM can be implemented directly on the end

host, e.g. sender or receiver, or on an intermediate proxy overlay to which senders and

receivers are connected.

An important concept of ALM approaches is the so called multicast group management. It

includes discovery of multicast sessions, centralised or de-centralised administration and

the mesh-first or tree-first approach to construct source specific or shared multicast trees.

In a mesh-first approach, the overlay that links the nodes is known a priori. A routing

algorithm, executed at a root node, determines the multicast tree. In contrast, the tree-

first approach proceeds by building the tree without a pre-existing mesh. The algorithm is

executed on each node, thereby providing the flexibility for local optimisation and stabil-

isation but requiring additional methods to detect loops and to ensure that the resulting

graph is indeed a tree. Tree-first approaches might yield heavily unbalanced trees because

upon reorganisation entire sub-trees are swapped without prior global optimisation. In

this aspect, the mesh-first approach is superior as it is more robust and responsive to tree

partitions. Hence, the mesh-first approach is more suitable for multi source applications.

The question whether to administrate multicast groups in central or de-central fashion

is application specific. While a de-central solution is certainly more scalable and more

robust, it is also more complex to implement and stabilise. A central solution, on the

other hand, is simple and easy to deploy but less reliable and scalable. Central solutions

are therefore suited for small-scale applications while de-central solutions are superior in

large-scale scenarios.

42 2.4 Peer-to-Peer Systems

The key part of an ALM algorithm is the routing mechanism i.e. the, potentially heuristic,

solution to a graph theoretic problem with consideration of certain constraints for each

node. Four approaches to the routing mechanism are common: shortest path, minimum

spanning tree, clustering structure and peer-to-peer structure.

Shortest Path

Aiming the construction of a degree constraint minimum diameter spanning tree, shortest

path approaches use round trip times (RTT) to measure shortest paths between source

and end hosts. Time delays are minimised and QoS parameters are taken care of. Among

others SpreadIt [36] and TAG [82] employ the shortest path approach.

Minimum Spanning Tree

This approach ignores the degree constraint and constructs a minimum spanning tree

(MST) i.e. a tree with minimal costs spanning all nodes of the network. MSTs are mostly

used in centralised solutions such as ALMI [106] and HBM [120]. Both ALMI and HBM

construct a low cost shared tree not routed at any particular source.

Clustering Structure

ALM protocols following a clustering approach to organise the network in a hierarchical

cluster of nodes. Clusters are interlinked by dedicated cluster head nodes. Clustering the

network to sub-groups reduces complexity but may yield sub-optimal solutions. Both

ZIGZAG [144] and NICE [8] create cluster structures.

Peer-to-Peer Structure

In this approach the underlying P2P protocol is used for reverse or forward path for-

warding. A prominent example using reverse-path forwarding is Bayeux [161]. Another

example, Scribe [125], relies on forward-path forwarding while Borg [159] is based on both

reverse and forward-path forwarding.

In summary, ALM provides several advantages over IP multicasting solutions. Among

them, most important are: straight forward deployability, independence of the physical

network and the option to optimise for specific application requirements. ALM protocols

can be used in large-scale networks such as the Internet without prior modifications of the

communication infrastructure. Some of the ALM concepts play an important role in other

2 Technologies for Data-Centric Systems 43

related work, namely data-centric publish-subscribe systems, discussed in the following

section 2.5.

2.5 Publish-Subscribe Systems

In a publish-subscribe system, information producers publish events to a global propaga-

tion mechanism often referred to as notification service. Subscribers state their interest

in events by specifying filters for specific events. Events are not directly addressed to

subscribers but sent asynchronously through the notification service.

The notification service acts as de-coupling entity between data producers and consumers.

The interaction between producers and consumers is de-coupled in respect to three as-

pects: space, time and synchronisation. Producers are not aware of whom they send events

to and, similarly, consumers do not know who sent the events they receive3. They do not

need to participate in the interaction at the same time and publishers are not blocked

when producing events as well as consumers are notified asynchronously of new events.

To implement this features, notification services need to provide the following functional

components (i) management of subscriptions for all subscribers, (ii) reception of pub-

lications from publishers, (iii) routing of events to subscribers. Generally three type of

architectures exist for notification services. They can be fully centralised with consumers

and producers sending messages to a single entity which stores and forwards them accord-

ingly. Alternatively, messages can be exchanged directly between producer and consumer

without an intermediate entity. Finally hybrid architectures exists where the notification

service is implemented as network of servers.

Notification services further differentiate by the subscription model they support. In the

following, different subscription models and prominent implementations are discussed.

2.5.1 Topic Based Subscriptions

In this model, an event notification is grouped by a topic T . Topics can be structured

into hierarchies. Subscribing to a topic T will the subscriber cause to receive all events

tagged as T or by any of the sub-topics Ts0...Tsn. Systems utilising this model can be

implemented efficiently due to static routing. However, due to the limited expressiveness,

subscribers may receive events which they are actually not interested in. Systems im-

plementing topic based subscriptions are SCRIBE [125] which employs Pasty [124] for

3Of course internal event semantics may determine information in order to identify the source of the
event.

44 2.5 Publish-Subscribe Systems

event dissemination. In this multi-broker architecture subscriptions are routed along the

Pastry routing tree towards a broker server which is responsible for the management of

that particular subscription. Similarly, events are disseminated by travelling the routing

tree to the corresponding broker which selects the respective multicast tree to forward

the event to the clients. Other examples supporting topic based subscriptions are Bayeux

[161] which employs Tapestry [160] for event dissemination.

2.5.2 Content Based Subscriptions

Content based subscriptions allow the subscriber to define a filter by specifying several

criteria. Filters are usually formulated in a subscription language. Subscribers receive all

events that match the criteria provided in the subscription. This model provides more

flexibility as criteria can be specified at runtime. As a disadvantage, the approach yields

higher runtime overhead as filters require considerably more processing time. Examples

of systems proving content based subscriptions are Siena [20], Evlin [128] and Gryphon

[140] where subscribers can specify an event type and a set of predicates using SQL 92

syntax.

2.5.3 Type Based Subscriptions

Type based subscriptions are similar to topic based subscriptions. Instead of specifying a

filter that matches the event content, subscribers specify the type of subscription they are

interested in. The subscription may include a set of predicates which further filter events

according to the subscribers’ interest in the event content. Types can be structured in

hierarchies causing the subscriber of a super-type to receive all events of sub-types that

match the specified predicate set. This approach combines the simplicity of the topic based

model with the expressiveness of content based subscriptions. Type based subscriptions

are supported for example by Hermes [108].

2.5.4 Quality of Service

Notification services provide a variety of qualities of service. Most common are persistence,

transactional guarantees and priorities. A service provides persistence by ensuring that

published messages are not lost in the messaging system, even in the event of system

failure. With transactional features, sequences of events are guaranteed to be received

by subscribers either in full or not at all. Messages can have assigned priorities which

influence the transit through the notification service. Messages with higher priorities, for

2 Technologies for Data-Centric Systems 45

example required for real-time applications, are routed first while message with lower

priorities may be delayed.

The various flavours of publish-subscribe systems enable flexible routing of information

from multiple sources and sinks. Topics and types allow to make routing decisions based

on application requirements and event content. Using query languages and predicate sets

to control routing is also exploited in the related research field called declarative routing

which is elaborated in the next section.

2.6 Declarative Networking

The term declarative networking was originally coined by the research team around Boon

Thau Loo from UC Berkeley [90], [92], [131], [91]. It represents an approach to design and

implement distributed protocols and algorithms by declarative specification as distributed

and recursive queries over network graphs. In this context, distributed queries adjust and

maintain routing tables of nodes recursively over arbitrary long multi-hop paths of a

network [92]. In [91], the compactness and flexibility of the declarative specification is

demonstrated by providing a complete implementation of the Chord protocol [138] in just

47 lines of OverLog rules.

The concept models the routing infrastructure as a directed graph. Each link has associ-

ated a set of parameters such as loss rate or bandwidth. Nodes can be either IP routers

or overlay nodes (peers). The routing scheme is fully distributed with each node being

equipped with a general purpose query processor. Additionally, each node maintains links

to its neighbours (neighbour table) and forwarding information to route packets (forward-

ing table). The query processor updates the forwarding table either periodically or upon

notification. Upon receiving a request, the query processor may initiate further distributed

execution in the network. Execution results can be either used to update the forwarding

table, or sent back to the issuer where it can be used for further processing.

In [90] Loo introduces network datalog NDlog, a subset of the Datalog [112] language for

declarative network specification. Datalog programs consist of a set of declarative rules

and a query. The query specifies the requested output. A rule has the form p : −q1, q2...qn.

p is the head of the of rule and q1, q2...qn a set of literals that can be either predicates

or functions applied to fields. The set of literals constitutes the body of the rule. The

commas separating the predicates are conjuncts. Recursion can be expressed by referring

to each other in a cyclic fashion. Listing 2.1 shows a Datalog example program which

computes the set of all paths based on input link tuples. In the listing S,D,C and P stand

for source, destination, cost and pathVector fields.

46 2.6 Declarative Networking

Listing 2.1: Datalog Example

NR1: path(S,D,P,C) :- link(S,D,C),

P = f_concatPath(link(S,D,C), nil).

NR2: path(S,D,P,C) :- link(S,Z,C1),path(Z,D,P2,C2),

C = C1 + C2,

P = f_concatPath(link(S,Z,C1),P2),

f_inPath(P, S)=false.

Query: path(S,D,P,C)

Rule NR1 generates one-hop paths and stores them at the source node S. Rule NR2

recursively generates paths by matching destination fields of existing links to source fields

of earlier computed paths. In other words, if there is a link from S to Z and there exists

a path from Z to D then there is a path from S to D via Z. The function f_inPath(P,S)

returns true if the source node S is part of the path P, hence the generation of cyclic

path is prevented.

NDlog extends Datalog by providing explicit control on data placement and transfer.

It is accomplished with a location specifier written as the first field in all predicates,

e.g. for link(@S,@D,C) the location specifier is @S. NDLog does not assume that all

nodes in the network are directly connected, but rather that nodes are connected to a

comparatively small set of neighbours. To state that two particular nodes are connected,

the link relation link(@src, @dst, ..) is used. The first two fields indicate source and

destination addresses of the nodes followed by an arbitrary number of fields describing

metrics or other features of the link. Since query execution is distributed, NDlog provides

the concept of local rules to indicate that a specific query does not need communication.

Local rules are simply rules where predicates have the same location specifiers. The explicit

communication along physical links is expressed by a link literal in the body of a rule

marked by #. Finally, to restrict communication to physical links, the link restrict rule is

defined as either a local rule or a rule that has exactly one link literal in the body and

all other literals have their location specifier set to either the source or the destination

field of the link literal. A NDlog program can be defined as a Datalog program where (i)

each predicate has a location specifier, (ii) an address variable cannot appear as other

typed variable in the rule, (iii) link relations never appear in the head of a rule with an

non-empty body and (iv) any non-local rules are link restricted by some link relation.

2 Technologies for Data-Centric Systems 47

Listing 2.2: ”Shortest Path in NDLog”

SP1: path(@S,@D ,@D ,P,C) :- #link(@S,@D ,C),

P = f_concatPath(link(@S,@D ,C), nil).

SP2: path(@S,@D ,@Z ,P,C) :- #link(@S,@Z ,C1),

path(@Z,@D ,@Z2,P2,C2),

C = C1 + C2,

P = f_concatPath(link(@S,@Z ,C1),P2).

SP3: spCost(@S,@D , min <C>) :- path(@S,@D ,@Z ,P,C).

SP4: shortestPath(@S,@D ,P,C) :- spCost(@S,@D , C),

path(@S,@D ,Z, P,C).

Query: shortestPath(@S,@D ,P,C).

Listing 2.2 depicts an NDlog program calculating shortest paths between nodes. SP1 gen-

erates one-hop link tuples while SP2 generates multi-hop paths between nodes. SP3 derives

the relation spCost(src,dst,mincost) that computes the minimum cost for each input

path. The angle bracket notation specifies the minimum aggregate construct. SP4 derives

the shortest paths with cost and path input. Eventually, Query specifies the shortest path

tuples as result.

P2 [92] is a framework for the declarative construction of overlay networks. Applications

submit logical descriptions of the overlay algorithm which P2 compiles to executable

function to maintain routing tables, perform resource discovery and provide forwarding for

the overlay. P2 differentiates from other overlay construction frameworks in that it features

a declarative logic language to specify overlays and that it utilises a data-flow framework

to maintain the overlay instead of the traditional protocol state machines. P2 programs

are compiled into a data-flow representation and deployed on network nodes where they

execute. In a data-flow graph a variety of database operators are connected through edges

which represent the flow of tuples among operators. The P2 query language called OverLog

allows to express overlay networks in a highly compact and reusable form. For instance, the

Chord protocol has been implemented with just 47 lines of code compared to the thousands

of lines of the original implementation. The high level overlay description, however, comes

at the price of reduced performance. Optimised C, C++, and Java implementations can

perform considerably better using host resources more efficiently. Therefore P2 is generally

aimed at rapid prototyping scenarios and less at production systems.

In P2, overlays are modelled as distributed data structure represented as structured rela-

tions similar to relational databases. Two types of tuples are supported: soft-state tables

or streams of tuples. A relational model is beneficial first, because network state can be

intuitively expressed by structured tables and, second, tables and relationships can be

48 2.7 Summary

expressed concisely in a declarative query language. OverLog is based on Datalog with

extensions to specify physical distribution properties, continuous queries over streams as

well as tables and deletion of tuples from tables.

The P2 runtime provides the basic classes Tuple and Value to represent data in the

system. A Tuple is a vector of Value objects. Tuples, Values and operators are translated

into an intermediate language called PEL which in turn is compiled to byte-code. A virtual

machine executes the resulting byte-code. Execution is single threaded and event driven

requiring blocking and long running events to be assigned to additional threads.

Tables in P2 are queues of limited size and limited validity for individual queue elements.

Tables are referenced by unique IDs and are visible to all queries currently executing. They

are local data structures but location specifiers in the OverLog rules allow transparent

partition of data over several nodes. True predicate indexes allow efficicent lookup of

tuples.

2.7 Summary

This chapter introduced current technologies for large-scale data-centric systems. Starting

with a general introduction in architectural methods, it became clear that large-scale sys-

tems pose new challenges that require methods beyond the traditional architecture busi-

ness cycle. Open source models as suggested as part of the ULS research together with

Web 2.0 platform approaches constitute methods to design, maintain and evolve plat-

forms for large-scale industrial infrastructures. To implement such models, corresponding

software architectures and platforms are required.

Databases are today the number one choice for data-centric integration. Strictly assuring

atomicity, consistency, integrity and durability they hide storage complexity from applica-

tions. The rich feature set, however, limits their applicability in the face of increasing data

volumes and update intensive load patterns. Alternatives range from distributed file sys-

tems like GFS to new data models like Bigtable and Hbase. While databases or database

clusters can be classified as distributed systems with a relatively low degree of distribu-

tion, P2P systems lie on the other end of the spectrum. Being designed to co-ordinate

collaborative resource use of millions of peers, P2P systems enable data management for

very large infrastructures. Due to their self-organising capabilities, maintenance overhead

remains at a minimum. However, the ability to scale to large systems comes at the price

of relaxed transactional behaviour and no support for queries beyond keyword searches.

Besides querying, a key challenge is the bi-directional dissemination and collection of

2 Technologies for Data-Centric Systems 49

information among networked nodes. Building upon the addressing schemes of overlay

networks, information collection and dissemination methods can be implemented. This

virtualisation from physical networks, reduces the complexity for the application devel-

oper.

Autonomy

D
e

g
re

e
 o

f
d

is
tr

ib
u

ti
o

n

low high

RDBMS

RTSTREAM/DSMS

PubSub

Bigtable/Hbase

Declarative
Networking

ISO/IEC 42010 IEEE

Open Source Model

P2P

Web 2.0 Platforms

ALM

low

high

Target systems of this work:
High degreee of distribution
High level of autonomy

C
o

n
trib

u
tio

n
s
 o

f th
is

 th
e

s
is

Contributions of this thesis

Figure 2.4: Technology cluster by degree of distribution and autonomy

Recalling the research questions and challenges of the target systems as elaborated in Sec-

tion 1.5, two essential characteristics need to be fulfilled by technologies in order to achieve

quality attributes in large-scale systems. The first is distributed organisation determined

by the inherent structure of the system, which is composed of individual networked parts

that are globally distributed and do not synchronise with a central point of control. The

second characteristics is autonomy or reverse administrative proximity [46]. As individual

parts are owned, maintained and operated by different parties, no single entity has com-

plete access to all of the parts nor can the behaviour be reliably predicted. Figure 2.4

clusters the technologies and methods reviewed in this chapter along the two dimensions.

Although RDBMS may run on clusters their level of distribution is small compared to

large systems with thousands of entities. Some DSMS exhibit a slightly higher level of

distribution due to in-networking aggregation and pre-processing. Traditional architecture

and design methods are largely centralised with an architect co-ordinating the whole

project. Bigtable and Hbase are large distributed systems, yet the level of de-central

organisation is low due to their flat hierarchical organisation. Publish-subscribe systems

realise loosely coupled distributed systems, hence they allow individual parts to operate

autonomously. Although realised on server farms, the degree of de-central organisation is

50 2.7 Summary

low. While web 2.0 platforms may technically be distributed, i.e. to multiple servers, they

are operated by a single party and hence appear as a central entity. They do, however,

allow high levels of autonomy as users have direct influence on the service and can,

technically, enhance the service by supplying software that runs in the platform. Due to

its recursive execution, declarative routing rules such as those specified in OverLog are

highly distributed. Autonomy, however, is low since routers are most likely maintained by

a single party. Similarly, ALM systems which can span large hierarchies yet strictly control

each participating node. Both P2P systems as well as the open source model are located

at the extreme of both dimensions. Both allow a maximum of autonomy for the individual

yet do not have a determined central point of control. The level of de-central organisation

of the open source model is slightly lower than for P2P systems since a single or team

of democratically elected leaders are able to make global decisions. The systems under

investigation in this work reside on the upper right quadrant of Figure 2.4. Autonomy

comes from the large number of individual components that function together. The degree

to distribution is inherent in the system due to the physical separation of entities as

well as the heterogeneity of entities. The open source model and P2P technologies seem

good candidates to address the challenges for large-scale systems. Yet both emerged from

domains other than industrial, i.e. IT or media, and therefore do not meet the requirements

presented in Section 1.3. Therefore, in order to address the research questions stated in

Section 1.5 this work contributes by the adaptation and transition of the these technologies

into the target domain of large-scale industrial systems.

The following chapter will introduce specific background on power infrastructures. In a

section on the Smart Grid the above illustration will be complemented with a classification

of the Smart Grid into the two dimensions. The Smart Grid is representative for a large-

scale industrial system in the power domain.

Chapter 3

Power System Infrastructures

Consisting of thousands of sensors and actuators, power systems are among the largest

and most complex technical systems man has ever made. This chapter introduces power

system essentials both from an electric and from an information and communication

infrastructure perspective. By illustrating power generation, transmission, distribution

and usage, the influences of different load types are described. Moreover, the need for

control and monitoring infrastructures as well as challenges for future architectures are

motivated. It remains important to note that this introduction is neither comprehensive

nor complete but meant to provide a general overview and introduction of key terms and

concepts.

3.1 Power Systems Essentials

Power systems constitute the backbone of modern society (Figure 3.1). Electricity is

regarded as commodity with almost constant availability. Without electricity rail systems

such as subways and trains would come to standstill, traffic lights would not function,

computers would not work, water supplies would stop or run out. In short: modern society

would collapse without electricity.

The high level of availability, is even more remarkable when considering that what lies

beyond the AC outlet, is a highly dynamic and complex system. Large power systems

exhibit a variety of dynamic phenomena regulated by various types of controllers. Starting

from simple on/off switches like circuit breakers to isolate short circuited or malfunctioning

equipment, the range spans over discrete controllers like tap-changers in transformers to

continuous controllers like voltage controllers and power electronic controls in Flexible

AC Transmission System (FACTS) devices which can control power flow or voltage.

52 3.1 Power Systems Essentials

Figure 3.1: Earth Lights - Data courtesy Marc Imhoff of NASA GSFC and Christopher

Elvidge of NOAA NGDC. Image by Craig Mayhew and Robert Simmon, NASA GSFC

Most controllers act locally, e.g. protection systems operating on measurements within

the same substation. Most dynamic characteristics, however, emerge as regional or even

system-wide patterns. Hence, power system controllers need to control the global sys-

tem state via local actions. Before proceeding with an overview of stability and control

approaches, the following sections introduce a common taxonomy for the power system

domain.

3.1.1 Power System Key Concepts and Components

In power systems, a small number of generators generate electric energy which is then

transported over the transmission and distribution network to a large number of con-

sumers. Following the hierarchical organisation inherent in today’s power infrastructures,

the following paragraphs introduce the key elements of a power system from generators,

over the transmission and distribution network to consumers which are also, more gener-

ally, referred to as loads.

Generation

Generation describes the process of transforming natural energy resources to electrical

power. Natural energy, e.g. potential energy of water, energy derived from combustion or

atomic reactions etc., is conveyed to turbines where mechanical energy is transferred to

alternators which accomplish the actual transformation to electrical power.

3 Power System Infrastructures 53

A generator requires several monitoring and control equipment, i.e. the automation and

process control system, before it can function in a grid. The automation system executes

regulation instructions from the Energy Management System (EMS) in the control centre

of the utility. Both the generator and its turbine are subject to the regulation process.

Control commands include adjustment of the turbine torque which determines the current

from the generator. The control of the spin speed determines the frequency and the control

of the current in the exciter coils of the alternator which determine the amplitude of the

output voltage.

Recently, traditional power systems, i.e. systems without generation at the distribution

level, started to evolve towards systems having production at two levels. One level is

constituted by already existing large-scale power plants that are connected to the high

voltage transmission network. Another level is composed of a large number of Distributed

Energy Resources (DER) connected to the low and medium voltage distribution network.

However, due to the lack of detailed real-time information, in traditional power systems,

certain areas of the transmission and distribution network appear as black boxes to net-

work operators. In a system with a well-defined top-down power flow detailed real-time

information is not necessary since network states can be estimated with acceptable pre-

cision. In the new network architectures, however, power flow is unknown for large areas

because distributed generators may feed more into the network than they consume. As

a side effect, protection systems, unaware to the possibility of bidirectional power flow,

may fail thereby endangering human life and causing equipment damage. Substantial in-

vestments are required before distribution networks are able to cope with the integration

of a large number of distributed units. On the technical side, key challenges relate to the

control and co-ordination of the large number of small DER, advanced protection systems,

network reconfiguration and power flow control.

In recent years, a new market for so called micro-generators emerged. This special form

of DERs target domestic markets and produce electrical energy from a large spectrum of

(waste-) energy sources. Most common and highly developed are:

• Gas combustion turbines

• Gas combustion microturbines

• Gas to hydrogen fed fuel cells

• Wind powered generators

• Photovoltaic cells

• Solar thermal-electric power plants

54 3.1 Power Systems Essentials

• Hydroelectric micro- and small-scale power plants

• Geo-thermal steam turbines

Additionally, batteries, fly-wheels, super-capacitators and other types of energy storage

are regarded as DER. Due to their ability to absorb peak loads and balance consumption

and production, energy storage systems will play an important role in the context of

integration of stochastic generators such as wind and solar into the global power grid.

DER are potentially operated by end users which may switch their role from consumer

to producer several times a day. End users aim to maximise their benefit regarding the

operation of the DER. For instance, the operator of a bio-gas turbine may connect only if

prices reach a certain threshold and disconnect abruptly if the price drops below a certain

limit. Similarly, close-by wind turbines may start feeding enormous amounts of electrical

energy as winds kicks in and photovoltaic systems will drop output as clouds disguise the

sun. Energy Management Systems (EMS) are required to cope with the dynamics and

complexity induced by such unforeseeable events.

Transmission and Distribution Network

The Transmission and Distribution (T&D) network transports electric energy from gen-

erator to consumer. The transport is accomplished by overhead and underground lines.

The distance between generator and consumer determines the fundamental design of the

transmission and distributed network. The larger the distance and the higher the amount

of power to be transported, the higher the system voltage. The transmission network con-

nects power plants with transmission substations. It usually spans the largest distances,

hence voltage in transmission networks is the highest. Substations transform voltage and

supply the distribution network which distributes energy to connected consumers.

The number of voltage transformations from highest to lowest voltage level determines the

network topology. In a radial topology all substations are fed by a single supply. Radial

networks are less expensive to built but are also less reliable. A loop topology connects

each substation with two supplies or at least with one supply from two directions. Loop

topologies are more reliable but also more expensive. In a multi-loop topology substations

are fed from more than two directions and hence are even more reliable but also more

costly.

Connecting power carriers, i.e. overhead lines and underground cables, substations are the

nodes of the (T&D) network and hence play a key role in the control of a power system.

Incoming and outgoing carriers are connected to so called busses or busbars by feeders, i.e.

3 Power System Infrastructures 55

circuit breakers, disconnectors, and instrument transformers. Transformers in substations

interconnect the different voltage levels. Substations further host the protection systems

and transmit measurement signals to the control centre.

Protection systems are designed to clear faults such as short circuits which can damage

busbars, transformers or lines. The operation principle is rather simple. Transformers

provide measured values of the current voltage and current levels to a protective relay. The

relay applies its protection algorithms to determine whether to operate a specified circuit

breaker hence isolating faulted sections or equipment. Modern relays are computerised

featuring communication facilities, self diagnosis and event recording. At a conceptual

level protection methods are trivial. However, isolating a faulted segment while leaving

healthy segments in operation is a complex undertaking. Protection must be sensitive

enough to react quickly but also provide stability and continuity during operation close

to the capacity limit of feeders, lines and cables. Further complicating are anomalies like

lightning strokes which constitute a rather transient phenomenon which should not yield

an interruption of supply. Typically, transient faults are compensated with a re-closing

mechanism, i.e. the relay closes the circuit thereby checking whether the fault is still

present. If this process failed several times the fault may not be able to be cleared locally.

Protective relaying systems are usually built with various levels of redundancy to iso-

late fault conditions and equipment quickly as well as maintaining stable system opera-

tion. While local backup systems are easily disabled by severe component failures, remote

backup systems provide additional security by physical separation.

Transformers

Transformers are essential components of the AC power system as they enable conversion

between different voltage levels with high efficiency. Power is generated at relatively low

voltage between 10/25kV, then, to reduce losses during transmission, it is transformed to

higher voltages between 110kV-420kV before it is transformed down to 400V for domestic

consumption. Conceptually, transformers consist of two coils around a common iron core

implementing a magnetic coupling between the coils. Considering an ideal transformer, i.e.

no resistance, no leakage flux and infinite permeability of the core, the relation between

the voltage on the primary side and the induced voltage on the secondary side can be

written as:
v1

v2
=

N1

N2
= n (3.1)

Where v1 is the applied and v2 the induced voltage, N1 the number of turns of the primary

transformer winding and N2 the number of turns of the secondary winding respectively.

So called tap-changing transformers are able to control the number of turns and hence

56 3.1 Power Systems Essentials

can be used for voltage control. In the non ideal case, transformers have several dynamic

characteristics that can influence Power Quality (PQ), i.e. constant voltage and frequency,

and and general power system stability. When the transformer core has been disconnected

from the grid, it contains a residential magnetic flux φr. Upon reconnection, the grid

voltage initiates a flux in the same direction hence the total flux becomes φr + φs. The

core material goes into saturation which causes large current inflow from the system. This

current inrush can take several seconds to disappear.

Loads and Consumers

Loads usually convert AC electrical energy into other forms of energy, e.g. mechanic,

light, heat, DC electrical energy and chemical energy. Typically, loads are categorised

into residential, i.e. domestic users, industrial, i.e. commercial users, and railways. In

the following, different load types (motors, light bulbs, AC/DC converters, batteries) are

discussed. Moreover, the effects, induced on the power grid by each of the load types, are

explained.

Transformation from electric to mechanical energy is done by motors. Most motors are

AC machines, i.e. synchronous motors and asynchronous motors. DC motors are utilised

by trains and as drivers in hard-disks which benefit from their traction properties. For

AC motors the three-phase power supply generates a rotating field which acts as torque

on the rotor. Synchronous machines can act as generators and as motors. They operate at

constant speed unless supplied with power-eletronic converters to control the frequency of

the power supply. Around 60% of the total supplied electrical energy is consumed by asyn-

chronous motors which are 90% of all electric motors in use. They operate in dishwashers,

washing machines and air conditioners. Asynchronous motors are not synchronised with

the rotating field. This influences the power system when the machine starts, stops or

the mechanical load changes. The motor is driven by applying the three-phase voltage on

the terminals of the strator windings producing a rotating field which in turn induces a

rotating current in the windings. The field plus rotating current generate the torque on

the rotor. During startup the applied current is much higher than nominal. Rotor current

decays as spinning speed increases. The startup phase of large asynchronous motors has

the same effect on power systems as the inrush current of transformers. In steady state,

the motor develops a torque equal to the mechanical load. However, rotor speed must

always be sufficiently less than synchronous speed in order to develop the torque needed

to balance the mechanical torque. The difference in velocities is referred to as slip. If, un-

der heavy load conditions, supply voltage decreases, the electromagnetic torque decreases

as well causing the slip to increase which in turn increases the current in the windings.

3 Power System Infrastructures 57

Hence, an asynchronous motor amplifies supply voltage drops and, in the worst case, may

cause blackouts or complicate the operation of reconnecting feeders.

In traditional light bulbs electric current heats a thin filament which in turn radiates

light. Dimmers used to control the brightness of the bulb chop the applied AC voltage

and current accordingly. The application of dimmers yields non-sinusoidal and harmonic

currents in the grid. In the presence of many harmonic current inducing loads, voltage

may become distorted as well as yield decreased power quality.

Home appliances like heaters and water cookers convert electrical energy into heat through

an resistor. The aluminium and steel-making industry applies electric heating at a large-

scale. A steel-making furnace induces similar dynamics as a transformer on the network.

The melted metal short circuits the secondary winding and the current heats up the

furnace.

Most electronic equipment requires DC electrical energy and hence rely on AC/DC con-

version. AC/DC converters are built from diodes which act as switches conducting the

current across only if the applied voltage is positive.

Batteries directly convert electrical energy into chemical energy when charging and vice

versa when supplying. Having positive and negative terminals immersed in a solid or fluid

electrolyte, electric current separates protons and electrons thereby creating an electric

potential between the terminals. On discharge the potential between the terminals levels

out.

Despite the dynamics induced by the different load types just introduced, grid stability

and PQ must be actively maintained. The following section introduces control values,

methods and architectures which are employed in state of the art control facilities.

3.2 Power System Control

Power system loads and consumers are supplied with power at near constant frequency and

voltage. Since electrical energy cannot be stored efficiently, the balance between generation

and consumption must be actively maintained by control actions.

Commonly it is distinguished between primary, secondary and tertiary control. Primary

control occurs at a millisecond scale, e.g. excitation control on generators to regulate

voltage. Secondary control has time windows of up to 15 minutes and includes, for ex-

ample, the Transmission System Operator’s (TSO) actions to balance a specific control

area. Tertiary control has a time horizon of up to 24 hours and includes transmission

schedules and consumption as well as weather forecasts. Besides temporal characteristics,

58 3.2 Power System Control

control actions can be classified according to their controlled values, i.e. voltage control,

power flow control and frequency control. The following details each of these control types

together with their scope of control, i.e. local and system-wide.

As part of primary control, voltage can be controlled by adjusting the excitation current in

a generator. Additionally, voltage can be controlled by utilising tap changing transformers,

shunt capacitors, or reactances which are operated as part of an automatic feedback loop.

While tap changes and shunt reactances are discrete controllers, more recent power elec-

tronic devices such as Static Variable Controllers (SVC) allow for more continuous and

faster control. Voltage control happens at a local scale. However, control actions have

influence on other parts of the network as well.

While power injections and voltages are controlled precisely, power flows at transmission

lines are usually not controlled. However, so called phase shifting transformers are capable

of controlling the power flow. The control is discrete, slow and local. The flow over DC

lines is always controlled and control is very fast.

Generally frequency is controlled by balancing load and generation. Sensing deviations in

speed at the generator, mechanical input power is adjusted to achieve constant frequen-

cies. Primary frequency control is local and very fast. Secondary control, also known as

Automatic Generation Control (AGC) and Load Frequency Control (LFC) is done at the

control centre, hence not local and slower.

3.2.1 Control Centres

Control centres collect information on the current state of the power system. Based on the

data acquired, the operator can monitor the system and take corrective action if necessary.

The set of control actions an operator can manually initiate include opening and closing

circuit breakers and changing transformer taps. Data acquisition and operator controls

are subsumed in so called Supervisory Control And Data Acquisition (SCADA) systems.

SCADA systems retrieve field data from Remote Terminal Units (RTU) which are installed

in substations as well as power plants. RTUs can communicate over several communica-

tion infrastructures such as optical network or telephone lines. Transmitted data includes

switch status (On/Off) of circuit breakers as well as voltage and power measurements.

While voltage control and protection belong to the local controls, frequency control is the

only wide area control task implemented in control centres. Frequency control is achieved

in a feedback control loop starting with the capture of measurements on generator outputs

and tie-line flows. Based on the collected data, generator governor set-points are computed.

3 Power System Infrastructures 59

The accuracy of the calculation is restricted to the data collection interval which is between

2-4 seconds for both retrieval and control commands respectively.

With the availability of more powerful digital computers, control centres began to host

additional applications. Most notable is the state estimator which calculates a real-time

steady state model of the power system. Based on the model, disturbances can be analysed

giving the operator a timely chance for corrective action. Furthermore, the model is used

to analyse the current state of the system aiming to identify alternative, more optimal

configurations. SCADA systems that are extended by these new applications are also

referred to as Energy Management Systems (EMS).

The rapid evolution of digital computers led also to a new generation of substation equip-

ment. Being able to sample data at a millisecond rate, devices are capable to compute

highly detailed state assessments. However, due to the limitation of the communication

infrastructure, this high volume real-time data is not transmitted to the control centre

but stored locally in limited quantity. Therefore its use is limited to off-line studies or

post-mortem analysis.

3.2.2 Control Architectures for Distributed Generation

Increasing integration of distributed energy resources in the distribution system structure

gives rise to various problems. Among them are mis-operation of protection equipment,

poor power quality, inadequate voltage profiles and stability problems. A concept called

active distribution network aims to address these issues and support large-scale pene-

tration of DER in distribution systems [28]. Several research groups investigate active

network concepts providing architectures, control paradigms and strategies for integra-

tion into the standard grid. The latter is mandatory as massive re-design of existing

distribution networks is not feasible. Therefore, active network proposals keep the exist-

ing infrastructure, e.g. protection and control systems in place, and rather extend them

with a new control functionality, e.g power flow control.

Voltage and frequency control of current power networks assume that all or most of the

generated power comes from a few large generators at the transmission level. In the future,

control mechanisms need to be tailored for the distribution level. Hence, at this level, a

new set of control functionality is required, namely: balance production and consumption,

maintain frequency and voltage levels, control of PQ, measure and synchronise connect

and disconnect of isolated networks with the main grid. In the following paragraphs,

several architectures to implement this control functionality are introduced.

Eltra [102] initiated the Cell Controller Project which introduces the metaphor of a distri-

60 3.2 Power System Control

bution cell, similar to a broadcast cell in a mobile network, to describe 60kV sub-networks

below 150/60kV transformers. In emergency situations, a cell is disconnected from the

High Voltage (HV) grid and transferred to controlled island operation. A cell provides

explicit support for:

• Online monitoring of loads and production

• Active power control of generators

• Capability of remote breaker operation

• Voltage and frequency control

• Black start support to the transmission grid

Besides the concept of cells, another approach gained widespread popularity in recent

years. It is motivated as follows: a considerable source of inefficiency in generation is the

fact, that, in order to generate electricity, heat is generated which is then transformed

into electricity. Subsequent to its generation, power is transported to the consumer, who

often uses electricity to generate heat again. The next section introduces the concept of

microgrids, which aim for high efficiency by combining local heat and electricity genera-

tion.

Microgrids

The Microgrid concept introduced by the Consortium for Electric Reliability Technology

Solutions (CERTS) [84], [107] combines load and microsources to operate as a unified

structure for both electric power and heat. A microgrid is a small, isolated section of the

main grid which can be operated independently. Similarly to the cell concept, microgrids

provide distribution level control functionality, i.e:

• Voltage control

• Power flow control

• Load sharing

• Functionality for the smooth connection and disconnection to and from the main

grid

Microgrids constitute a novel network structure located down stream at the low voltage

(LV) layer [85]. In a microgrid, DERs such as microturbines, fuel cells, photovoltaic arrays

3 Power System Infrastructures 61

and distributed storage (DS) as well as controllable loads, e.g. air conditioners, are locally

networked such that they can be controlled independently from the main grid. More-

over, microgrids are connected with the medium voltage distribution network to ensure

power quality and stability but provide the option of isolation from the main grid in the

event of failure [84]. For the consumer, microgrids provide benefits in terms of reliability,

sustainability, improved power quality and decreased costs. In the context of the utility,

microgrids are beneficial due to decreased transmission facility usage, increased service

quality and better utilisation of transmission and distribution networks.

Control and management of microgrids differ substantially from conventional power sys-

tems. This is due as follows:

• steady-state and dynamic characteristics of DER units are different from large tur-

bine units

• microgrids are subject to significant degree of imbalance due to single-phase loads

and DER units

• certain sources in a microgrid have stochastic behaviour, e.g. wind turbines, photo-

voltaic arrays

• energy storage units can play an important role in microgrids

• microgrids must cope with constant join and leave of DER units, e.g., for economic

reasons

• in addition to electrical energy, microgrids are also an important producer of thermal

energy in form of waste heat

Microgrid control systems may be based on a central controller or embedded in each

distributed generator or other equipment. In the central case, the microgrid central con-

troller (MGCC) controls the actions of all components of the microgrid thereby optimising

its utilisation [59]. When isolated from the main grid, the control system must operate

the local control functions.In this control scenario, frequency control is particularly chal-

lenging. In conventional systems, frequency response is based on rotating masses. Since

micro turbines, fuel cells and photovoltaic arrays are basically inertia-less and have slow

response or ramp times, the behaviour of directly connected rotating masses must be

imitated co-operatively by the electronic converters [93]. Voltage regulation, on the other

hand, is a local problem and hence similar in connected and isolated mode. If the micro-

grid was exporting or importing power from the main grid before isolation, generation

and consumption needs to be balanced. If demand exceeds current supply, demand side

62 3.2 Power System Control

management, e.g. load shedding, are implemented to maintain stability. By co-ordination

of storage units additional stability is achieved in case of abrupt fluctuation of generation

or consumption. Storage units are also utilised to maintain power quality by injecting or

absorbing real or reactive power. When grid-connected, microgrid control functions are

reduced to satisfying all of its load requirements and contractual obligations with the

main grid.

Especially in isolation mode, communication between components is of utter importance.

The underlying communication infrastructure must be of low latency and highly reliable.

In the context of microgrid control, intelligent agents are frequently suggested as an

enabling technology [117]. In this context, the different modes of co-operation between

DER and DS are key to maintain integrity of the isolated microgrid. The following section

elaborates on the importance of the communication infrastructure for local and system-

wide operations.

Communication and Control System

Previous sections stressed already the importance of advanced information and commu-

nication technologies as an enabler for future power systems. Already today automation

equipment provides standard networking via ethernet and TCP/IP. Importantly, the ex-

tra costs for digital equipment and sensors are quickly consolidated through improved

operation and maintenance efficiency. Communication in an energy automation system

includes functions for (electrical-) network reconfiguration, voltage frequency control, gen-

eration control, load control, control of active compensation devices, real-time monitoring,

predication of consumption, generation and pricing. Control systems can be organised in

various topologies: using centralised controllers, complete de-centralised with direct peer-

to-peer communication or hybrid variants of the previous two approaches. Controllable

equipment can also be autonomous, e.g. utilising local information when responding to

grid events. This approach is particularly appealing when extremely fast responses are

required.

Information and communication technology is essential for acquiring, storing, processing

and distribution of information in power systems. As elaborated in [127], communica-

tion infrastructures might include different media such as landline, wireless or power line

carrier. However, each technology might be more or less suited in a particular scenario:

while landline is well suited for high bandwidth demanding applications, wireless brings

increased flexibility but is limited due to sensitivity for magnetic distortion [127]. Power

line is often used for automatic meter readings (AMR) but is not applicable for reclosers,

switches and sectionalisers, as communication is lost on open circuits.

3 Power System Infrastructures 63

For the stable operation of an active distribution network, accurate knowledge of the

network condition is a precondition. The network condition consists of network topology,

properties and condition of equipment and information on voltages and current flows.

As a common concept, monitoring data is processed close to where it has been sampled.

Modern energy automation equipment, frequently referred to as Intelligent Electronic

Device (IED), provide already functionality to process sampled data. From the IED, data

is passed to a data concentrator, for instance a substation control unit, where it is further

aggregated and eventually sent to the network control station.

Instead of this central control approach, the benefits of P2P communication have been

investigated in the context of distribution protection systems in [35]. In traditional re-

closer protection schemes enormous pressure is put on reclosers due to high thermal and

mechanical forces. Moreover, the voltage drop might cause power quality to decrease. Us-

ing P2P technology, devices are enabled to directly exchange their current status. This

facilitates fast fault location and saves further reclosing operations. Relays locate faults

by comparing measurements of all relays in the protection system. For instance, if a relay

measures the fault current but its down stream neighbour does not, the fault is located

between them. The device located closest to the fault initiates the reconfiguration process

by sending open-close-lock commands to all respective relays in the protection system.

Regardless of concrete technologies employed, communication, objects models and pro-

tocols must be standardised in order to achieve exhaustive coverage. To cope with the

complexity introduced by the new digital equipment, concepts to keep engineering efforts

at minimum are required. Self-configuring systems and plug and play paradigms will play

an important role in order to achieve economically feasible solutions. These advanced

communication paradigms constitute an enabler for a new kind of power infrastructure

labelled as the Smart Grid which is described in the following section.

3.3 The Smart Grid

Recently, the term “Smart Grid” has become the new and dominant buzzword in the

power industry. The term is not defined precisely, and utilities as well as equipment

vendors seem to bend the term such that it fits best their current product and service

portfolios.

Besides marketing, the term Smart Grid is often associated with the increase of digital-

isation and communication of power infrastructures. Integration of renewables, increase

of efficiency as well as security of supply are major drivers. The discussion of the smart

grid is not limited to technical issues like intelligent protection systems or smart metering.

64 3.3 The Smart Grid

Moreover, environmental as well as socio-political issues such as subsidiaries for de-central

generation are subject of the smart grid. The smart grid transforms traditional power in-

frastructures into open platforms for providers, producers, consumers, service providers

and prosumers.

As related work does not provide a universally valid definition, the following is an attempt

to scope the smart grid. Instead of a precise and formal definition, it summarises key

features and drivers:

Definition A Smart Grid is an electricity network which extensively uses Information

and Communication Technology (ICT) to achieve an intelligent and energy efficient har-

monisation of generation, storage, transmission, distribution, and consumption. It is an

open platform for producers, service providers, and consumers of electrical energy and

add-on services.

The increased deployment of ICT in power infrastructures bears many opportunities for

traditional utilities to operate their infrastructures more efficient and stable. The Smart

Grid, however, has also disruptive potential as it opens the infrastructure for new players

and services.

3.3.1 Surrounding Conditions

A variety of surrounding conditions fuel the Smart Grid hype. Since conditions

are often related to governmental motivation, e.g. unbundling and liberalisation, or

based on immediate technical needs like increase in reliability in the United States,

Smart Grid drivers vary greatly from region to region. In order to provide con-

crete and concise facts, the following focusses on European and in particular German

energy markets. Information presented is gathered from “BMWi Energiestatistiken”

(http://www.bmwi.de/BMWi/Navigation/Energie/energiestatistiken.html) and the Eu-

ropean Technology Platform Smart Grid [41]. Drivers in other regions may be different.

The conclusion, however, i.e. increase in ICT and deployment of intelligence in the grid,

is true for all regions.

In Germany 50%, of plants today in operation were built between 1960 and 1980 and

will meet their end-of-life in the next 5 to 15 years. Utilities are therefore pushed to

find cost attractive alternatives for their generation infrastructures. In the year 1998, the

“Energiewirtschaftsgesetz (EnWG)” introduced the liberalisation of energy markets. The

regional monopolies of utilities is thereby abrogated, and transmission and distribution

infrastructures must be opened for third parties. The maximum rate of return for energy

3 Power System Infrastructures 65

networks is capped such that third parties can utilise these infrastructures without dis-

advantages. The cap is determined by comparing expenses of different utilities. In the

year 2008 the amendment added the liberalisation of metering services which entitles

the customer to chose a metering provider different from the utility. Unbundling forces

the utilities to separate networks and energy sales. Ownership unbundling goes one step

further with the obligation that network and energy sales are even executed by two sep-

arate legal entities. Hence, unbundling and deregulation requires the traditional utility

to increase efficiency in network operation and enhance IT infrastructures for seamless

integration of cross-enterprise business processes.

The “Erneuerbare Energien Gesetz (EEG)” was implemented to advance deployment

of heat and electric generators based on renewable sources. Its aim is to increase the

percentage of renewable energies of the entire generation mix to 30% by 2020. By law,

utilities are forced to buy electricity from renewable sources at governmentally fixed prices.

Challenges for the utility arise once the numbers of de-central renewable sources increases

since sources like wind and solar behave stochastically and cannot be controlled.

The volume in energy trading increases throughout Europe continuously, causing higher

load on transmission infrastructures. Moreover, the expansion of offshore wind parks in-

duces substantial load on the transmission network in Germany. The increased load causes

congestion and reverse load flows which may circumvent protection systems causing desta-

bilisation of the power infrastructures. Hence, already today, transmission infrastructures

are heavily extended and further extensions are planned.

Per capita consumption of electrical energy rises continuously. Although household appli-

ances like refrigerators, washing machines and dryers become more efficient, new devices,

e.g. digital entertainment and electric vehicles emerge, which demand even more powerful

infrastructures.

3.3.2 Challenges and Requirements for Smart Grid Deployment

In [41] the SmartGrid Advisory Council elaborates ten key issues that need to be addressed

by Smart Grid in the short to mid term with regard to successful deployment. Associated

with these issues are the key challenges and requirements for the Smart Grid. Similar

issues are identified in related works. Below is a summary of challenges and requirements

based, among others, on [70], [41], [71], [42].

1. Education of all stakeholders. Expansion and transformation of traditional grid in-

frastructures may be obstructed when individual stakeholders are not aware of the

benefits the Smart Grid contributes to their utility. Hence, concepts, ideas and ben-

66 3.3 The Smart Grid

efits must be actively marketed. Additionally, it must be made clear that the new

grid architecture is not a green-field solution but builds on existing infrastructures.

2. New planning and engineering for de-centralised grid architectures. New de-

centralised architecture concepts are the best motor for the democratisation of power

infrastructures. In order to deploy these new design, new engineering methods and

tools are required.

3. Strengthening the grid integration to prevent disturbances. As the utilisation of

the transmission increases throughout Europe, advanced integration is required. To

maintain the stability of supply, wide area monitoring (WAM) and wide area control

(WAC) solutions in combination with the ability to actively route load flows must

be deployed at a broad scale.

4. Moving grids offshore. Large offshore generators like wind farms and wave or tidal-

based generators require offshore networks to maximise the efficiency of generation

and transmission.

5. Active users need active grids. Upgrading power consumers to prosumers requires

active distribution networks for co-ordinated control and deployment. The major

requirement is the availability of reliable communication infrastructures.

6. Adequate communication for new services and players. New market players like

operators of virtual power plants, energy management service providers and meter

service providers will emerge. A reliable communication infrastructure connecting

all parties is required for data exchanges and technical support.

7. Enhanced intelligence for enhanced efficiency. Active demand participation will in-

crease the efficiency of energy consumption iff a certain level of co-ordination of

network, residential or industrial loads, users and manufacturers of home appliances

is accomplished. Besides technical aspects, appropriate incentives must be offered

in order for the new technology to be adopted.

8. For dispersed generation, dispersed storage is required. The intermittent and dis-

perse characteristic of generators based on renewable sources requires efficient stor-

age technology.

9. Mobility. Sustainable transportation like electric cars will have a major impact on

the Smart Grid. Network design needs to allow for large mobile generation and

storage. Additionally, a corresponding ICT infrastructure is required for seamless

access to accounting and billing of energy services.

3 Power System Infrastructures 67

10. Initiate research on Smart Grid topics now. Extensive research is required to start

immediately in order to deliver applications and solutions for the long term per-

spective of 2050.

This work, focussing on data-centric information and communication, particularly ad-

dresses items 5,6 and 9 as well as partially 2,3 and 7 of the above list.

3.4 Summary

Starting with essential concepts and components, this chapter introduced the power sys-

tem domain which is chosen to evaluate a new architecture for data-centric communica-

tion. An introduction to power system control underlined the importance and necessity

of communication for control and stable harmonisation of generation and consumption of

electrical energy. The last section elaborated the Smart Grid. One the one hand, the Smart

Grid involves the upgrade of old infrastructures with new digital equipment to achieve

higher efficiency. On the other hand, it constitutes a new service platform to address the

challenges power infrastructures will be faced with in the mid and long term.

Autonomy

D
e

g
re

e
 o

f
d

is
tr

ib
u

ti
o

n

low high

RDBMS

RTSTREAM/DSMS

PubSub

Bigtable/Hbase

Declarative
Networking

ISO/IEC 42010 IEEE

Open Source Model

P2P

Web 2.0 Platforms

ALM

low

high

C
o

n
trib

u
tio

n
s
 o

f th
is

 th
e

s
is

Contributions of this thesis

The Smart Grid

Figure 3.2: Technology cluster by degree of de-centralised organisation and autonomy

In the previous chapter (Chapter 2), technologies for large-scale data-centric systems have

been introduced. The chapter concluded in Section 2.7 with a classification of technologies

along two major dimensions namely degree of distribution and autonomy. By classifying

68 3.4 Summary

the Smart Grid along these two dimensions, Figure 3.2 complements this categorisation.

This figure illustrates the suitability of technologies for the Smart Grid and exposes the

technological gap between existing approaches and the requirements of the new systems. It

also shows that the Smart Grid belongs to the class of large-scale distributed systems and

that technologies identified in the previous chapter are promising candidates to address

the challenges of the Smart Grid.

Before the major contributions targeting the technological gap are described in Chapters

5 and 6, the following chapter introduces the scientific methods and tools applied in

this work. An architecture methodology is used to extract relevant requirements, define

quality attributes and apply proven evaluation methods. Simulation strategies allow for

large-scale examination and quantitative evaluation.

Chapter 4

Scientific Framework: Methods and

Tools

This chapter introduces the methods and tools used to create and evaluate the scientific

contributions of this work. In general one can distinguish between two approaches: Empir-

ical approaches aim to infer a universal model by generalising from real-life observations.

The validity of the model is verified by comparing its characteristics with empirical facts.

In contrast, constructive or rational approaches develop a theoretical foundation to gain

knowledge about the systems under investigation. While, in the empirical approach, real-

life observations yield a system model, in the constructive approach they rather exemplify

the correctness of the theoretical framework.

Applied to engineering sciences in general and complex distributed software systems in

particular, both approaches raise difficulties. The dynamics of a complex technical sys-

tem, such as a distributed software system, is determined, on the one hand, by the high

variability inherent to components, e.g., heterogeneous hardware and different communi-

cation protocols, and, on the other hand, by the high level of connectedness of individual

components. Following a constructive approach has the advantage that the correctness of

the system can be analytically verified in context of the respective theoretic framework.

To do so, the system as a whole or parts of it must be transferred in a form such that

the analytical method can be applied. This model, however, must capture all aspects con-

tributing to the dynamics of the real world system which is challenging if not impossible.

Given that complex systems often behave chaotically, i.e. they are sensitive to minimal

variations in the environment, the results generated in an abstracting model might not

be relevant in the real world.

In an empiric approach, real world systems would be analysed and key requirements iden-

tified. Based on these requirements an architecture would be derived. While the solution,

70 4.1 Architecture and Model

if appropriate software engineering methodologies are applied, will yield a near optimal

result for the concrete case, the disadvantage here is that the architecture is relevant to the

one specific system only and often inflexible towards variations in requirements. Hence,

the methods provided in this chapter are balanced between constructive and empirical

approaches. This yields, on the one hand, real world applicability, while, one the other

hand, general solutions that may be applied to a whole class of systems.

The chapter is structured as follows. First, the concepts of software architecture and

modelling of technical systems are introduced. Based on this foundation, methods to

create concrete architectures are presented. Section 4.3 elaborates on simulation methods

and tools for large scale complex systems. Subsequently, a methodology to design domain

specific languages is provided by Section 4.4.

4.1 Architecture and Model

The goal of this thesis is to develop an information and communication architecture

for large industrial systems which enables them to operate robustly and efficiently over

decades, while providing the flexibilty to react to changes in the operation environment

and requirements. Unfortunately, the term architecture is used imprecisly in software

engineering and hence needs clarification. Bass et. al. [11] provide a definition of a software

architecture that is relevant for this thesis:

The software architecture of a program or computing system is the structure or

structures of the system, which comprise software components, the externally

visible properties of those components, and the relationships among them.

Architectures provide both a lingua franca for all stakeholders and a technical blueprint

for the system under investigation. To specifically address the foci of stakeholders, archi-

tectures consist of a variety of different structures also referred to as views which limit

details to only essential information for an individual or class of specialists. Typical views

are:

• the functional view, which establishes an abstraction of the systems’ functions and

their relationships.

• the concurrency view, which describes which processes and threads are created in

the system and how they will communicate, synchronise and share resources.

• the code view, where the system is manifested as classes, objects, procedures, func-

tions and their compositions in terms of a concrete programming environment.

4 Scientific Framework: Methods and Tools 71

• the development view, which provides a perspective on the structure of source code

as a repository of files, directories or databases. It allows developers and maintainers

to create, modify and manage code artefacts in a coordinated manner.

• the physical view or deployment view, describes the system in terms of hardware

resources and the deployment of components to hardware.

The different views of the architecture developed in the thesis are manifested in several

models of the system. Similar, to the term architecture, the term model can be found in a

large number of definitions. It is derived from the latin modulus which translates to form,

pattern or antetype. However, a transfer to the context of a software development process

remains difficult. This can also be observed by looking at, e.g., the definition provided by

the UML:

Model: a semantically closed abstraction of a subject system.

The usage of the words abstraction as well as subject system are both not precise and

it remains unclear what exactly is meant by model in the UML. A different approach is

taken by Stachowiak [135] who describes a model by its inherent features which are:

• Map feature: Every model stands for something else, i.e., its original. How the orig-

inal is related to the model depends on the interpreter. Stachowiak takes therefore

a constructivist position which can be stated formally

O �I M (4.1)

which reads: M is a model of O for observer I. The relation �I is n : m, i.e., an

original can have multiple models and vice versa which is reflected by the different

views of the architecture.

• Reduction feature: A model has only a subset of the original’s features and model

features may slightly vary in comparison to the original.

• Pragmatic feature: The purpose of a model is to replace the original, given certain

conditions and goals.

As stated above, a model is a representative of its original and hence can be seen as a sign

that points to the original. This perspective connects modelling with semiotics, i.e. the

science of signs. In this context, models have, like signs, syntactic, semantic and pragmatic

aspects. The aspects can be illustrated by the tetrahedron version of the semiotic triangle

(Figure 4.1) as introducted by FRISCO Group [43].

72 4.2 Methods for Architecture Selection and Evaluation

C Model Conception

R Model RepresentationO Model Basis

I Model
Interpreter

Figure 4.1: The Semiotic Triangle

The theoretical core of the model is routed in the model conception C which determines

how the original is understood as well as which features are important and which can be

omitted or must be added. Several representations can exist for one conception. However,

for each representation only one conception exists. The pragmatic basis O for the model

determines purpose, type and profoundness of modelling. A model becomes syntactic

through its denotation R, which in this thesis, is accounted for by a description in the UML

or other forms of diagram formalism as well as the programming language SCSQL, which

provides a syntactic representation of component inter-dependencies and algorithms.

By establishing a common definition of the term architecture and its artefacts, i.e. models

and views, this section introduced the principal concepts for methods to create and eval-

uate this work. The following sections illustrate how architecture artefacts are generated

and thereby constitute the foundation of Chapter 7 which evaluates the contributions of

this thesis.

4.2 Methods for Architecture Selection and Evalua-

tion

A considerable body of research has been done on methods for software architecture deci-

sion and evaluation. A general consensus [11] is that the achievement of quality properties

is key for a successful system. Therefore, methods like ATAM, SAAM or ARID [11] [26]

proceed by identifying quality attributes, i.e. non-functional requirements, in so called

quality scenario descriptions. A scenario captures a particular workflow or use case of

the system. According to Bass [11], scenario descriptions are structured into six essential

parts:

1. stimulus, i.e. a condition that needs to be considered when it arrives at the system

2. a source of stimulus, i.e. some entity that generates the stimulation

4 Scientific Framework: Methods and Tools 73

3. an environment, i.e. the stimulus is embedded into certain conditions

4. an artefact, i.e. the part of the system that is simulated

5. a response, i.e. the stimulus triggered activity

6. a response measure which defines how the effect of the response is measured

Having quality attributes identified, so called tactics and architectural patterns are used

to create a design [123] [11] [18]. A tactic is a design decision to achieve one or more qual-

ity attributes. Conflicts may occur, e.g. a tactic may introduce redundancy to increase

availability which, however, may influence performance and latency which might be an-

other quality requirement. Generally tactics can refine other tactics, e.g. availability can

be temporal, i.e. data available at a certain point of time and regional, i.e. data available

at a certain place. Hence, tactics are organised in hierarchies. Moreover, tactics can be

packaged into patterns, e.g. a pattern supporting availability might use both redundancy

and synchronisation.

Quality attributes, tactics and patterns constitute the foundation for architecture evalua-

tion. Recapitulating the business drivers for Smart Grids in Chapter 3 the design decisions

are evaluated by validating it against the scenarios described in Section 6.1. Thereby risks,

sensitivity points, and trade-offs are identified and their contribution to the overarching

business goal elaborated. Where appropriate, alternative designs are discussed and the

advantage of the design chosen is clarified.

4.3 Simulation

Technically, large-scale complex systems are difficult to analyse. On the one hand, this is

due to the sheer size of a system which requires a multitude of costly resources as well as

an infrastructure for large amounts of data to be collected and processed. On the other

hand it is due to the fact that the environment cannot be fully controlled which hence may

cause uncontrollable variations in results hindering reproducible scientific reasoning. The

latter can be addressed by simulating the system in an artificial environment that can be

fully controlled. Simulations are used extensively in this work to validate the behaviour of

the architecture and algorithms developed. This section provides a definition of a system

simulation and introduces key concepts. Banks et. al. [9] define simulation as:

“A simulation is the imitation of the operation of a real-world process or

system over time. [...] The behavior of a system as it evolves over time is studied

74 4.3 Simulation

by developing a simulation model. This model usually takes the form of a set

of assumptions concerning the operation of a system. These assumptions are

expressed in mathematical, logical or symbolic relationships between entities,

or objects of interest, of the system.”

A prerequisite of simulation is the creation of a model that describes the system. The un-

derlying concepts used to describe the system under investigation are entities, attributes,

activities, events and state. A key concept of the simulation is the entity which repre-

sents objects of interest. Each entity has attributes that determine their structure and

behaviour. An activity is a defined period of time with a known length. The state of a

system consists of the minimal set of variables required to describe the system at any

point of time. Finally, events may cause state variables to change. The simulation model

used in this work is based on Discrete Event Simulation. In this environment, system state

variables change only at those points in time where events occur.

A unique challenge of this work is the simulation of systems with large amounts of enti-

ties. These simulations require considerable memory and compute resources which usually

cannot be supplied by a single computer. Although several standard discrete event sim-

ulators are available only a few support computation on more than one compute node.

In context of this work, a survey has been conducted to select the most suited simulator

product. Thereby the following requirements were evaluated:

• Networking. The simulator needs to be able to simulate different network protocols

at different layers of abstraction, i.e. at the application layer, e.g. overlays or TCP/IP

or the physical layer, i.e. ethernet or powerline.

• Dynamics. For reasons of resource efficiency the simulator must provide means to

add and remove entities during simulation time.

• Extensibility. The simulation needs to provide an interface to implement simulation

specific extension, e.g. synchronisation protocols or workload distribution mecha-

nisms which might be simulation specific. The interface should be either in the form

of an API or plug-in interface. Open source products provide the highest flexibility

in this regard.

• Statistics. The simulator needs to provide means to collect and aggregate statistics

on all parameters related to the simulation as well as the execution of the simulation.

The latter is of utter importance during development of a simulation as it is used

to optimise the simulation code to achieve better performance.

4 Scientific Framework: Methods and Tools 75

• Scalability. The simulator needs to be able to scale to large simulations hence it

should be able to efficiently make use of additional resources provided for the sim-

ulation.

• Distribution. If a single computer is not sufficient, the simulator should be able to

distribute workload to a number of compute nodes. Additionally, it needs to provide

means to synchronise the computation and collect and merge simulation results.

• Platform independence. Software and simulations were developed on Microsoft Win-

dows, Mac OS X and Linux systems. Small simulations can be run on desktop PCs

or Macs while larger simulations should be computed on a Linux cluster. Hence, the

simulator needs to support all three platforms.

• Documentation. Many of the open source simulators were developed by academic

institutions without commercial interest. Although published for everyone to down-

load and use, often minimal to none effort is spend on documentation and support.

Since simulation may consist of many thousands of lines of code which are bound to

a specific simulator, migration from one product to the other is not easily possible.

Hence, a minimum of support and documentation must be provided.

76 4.3 Simulation

T
ab

le
4.

1:
S
im

u
la

to
r

S
u
rv

ey

P
ro

d
u
ct

P
la

tf
or

m
D

oc
u
m

en
ta

ti
on

N
et

w
or

ki
n
g

D
yn

am
ic

s
E

xt
en

si
b
il
it
y

S
ta

ti
st

ic
s

S
ca

la
b
il
it
y

D
is

tr
ib

u
ti

on

N
S
2

W
in

d
ow

s
m

an
u
al

s
m

u
lt

ip
le

ye
s

p
lu

gi
n

m
an

u
al

1
n
o

M
ac

,
L
in

u
x

tu
to

ri
al

s
p
ro

to
co

ls
so

u
rc

e

m
ai

li
n
g

li
st

s

3L
S

W
in

d
ow

s
p
u
b
li
ca

ti
on

ov
er

la
y

n
o

-
ev

en
t

22
5

n
o

M
ac

,
L
in

u
x

n
et

w
or

k
b
as

ed

G
P

S
W

in
d
ow

s
p
u
b
li
ca

ti
on

ap
p
,
ov

er
la

y
n
o

so
u
rc

e
fi
le

10
00

n
o

M
ac

,
L
in

u
x

n
et

w
or

k
sh

ar
in

g

P
2P

S
im

W
in

d
ow

s
w

eb
si

te
si

n
gl

e
la

ye
r

ye
s

m
in

im
al

N
/A

n
o

M
ac

,
L
in

u
x

P
ee

rS
im

W
in

d
ow

s
p
u
b
li
ca

ti
on

co
m

p
on

en
ts

ye
s

so
u
rc

e
cu

st
om

10
00

00
0

n
o

M
ac

,
L
in

u
x

tu
to

ri
al

n
et

w
or

k
co

m
p
on

en
t

P
la

n
et

S
im

W
in

d
ow

s
p
u
b
li
ca

ti
on

ap
p
li
ca

ti
on

ye
s

so
u
rc

e
n
on

e
10

00
00

n
o

M
ac

,
L
in

u
x

tu
to

ri
al

ov
er

la
y,

n
et

w
or

k

S
m

u
rf

P
D

M
S

W
in

d
ow

s
p
u
b
li
ca

ti
on

ap
p
li
ca

ti
on

ye
s

ev
en

t
N

/A
ye

s

M
ac

,
L
in

u
x

ov
er

la
y,

n
et

w
or

k
b
as

ed

O
ve

rl
ay

W
ea

ve
r

W
in

d
ow

s
p
u
b
li
ca

ti
on

ap
p
li
ca

ti
on

n
o

m
es

sa
ge

40
00

ye
s1

M
ac

,
L
in

u
x

tu
to

ri
al

ro
u
ti

n
g

b
as

ed

P
2P

R
ea

lm
W

in
d
ow

s
p
u
b
li
ca

ti
on

ov
er

la
y

N
/A

qu
er

y
k.

A
.

ye
s2

M
ac

,
L
in

u
x

tu
to

ri
al

IO
b
as

ed

4 Scientific Framework: Methods and Tools 77

In the area of P2P systems several simulators are available that seemed like a good fit for

the requirements above. Hence the following simulators where evaluated: NS2 [99], 3LS

[143], GPS [157], P2PSim [1], PeerSim [72], PlatnetSim [4], SmurfPDMS [64], Overlay

Weaver [130], P2PRealm [77]. Table 4.1 summarises the survey. In conclusion, none of the

surveyed products fulfils all requirements, hence to be able to conduct simulations at the

required scale, a distributed discrete event simulator has been developed.

The simulator can operate on a single or on multiple computers. For the general case, the

simulation developer does not need to care whether the simulation will be executed locally

or distributed. However, the simulator allows to modify workload distribution methods

such that the specific requirements of a particular simulation can be addressed. Simulation

execution undergoes four major phases:

Initialisation

During this phase configurations are loaded and the simulator infrastructure is set up.

The phase includes the connection to remote computers, the creation of simulation entities

and the parametrisation of the simulation.

Distribution

Following the initialisation phase, in the distribution phase, the initial workload, i.e. the

instantiated entities and the initial events are distributed to all worker nodes of the

simulation infrastructure. The standard method for this phase is a uniform distribution

of entities and associated events to the available workers. Developers can overwrite this

method for the specific requirements of their simulation, e.g. server entities may require

more resources, hence it makes sense to deploy them on dedicated workers while multiple

client entities can be deployed on a single worker.

Simulation

While the first two phases prepare the simulation, the third phase constitutes the actual

execution. The simulation phase starts when the master computer, i.e. the machine where

the simulation has been initiated sends a start command to all worker nodes. The workers

start the execution by pulling the first event from the event list. The scope of the event ex-

ecution may be local, i.e. affecting only the state of the local entities, or it might influence

entities on remote workers. In the latter case, event execution is wrapped in a message

and sent over the network for the respective worker to execute. Resolving the network

78 4.3 Simulation

address of the target entity to execute the event depends on the distribution method.

In the general case where the workload is distributed uniformly a hash based method is

used to associate an entity identity with an IP address. For more advanced mappings the

simulation consults the custom distribution component to locate the simulated entity in

the infrastructure.

To maintain consistency in the parallel computation model, the simulator synchronises

the computations of all workers. Several synchronisation methods are supported. The

conservative method is based on the original works of Chandry, Misra and Bryant [23]

[7] and [95]. It ensures that no worker receives an event e with a timestamp te where

te < LV T and LV T is the Local Virtual Time of the worker. Execution is halted if events

may arrive that violate this condition. To prevent deadlocks workers exchange information

on the events of the current timestep. Receiving this information from all workers, a local

decision can be made whether a particular event can be executed or execution must be

delayed until results from another workers arrive. For each timestep n2 messages need to

be exchanged which, depending on the characteristics of the workload and the number of

workers, may not be efficient.

In the lookahead method, each worker can execute several timesteps up to a time limit tl

without synchronisation yet with the guarantee to ensure consistency. The method oper-

ates by adding a small delay to messages sent from one entity to another. The approach is

valid for simulations of networked system as communication between entities has always

a latency > 0. Each worker maintains a synchronisation table containing a row for each

worker participating in the simulation. A row contains the ID of the worker, the delay

and a value tlw representing the time limit computed with information from worker w,

i.e. the LVT at time the last message was sent plus the current delay to be added. The

tl for a worker is set as the minimum of all values in the table. At time t0 this tl is the

same for all workers but during the execution the limit is constantly adjusted. Thereby

two cases are distinguished: (i) a worker A receives a message from B. A updates its

synchronisation table and computes tl as the minimum of the sum of the current minimal

delay plus the time the message was sent. By this procedure it is assured that no message

is received with a timestamp smaller than a message previously received from the same

worker. (ii) when worker A reaches tl, it sends a null message to those workers that are

associated with the minimum value in the synchronisation table. The message contains

the actual LVT. Receiving workers update their synchronisation tables and respond with

their current LV T − 1 which is used to update the local synchronisation table.

4 Scientific Framework: Methods and Tools 79

Result Collection

The collection phase follows when all executions on all workers are finished. Simulation

results and log files are retrieved by the worker that initiated the simulation. Log file entries

are time-stamped, hence consistent result sets of the simulation for further analysis can

be created. The result collection phase ends with a clean up procedure where local log

files and temporary files are deleted. Afterwards the simulation infrastructure is prepared

for the next execution.

4.4 Methods for Language Selection and Evaluation

The development of programming languages in general and Domain Specific Language

(DSL) in particular, is a complicated and time-consuming undertaking. Difficulties

emerge, on the one hand, by the requirement of both domain and language development

expertise and, on the other hand, by the trade-off between the design of comprehensive but

costly versus minimalist implementation with few domain-specific alleviations. Initially,

it might be less than obvious that development of a DSL is worthwhile as benefits might

only emerge after a considerable amount of programming in a General Purpose Language

(GPL) has already been done. While in the latter case a DSL might still be useful for

reengineering or software evolution purposes [14], when designed carefully, DSLs are able

to bring benefits early in the software engineering process. A rich body of material and

patterns, e.g., [133] [94], is available for the DSL development process which generally

consists of (i) decision making, (ii) design and, (iii) implementation. In the following each

phase is described in further detail.

In the decision phase, key questions regarding the expected benefit of a DSL need to be

answered. Mapping these questions to patterns supports the decision process. Based on

[94], Table 4.2 lists decision patterns relevant for the decision process in the context of

this thesis.

With indicators for a beneficial development of the DSL at hand, design patterns are used

to create a design for the DSL. Options in the context of this thesis are listed in Table

4.3.

As soon as the design of the language is created implementation can be started. Sim-

ilarly to other phases in the development process, patterns constitute the basis for an

implementation strategy.

Taking the patterns in Table 4.4 into consideration, several trade-off decisions must be

made. Interpreter and compiler approaches allow notations close to domain expert tax-

80 4.4 Methods for Language Selection and Evaluation

Table 4.2: Decision Patterns

Pattern Description

Notation Adds domain-specific notation beyond the capabilities of the GPL.

E.g. special operators, function notations, access of remote data,

quality attributes of data items

Data structure

representation

Complex data structures need to be initialised causing tedious and

error-prone code fragments. A DSL allows for easier definition and

initialisation of data types.

Data structure

traversal

Traversals over complicated, e.g. large hierarchical, data structures

can be expressed more compactly with a DSL

System front-end A DSL based front-end can be used for handling system configura-

tion and adaption

Table 4.3: Design Patterns

Pattern Description

Piggback A structural pattern which uses the capabilities of an existing GPL

as a hosting base for the DSL. The pattern can be used whenever

the DSL shares common language elements with the host GPL.

Typically, the DSL is pre-compiled into the form a the host GPL.

If the DSL is implemented as an interpreter a similar strategy can

be implemented if the base interpreter allows to call it from within

the DSL.

Language Exten-

sion

A creational pattern which adds additional elements of an existing

language. In contrast to the piggyback pattern which uses the host

GPL as implementation vehicle, the language extension pattern is

used when a base language is enriched with semantic and syntactic

elements to form a DSL.

Language Inven-

tion

In this pattern the DSL is created from scratch without relationship

to any existing language.

4 Scientific Framework: Methods and Tools 81

Table 4.4: Implementation Patterns

Pattern Description

Interpreter DSL statements are interpreted in a standard fetch-decode-operate

cycle. Interpretation is beneficial for dynamic languages or if execu-

tion efficiency is not the primary target. Compared to compilation,

interpretation allows for easier extensibility as well as more control

over the execution environment, e.g. for security reasons.

Compiler The DSL is compiled to base language constructs and library calls.

Since the compiler output is in the form of the base language all

base language optimisations are effective. Execution environment

control is limited but possible, e.g. through regulation of allowed

transformation rules.

Pre-Processor DSL constructs are translated to the base language prior compila-

tion. This approach limits the DSL’s flexibility to introduce opera-

tors and other semantics.

Embedding The DSL is embedded into the host GPL by defining abstract data

types and operators. While programmers can use higher level con-

structs they are still bound to the syntax of the base language.

Extensible Com-

piler

In the pattern the GPL compiler is extended with the constructs,

operators, domain-specific optimisation and code generation of the

DSL. Extending an existing compiler which was not specifically

designed to allow for extensions can be time consuming and costly.

82 4.5 Summary

onomies. Since they control the entire translation process, they can provide detailed feed-

back on errors and exceptions. Domain-specific optimisation and transformation enables

tailored solutions which might be beneficial especially in complex distributed systems.

Compared to embedded approaches there are several disadvantages as well. First, there is

the high development effort since complex language processors need to be implemented.

Second, language extension is difficult to achieve since most language processors are not

designed with extension in mind, which also relates to the first point as it typically fur-

ther complicates the processors design. Third, DSLs following the compiler/interpreter

implementation patters are more likely to be designed from scratch. Hence, the chance

of incoherent designs is more likely. Embedded approaches, on the other hand, introduce

a series of advantages. The development effort is considerably lower than for compiler

approaches. Embedded languages can take full advantage of concepts already present in

the host language. In addition, tools such as Integrated Development Environments (IDE)

and tool chains can be reused for embedded DSLs. However, embedded languages have de-

ficiencies with regards to syntax extensions as the host language does not allow arbitrary

extensions. Error reporting is rather vague as the host language is not aware of the DSL

concepts and finally domain-specific optimisations are hard to achieve as the translation

process and execution environment cannot be controlled. Based on [94], Figure 4.2 shows

the flowchart utilised to find an appropriate implementation style for the DSL developed

in this thesis.

4.5 Summary

The methods and tools used in this thesis have three dimensions. First, architecture de-

cision methods and modelling are used to create a software architecture for the systems

under investigation. Second, we employ discrete event simulations and theoretic frame-

works for the design of algorithms, description of component interactions and ensuring

the achievement of quality attributes. Third, a development method for domain-specific

languages based, on decision, design, and implementation patterns. In the context of

scientific theory, the methods and tools implemented are based on constructive as well

as empiric approaches. Where appropriate, i.e. models that are simple enough, analytic

methods are applied to verify correctness and behaviour of algorithms. Scenario-based

software engineering methods yield models of the system under investigation. Architec-

ture evaluation methods provide qualitative metrics for the benefits and effectiveness of

the developed architecture. Where verification on the actual object is not possible, e.g.

proving correctness of a remote protection system, realistic simulations based on sampled

data and/or reference cases provide the foundation for scientific reasoning.

4 Scientific Framework: Methods and Tools 83

Is the language designed

using the piggyback pattern?

Are domain specific

optimisations required?

Are domain specific

notations mandatory?

Is good error reporting of

importance?

Piggyback implementation,

extension or specialisation

Interpreter, Compiler,

Extensible Compiler, Pre-

Processor

Compiler or Interpreter

Embedded approach

no

yes

yes

no

no

no

yes

Figure 4.2: Implementation Pattern Decision

Chapter 5

An Ecosystem for Energy Services

Up to this point, we have elaborated challenges of future power systems, illustrated stan-

dard components of the power system infrastructure, and introduced the state of the art

of technologies for large-scale systems. In this chapter the Ecosystem for Energy Services

is introduced. It constitutes the underlying concept of this work and is the foundation of

the architecture described in the following chapter (Chapter 6).

In [98], Northrop et. al. introduce the concept of the ecosystem perspective on technical

systems by arguing that traditional, centralised engineering approaches are not adequate

for highly complex and large-scale systems. In technical terms an ecosystem can be un-

derstood as a community of autonomous and competing components in a complex and

changing environment. No matter whether they are natural or artificial, e.g. cities or the

Internet, ecosystems are highly complex yet exhibit a high degree of organisation. Impor-

tantly, these features are not engineered but emerge naturally by local interaction during

the evolution of the system over time.

As described in Chapter 1, new business drivers and Smart Grid technologies change the

traditional utility business. In the process of transition, traditional power infrastructures

grow and gain capabilities. New business models and players like the Prosumer, i.e. an

end-consumer who sells home-generated electricity, emerge, causing system complexity to

increase considerably. The ecosystem of energy services provides a metaphor aimed to cope

with the problem of complexity, while, at the same time, allowing for reliable operation,

adaption to future requirements, and exploitation of new business opportunities. The

concept particularly addresses the research questions stated in Section 1.5.1: How can a

system be designed that addresses all individual needs of its users and contributors? How

can the system designed be evolved and adapted to changing policies and requirements?

The chapter proceeds by providing an overview of the metaphor followed by a description

86 5.1 The Ecosystem Metaphor

of the basic components constituting the ecosystem. Subsequently, an abstract model for

component interactions is introduced. In the following, data and network models describe

the structure of the ecosystem. Section 5.6 introduces the policies and rules that determine

capabilities and dynamics of entities in the ecosystem. The discussion focusses entirely

on the concept level. The subsequent chapter (Chapter 6) will elaborate the technical

implementation of the concepts.

5.1 The Ecosystem Metaphor

Biological ecosystems have evolved to high levels of complexity, sophistication, and sus-

tainability through locally independent processes. In order to tackle the increasing com-

plexity of large-scale systems, complexity sciences aim to utilise the ecosystem metaphor

for technical systems as well [111] [98] [145]. This section introduces the ecosystem

metaphor from a birds’s-eye view. It describes entities of an ecosystem, the environment

the ecosystem is situated in, and the principal driving forces that guide action within the

ecosystem as well as adaptation to its surrounding environment. While this section concen-

trates on the abstract core concepts, subsequent sections further detail these concepts and

establish the relationship with the technical aspects of smart grid power infrastructures.

The ecosystem for energy services is a community of people, organisations, tangible (de-

vices) and non-tangible assets (data) in a complex and changing environment. Individuals

and organisations follow their business goals and strategies, hence, act autonomously. In

order to provide a concise description, the elements of the ecosystem, e.g. people or data,

are henceforth referred to as entities. With this terminology the ecosystem can be under-

stood as a community of entities. The commonality is determined by the set characteristics

of an entity that is relevant in the ecosystem context. For instance, a measuring device and

maintenance personal may share a commonality, e.g. location, in context of a maintenance

process.

The ecosystem itself does not have an engineered structure but rather includes modifiable

sets of rules and policies that regulate interaction and behaviour of entities in the system.

It is an open system and therefore environmental forces1 may have influence on entities

and entity behaviour. The influences can be classified along three dimensions: first, an

economic environment, i.e. determined by business drivers and competition among stake-

holders, second, a regulatory environment, i.e determined by legal policies, and, third, a

technical environment, i.e. dynamics of the power generation, transmission and distribu-

tion infrastructure (Figure 5.1). These surrounding conditions determine policy and rules

1Smart Grid Surrounding Conditions, Section 3.3

5 An Ecosystem for Energy Services 87

Economic

Technical

R
eg

ul
at

or
y

Service
Description

Measured
Data

Publish Data

Find Data
Int. Forces

&

Ecological

Principles

Figure 5.1: The ecosystem for energy services metaphor embedded in economic, regulatory

and technical environments.

(Section 5.6) and correspondingly the technical requirements (Sections 1.3 and 6.1) for

an architectural solution (Chapter 6).

Besides environmental forces, an ecosystem requires internal driving forces to regulate en-

tity behaviour and interaction. Inspired by Adam Smith’s 1776 publication “The Wealth

of Nations” [132], the ecosystem for energy services uses market mechanisms to foster

interaction and attractiveness. Smith identified three factors that constitute the free mar-

ket: (i) the pursuit of self-interest, (ii) division of labour and (iii) freedom of trade. These

fundamentals can also be identified in already established service ecosystems, e.g. in the

public Internet. For instance, Google or Facebook: each log-in refers to a pursuit of indi-

vidual interest. Without division of labour, the numbers of Facebook applications would

be few and the Google index very small. Finally, freedom of trade is the very core essence

that make e-commerce applications possible in the first place. The ecosystem of energy

services implements the same three factors to foster communication and collaboration of

entities within the ecosystem as well as owning and operating counterparts outside the

system.

Applying the ecosystem metaphor to a technical system means that the system imple-

ments the ecological principles [145] [158] [76] of (i) Evolution to be able to adapt to

new requirements and environmental changes, (ii) Connectivity to establish a community

among participating components, (iii) Commodity, which reflects that the system key

components are always conveniently available, (iv) Flexibility which expresses the ability

to conduct alternative actions to meet a set goal and (v) Diversity which allows for the con-

tribution of individual players with differing business goals and technical requirements.

88 5.2 Core Services

The following Sections 5.2 - 5.6 provide the foundation for a technical implementation

(Chapter 6) of these principles.

Value creation within the ecosystem is non-linear, i.e. in contrast to a linear value chain,

value in the ecosystem develops by various interactions of networked entities. The value

of the ecosystem increases for a particular entity A with the existence of one or multiple

other entities Bi (see also Appendix C on value networks). Similar principles are effective

in open service platforms of the Internet which provide services to collaborate, negotiate,

conduct business and exchange information. In this context, the ecosystem provides a

restricted set of core services (s. Section 5.2) to foster the driving forces explained above.

This section introduced the main characteristics of the ecosystem for energy services

metaphor. The following sections will further detail the concept and provide the founda-

tion for a technical mapping to the concrete building blocks and software artefacts that

are developed in Chapter 6. A key element of this mapping is the data that is gener-

ated, exchanged, and used to describe entities and their services. Therefore data model,

description, and modification are particularly emphasised. In technical terms this means

that any entity is represented in the ecosystem by a data item (s. Section 5.4 and Chapter

6).

5.2 Core Services

In biological ecosystems the laws of physics define the rules of entity interaction and con-

dition. Additional to the fundamental rules that were described in the previous section,

ecosystem entities require a set of elementary capabilities to perceive and operate under

the physical rules set. Similarly, in order to operate and participate in the ecosystem, a set

of core services is required for the ecosystem for energy services. Core services are infras-

tructural components that deliver the functionality: (i) to differentiate between different

entities and establish the connection to objects outside the ecosystem, (ii) to publish,

search and discover entities and (iii) to provide incentives for service providers to offer

their services in the ecosystem. Core service functionality is essential for the ecosystem.

Without core services the ecosystem cannot operate. Although the functionality must be

present, it may not be bound to a specific component or technical implementation, e.g. a

web service. In the following each of the elementary services is briefly introduced.

5 An Ecosystem for Energy Services 89

5.2.1 Identification

The identification service provides means to uniquely identify entities within the ecosys-

tem. Identification is mandatory to apply security mechanisms, provide traceability and

verification, as well as engage in communication and general interactions. The identifi-

cation service establishes the connection between objects situated outside the ecosystem

and entities within the ecosystem. To concretise the concept of the identification service,

consider the log-in at an e-commerce site which uniquely identifies the customer inside

the shop, i.e. the ecosystem.

5.2.2 Registration

In order to advertise entities within the ecosystem, entities use the registration service

to publish information describing their features and capabilities (s. also Figure 5.1). Pro-

viding means to search entities, a registration service achieves the mapping between a

(non-)functional description of an entity and its unique identification.

Following the concrete example provided by the description of the identification service,

the registration service is equivalent to a product catalogue which can be browsed or

searched, given keywords or other criteria.

5.2.3 Incentive

This service provides incentives for service offerings. The ecosystem attractiveness in-

creases with the number and diversity of its entities. By providing an incentive, more

participants are attracted to participate in the ecosystem which, in turn, gains on at-

tractiveness itself. By allocating a certain share of paid incentives to the incentive service

provider, a business model is established where all players, i.e. incentive service providers,

service providers and service consumers can participate beneficially. Similarly, within the

ecosystem, incentives provide means for co-operation and support. Incentives can be mone-

tary, units of resources or non-functional like priorities, or access to functionality or special

nodes (s. Section 6.3 on the communication module).

In the context of the e-commerce example, the incentive service constitutes the payment

service such as provided by credit card companies and Internet based payment services.

The incentive mechanism builds upon the identification and registration services. It is of

fundamental importance for a successful implementation of the ecosystem.

In context of the ecosystem metaphor, the core services provide the foundation for the

90 5.3 Interaction and Actor Model

Registry

Service Provider

Service
Service

Consumer

find
publish

negotiate & use

Figure 5.2: Service model

market mechanisms, i.e. the internal driving forces: (i) the pursuit of self-interest, (ii) di-

vision of labour and (iii) freedom of trade.

5.3 Interaction and Actor Model

In order to achieve their goals, entities need to interact with each other. This section

provides the general patterns of interaction between entities. Underlying the interaction

model is a simple actor model consisting of consumer, provider and registry. A consumer

is an entity potentially interested in a service (functional) at a certain quality (non-

functional). A provider publishes his capabilities and functions such that consumers can

initiate a business relationship. The role of the registry can be assigned to any entity

participating in the system. However, different registries with varying scope, e.g. local or

global, are also possible (s. Section 5.5).

Ecosystem entities describe offerings, in case of people and organisations, and functions,

in case of devices, by sets of functional and non-functional attributes. Entities publish

their service descriptions in the ecosystem for service consumers to be found. In order

to use a service, a service consumer states his interest in a service query and issues the

query in the ecosystem. If a description matches the attributes specified in the query,

the service consumer contacts the service provider and starts negotiation of the service

relationship (Figure 5.2). Besides quality and function properties, the service description

includes contact information of the service provider. However, specific details regarding

negotiation are not part of the description but are rather exchanged during initial contact.

Service queries can be either entity-centric or content-centric. An example of an entity-

centric query is: “request the service provided by entity E”, whereas a content-centric

query could be: “request a service where attribute A lies in a circle with radius R around

a centre C”. This interaction model is non-hierarchical, hence it allows for direct, peer-

5 An Ecosystem for Energy Services 91

Registry
Service

Consumer
find/subscribe

Service

Provider

Service

Consumer

Service

Consumer

publish

find/subscribe

find/subscribe

Figure 5.3: Data-centric interaction

to-peer interaction. This reflects the nature of most Business to Business (B2B) as well

as Business to Consumer (B2C) scenarios.

In a simplified version of the model, e.g. when the service description is equivalent to

the result of a service call (discovery query), the negotiate and use step can be omitted.

In this case service consumer and provider are completely de-coupled and never interact

directly (s. Figure 5.3). This is especially beneficial when multiple consumers request the

same service because the provider does not need to negotiate with each of them.

A query can be snapshot, i.e. requesting a single description, or continuous, i.e. repeatedly

requesting a description over a period of time. A continuous query on a description that

delivers results only when the description changed is also called a subscription. By using

subscriptions, entities can respond to changes in the environment like better or more

suitable services, new measurements, or failure signals.

The interaction and actor model supports the ecological principle of connectivity and

flexibility. It provides means to model entity relationships in a loosely coupled manner.

5.4 Data Model

The concept of data is integral in the ecosystem. Being the lowest common denominator,

the data model must be minimalist yet expressive at the same time. In enterprise appli-

cation integration the term “canonical data model” is used to describe a design pattern

used to communicate between different applications. Instead of translating data formats

between applications point to point, each application, if required to communicate with

other applications, transforms its data to a canonical format understood by all applica-

tions. In this context the data model introduced in this section can be understood as

a “lingua franca” or “canonical data model” for all energy services associated with the

ecosystem.

92 5.4 Data Model

The approach facilitates the flexibility of services to have a data model that fits best their

requirements. Yet exchange between all services can be established by writing a single

translator towards the canonical model. Hence the canonical model supports the loose

coupling between services and makes a clear separation of responsibilities and domains

possible.

Due to the openness of the ecosystem design, a particular challenge for this work is the

design of a canonical data model while having limited knowledge of the services and

their requirements. Standards like the IEC 61850 [68] provide rich object and service

models for the Transmission & and Distribution domain. Naturally they are not suited

for other domains such as business processes and cross-enterprise collaboration. On the

other hand, integration standards like the OAGIS [100] are not suited for high performance

power centric applications. Hence, existing standards cannot be used as blueprint for the

ecosystem data model.

The approach chosen, therefore, is oriented towards file systems and object stores yet

clearly abstracts from bits, bytes and the block level. Additional semantics can be imple-

mented on top of the data model. This approach has two advantages, first, the openness

for a great variety of services to participate in the ecosystem is taken care of and, second,

services and applications can implement their own data model and add additional domain

specific semantics on top of the canonical model. Reducing the canonical model to the

absolutely required minimum, makes it applicable to all services and at the same time

avoids the complexity of an all-embracing standard.

The model defines simple structures, entities and elementary types. It is transparent to

any specific physical infrastructure, physical location and supporting hardware. The entire

data contained in the ecosystem is comprised of a set of data items. Each data item consists

of three parts, namely an unique identifier, a set of metadata and the actual content.

• The identifier is a binary array of fixed length. Each data item has exactly one,

unique identifier. The identifier is immutable and cannot be swapped between two

data items.

• The meta-data describes type (s. Section 5.4.1), quality (s. Section 5.4.2) and struc-

ture (s. Figure. 5.4) of the data item content. Meta-data may change during the

life-cycle of the data item, e.g. in case of a sensor reading the quality may degrade

with time.

• The data item content is the raw data as provided by the entity. In addition to the

information provided by the identifier and meta-data, consumers of the data item

need to know how to interpret the content.

5 An Ecosystem for Energy Services 93

50hz

key_n

12hz

...

78 1977mmxu

23 device_1

1987mmxu5

...key_1ROWID

Identifier Content

Visibility

3

...

78

23

05

...AccuracyAvailability

QualityStructure

Meta-data

Figure 5.4: Table model

Data items are organised in tables (Figure 5.4). Similarly to the concept of Google’s

Bigtable [24], tables in the ecosystem are sparse with a potentially unlimited number of

columns. A table description comprises a set of columns as well as quality attributes which

describe the non-functional attributes of its rows. Data items are rows of tables. The data

item identifier is a special column named ROWID. While a Bigtable is intended for large

volumes of data, data items and tables in the context of this work are assumed to be

rather transient, e.g. measurement data, with a short validity window or low volume, e.g.

service descriptions.

Besides structuring data, tables also provide qualitative, e.g. temporal, views on data

items. As an example, consider a table specified to contain measurements no older than

ten minutes. This constraint is enforced by continuously checking rows, purging those

outside the validity window.

Tables can have local or global visibility (see also Section 5.5). They can have an arbitrary

number of rows. There are no restrictions on how many tables can be created other than

the resource capacities of hosting environment.

5.4.1 Data Types

The ecosystem supports three atomic types, namely two numeric (Integer, Double) and

one String type. Additionally, applications can define custom complex data types using

the data item content. The Integer type is signed and exact while the floating point type,

Double, is signed but approximate. Integer values range from −231 to 231, Doubles are

64-bit double precision according with IEEE 754 [69]. Strings are of arbitrary length and

can include unicode characters. Listing 5.1 provides an example of basic type declarations.

94 5.4 Data Model

Listing 5.1: Type Delcarations
// I n t e ge r

INT i = 23

//Double

DOUBLE d = 0.4711

// S t r i n g

STRING s = ” He l l o , World ! ”

5.4.2 Quality Attributes

As part of the meta-data, quality attributes make data items first class citizens in the

ecosystem and hence are a key concept of this work. They determine the lifetime, discov-

erability, accuracy, and associated security of an item. The following paragraphs detail

the different quality classes.

Lifetime

Data items can be either transient or persistent. The lifetime of a transient item can be

controlled by quality attributes. The validity of an item defines a time window where

the item is valid. Outside the window, the item has no purpose and will most likely be

deleted. The lifetime of an item is indirectly influenced by external, unforeseen events

such as failures and exceptions. The reliability attribute provides a measure of the effort

to prevent the loss of an item. This may happen by replication, storage on especially

reliable hosts or other techniques.

Discoverability

A key feature of the ecosystem is the search mechanism to locate any data item regardless

of its physical location and the time the search was initiated. Additionally to the relia-

bility attribute, the availability attribute determines the effort to be invested to maintain

references to the item. This may cause the item to be indexed at multiple indices, addi-

tional meta-data to be indexed or the item to be cached at various locations. On the other

hand, the visibility of an item declares whether the item is discoverable locally where it is

stored or globally throughout the entire ecosystem. Depending on the scope of visibility,

different techniques are chosen to publish the item. Hence, the visibility attribute affects

the efforts required to achieve reliability and availability.

5 An Ecosystem for Energy Services 95

Accuracy

Data items can represent facts at different levels of precision. For example, consider a sen-

sor capable of delivering readings at high frequency. Depending on the underlying network

and the type of data, this stream of readings might cause high load on the infrastructure.

Applications not relying on the provided level of precision can average several readings

into one item and adjust the accuracy appropriately. Similarly, in an overload situation,

applications aiming to compute an aggregate might skip certain readings to maintain

responsiveness and provide indicators with lower precision.

Security

The content of a data item might include sensitive or critical information. The confi-

dentiality attribute determines how and by whom the item can be changed or accessed.

Specifying the integrity attribute allows for detection of a manipulation attempt. Finally

the non-repudiation attribute causes every access, i.e. type of access and actor, on the

item to be recorded such that the history of changes can be investigated.

The data model supports the ecological principles of evolution, commodity and connectiv-

ity. The table-based model allows to structure data yet by the possibility to add arbitrary

number of columns, data schemata can be evolved without breaking existing semantics.

The data model is designed as lingua franca and as such provides a consistent model for

exchange between entities.

5.5 Network Model

The ecosystem is a community of entities (s. Section 5.1). The community structure

is determined by interconnections between entities. In this section a network model is

presented which provides the basic concepts that are the foundation of the community of

entities and its structures, respectively. Similar to other sections, the discussion is entirely

on a conceptual level and independent of physical networks, e.g. IP or Ethernet, or other

physical infrastructures.

In the following, the set of entities and their connections is referred to as the network

while entities are called nodes henceforth. A network consists of a set of nodes N = n0...ni

interconnected by a set of links L = li×j with i �= j ∈ N . Nodes are either directly or

transitively linked, i.e. if A is linked to B and B to C, then A is also linked to C via B. A

network is fully meshed if every node has links to all other nodes. A set of nodes belongs

96 5.6 Rules and Policy

(a) Unstructured (b) Groups (c) Hierarchy

Figure 5.5: Network structures

to the same network if either direct or transitive links between any two nodes of the set

exist.

A group or cluster of nodes (Figure 5.5b) is a subset of nodes which are highly meshed

relative to the degree of connectedness inherent to the entire network. Groups allow to

cluster the network into different areas of interest. Network partitions, in turn, can be

inter-linked by so called group links thereby forming a network of groups. This partitioning

process can be carried forward recursively. By associating each iteration with a layer in a

multi-layer structure, hierarchical structures can be created (Figure 5.5c). As an example,

consider the clustering of nodes according to their geographic location. At the lowest level,

nodes having a certain distance to a given location, e.g. a city centre, belong to one group.

At the next level, the distance is increased, e.g to cover a certain region. At the highest

level the area covers all nodes. By traversing the hierarchy national, regional or urban

areas can be addressed.

The network model implements the ecological principle of connectivity. It allows individual

entities to form a community and structure their relationships.

5.6 Rules and Policy

In previous sections, the core concepts of the ecosystem have been introduced. After pro-

viding the overall picture in Section 5.1, system entities and their models of interaction

were introduced. Subsequently, the data model section presented the lowest common de-

nominator for entity interaction and exchange. The last section provided the network

model which defined the concepts necessary to describe the organisation of entities. In

this section the framework is introduced that stitches the individual elements together to

a whole.

5 An Ecosystem for Energy Services 97

Depending on capabilities and properties, entities have a discrete set of states describing

their possible conditions. At each point in time t an entity is in exactly one state St. Entity

behaviour can be described by a policy, i.e. a set of rules, P = r0..ri, where each rule

processes the current state of the entity and transfers it to a new state, i.e. ri(St) → St+1.

The validity of a rule can be limited to the entity it is executed on. Henceforth such rules

are referred to as internal rules. Rules may also inflict remote state changes on other

entities. Rules that have influence on all entities are called global rules and rules that act

only on directly connected entities are called local rules.

5.6.1 Rule Specification

Rules consist of functional and non-functional specifications. The functional specification

defines (i) the subset of information that is processed, (ii) the processing goal and (iii)

the state change of the executing entity once the rule is processed.

Listing 5.2: Rule Prototype
S −> SELECT F(X)

FROM INFORMATION

WHERE FUNCTIONAL CONSTRAINTS

QUALITY ATTRIBUTES

RECEIVERS <RECEIVERSET>

Listing 5.2 depicts the skeleton of a rule. Similarly to SQL, “SELECT ... FROM IN-

FORMATION” selects columns and tables to be processed by the rule. The “WHERE

FUNCTIONAL CONSTRAINTS” clause restricts the information using equality predi-

cates and arithmetic expressions. The set of “QUALITY ATTRIBUTES” constrain the

information subset to meet certain quality goals (s. Section 5.6.2). Finally, the processing

goal specified by “F(X)” transforms the current state to a new state by setting a view

“S->” on the processed information. Although the rule is evaluated at an individual node,

the state change may not be restricted locally. The assignment “S@node1”, for example,

would set the view on a node specified by “node1”. Similarly, the set of “RECEIVERS”

specifies a set of nodes that receive the rule result which is labelled by the assignment.

An concrete example is provided in Listing 5.3.

Rules can be executed either once or repeatedly. Repeated execution can be specified by

either providing a number of iterations or by providing a sequence of points in time. While

the first option belongs to the functional description, the latter is able to determine the

quality of the execution.

98 5.6 Rules and Policy

Listing 5.3: This example rule modifies S to the sum of X of table measurements where

X has a value smaller than 10 and corresponding items are valid for at least 20 seconds.

The result set is also send to a node identified by NODE12.
S −> SELECT SUM(X)

FROM MEASUREMENTS

WHERE X < 10

AND VALIDITY > 20 s

RECEIVERS NODE12

5.6.2 Quality Attributes

Similarly to data items, rule specifications include non-functional constraints. These con-

straints influence not only the targeted information subset, but also how the rule is ex-

ecuted. Rule quality attributes can be classified into three classes namely: performance,

reliability and security.

Performance

Performance related attributes include latency, specified as the time between rule execu-

tion is initiated and the actual execution starts, throughput, in case of continuous rules,

specified as the number of executions per given time interval and response time, specified

by a time period from initiation to the state change.

Reliability

Reliability is the ability of the (rule) execution to perform certain conditions for a specified

period of time. It is specified as either high, low or don’t care. Thereby each value refers

to the mean time between failures (MTBF) for the executing entity. It may cause the

increase or decrease of execution priority for the rule. In case of local or global rules it

may trigger the migration of execution from one entity to another, more reliable, entity.

Security

For local and global rules the security attribute, trust, determines the location of execution.

Trust is specified by a trust level, e.g. internal, external. Trust levels can be defined

according to needs of the intended use. If the trust level cannot be matched rule execution

fails.

5 An Ecosystem for Energy Services 99

The policy and rule model supports the ecological principles of evolution and flexibility.

State changes can be specified declaratively and hence are not bound the specific details

of technical implementations. Rules can be modified to reflect changing requirements and

environmental conditions.

5.7 Summary

This chapter described the conceptual framework for this thesis named ecosystem for en-

ergy services. In Section 5.1 the ecosystem metaphor is explained and the key principals

(evolution, connectivity, commodity, flexibility, diversity) and driving forces (self-interest,

division of labour, freedom of trade) for entity behaviour and interaction were introduced

from a bird’s-eye view. Subsequent sections detail these core concepts and describe the

implementation of the key principals in several models. The models constitute the foun-

dation of the technical implementation in the following chapter.

The concept of evolution is implemented by the flexible data model (Section 5.4) and

modifiable rule and policy model (Section 5.6) which allow for constant adaption to new

requirements without breaking existing relationships. Connectivity is manifested by in-

teraction (Section 5.3) as well as the network model (Section 5.5) which allows various

structures of relationships. Commodity results from the design of the data model as lin-

gua franca between entities. Flexibility is implemented by the interaction model allows

for a loose (re-)coupling of entities and the rule and policy model which allows declarative

specification of state transitions. Finally diversity is supported by the data model which

does not restrict entities to a unified and global model but rather allows to maintain a

domain specific local data model and translate those parts relevant for exchange with

other entities towards the canonical model.

To incorporate the driving forces: self-interest, division of labour, and freedom of trade,

the ecosystem provides three core services: (i) identification, (ii) registration and (iii)

incentive. The following chapter provides a concrete implementation of the concepts in

form of a data-centric information and communication architecture.

Chapter 6

A Data Centric Architecture for

Large-Scale Industrial Systems

In Chapter 1, challenges and general requirements of a new architecture for power systems

have been discussed. The previous chapter (Chapter 5) introduced the concept of a data

centric ecosystem, which aims to integrate distributed entities and ensures the availability

of information at the right time and place. This chapter concretises the concept by de-

scribing a software architecture for the ecosystem using the methods outlined in Chapter

4. The architecture is embedded in the Smart Grid environment as elaborated in Chapter

3 and extends the current state of the art as presented in Chapter 2.

This chapter is organised as follows: two scenarios are depicted as means to determine

architectural tactics and requirements. Subsequently, the overall architecture and its key

components are provided, before the next sections detail individual components and their

interactions. A dedicated section illustrates the capabilities of the query language and its

compiler architecture. Selecting key components, the last section establishes a implemen-

tational view on the architecture and gives insight on a prototypical implementation.

6.1 Scenarios

To create an architecture for large scale industrial systems, in this section two scenarios,

namely backup protection and vertical information integration are investigated in further

detail. Scenarios are chosen carefully to be representative for the key components of

the architecture which are (i) the indexing cloud to ensure global discoverability and

integrability of data and (ii) the networked query processors for in-network processing

enabling real-time availability of data as well as accomplishing the task of transformation

102 6.1 Scenarios

from raw data to information. Each description starts by providing the general context

and use case first, followed by a selection of concrete sub-scenarios. Using the approach

outlined in Chapter 4, quality attributes are extracted and appropriate tactics for their

achievement are identified.

The general use cases are rather complex with a multitude of actors and responsibilities.

The descriptions provided are at a fairly coarse gained level and hence are neither com-

prehensive nor complete but prioritised on key aspects and challenges that are in focus

to this work.

6.1.1 Scenario 1: Remote Backup Protection

Protective relaying systems are usually built with various levels of redundancy to ensure

isolation of fault conditions and equipment quickly. While local backup systems, i.e. re-

dundant relay devices, are easily disabled by severe component failures, remote backup

systems provide additional robustness by physical separation. Remote backup systems are

configured to sense abnormal states, e.g. voltage peaks, on transmission lines. In case of a

fault, the remote backup system waits for a configured amount of time before it becomes

active. During this time period, the primary protection system has the chance to clear the

fault. Hence, if the fault is not cleared within this time period, backup protection devices

can assume that the primary system is malfunctioning. The backup protection system

will then operate circuit-breakers to isolate transformers and other substation equipment.

Remote backup systems often lack important information to fully assess current network

conditions. Thus, they often react incorrectly and either trip a healthy transmission line

or fail entirely to isolate a faulty line. This behaviour may yield catastrophic cascad-

ing events and even blackouts. Moreover, unnecessary mechanical stress on switch gear

has considerable effect on the lifetime of equipment and hence yields increased cost. By

providing additional information from all protection relays participating in a protection

system, control nodes can analyse the situation and issue correct actions quickly in order

to prevent catastrophic failures. The scenario covers two aspects: first, engineering of a

standard backup protection system and, second, supporting advanced functionality by

providing additional state information to the control devices of the backup protection

system.

Description

Figure 6.1 displays the example system which is considered for the scenario description.

The system is composed of six substations, A-F, and seven circuit breakers 1-7. A flow

6 A Data Centric Architecture for Large-Scale Industrial Systems 103

A B C D E

1

2

3

4 5

6 7

Figure 6.1: Example system with substations A-F and circuit breakers 1-7. Simulated

three phase fault between B and C. Based on [74]

of power from left to right is assumed. In order to provide a concise description, in the

sequel, it is focussed on key entities and flow of information. Power system details are

omitted.

A three-phase fault, e.g. a short circuit of a transmission line, between substation B and C

is investigated. In the normal case, the fault would be detected and correctly located by the

primary protection system which would cause breakers 3 and 4 to isolate the line in about

50 ms. In case of a failure, e.g. when substation C fails to disconnect the line, breakers

1,2,5,6,7 would open which would disrupt the entire transmission corridor. Incorporating

additional information on power flows and trip recordings in the control decision, allows

to block or delay breakers 1,2,4,6,7 until the situation is fully assessed. Having detected

the hidden failure, related equipment, i.e. breakers and their control nodes, are then able

to issue an open command to breaker 4 thus isolating the faulty line while leaving the

healthy lines energised.

Engineering such a system is complex and costly as all involved equipment is connected

point to point, i.e. relays in substation A have statically configured communication links

to relays in substation B. Hence replacement of individual equipment often requires con-

figuration changes in several other devices. Since devices may be from different vendors,

different configuration tools have to be used and configuration files have to be converted

for importing it into other tools. Even with emerging standards such as IEC 61850 [68]

which include standardised engineering processes, slight deviations in the interpretation

of the standard or only partial implementations are still the norm rather than the ex-

ception, hence causing these problems to persist. Moreover, due to very long life cycles

of energy automation equipment, heterogeneous installations are common which include

device generations separated by decades. Generally, the engineering process is executed

manually, which is costly and leaves enormous potential for mistakes. The case is further

complicated if substations and breakers are operated by different legal entities.

104 6.1 Scenarios

As investigated in [74], a controlling node has about 200 ms for analysing data, assessing

the situation and issuing respective control commands. Therefore, efficient communication

paths must be configured and control nodes must reserve enough resources to process a

request timely.

Scenarios

The description above contains three concrete scenarios which are onwards referred to as

scenarios 1a-c. Scenario 1a: the protection function, i.e. the processes of sensing a fault,

disseminating the information, evaluation, and control decision. Scenario 1b: the process

of engineering and maintaining the protection system. This includes discovering partici-

pating devices, detection of communication links and deployment of protection algorithms.

Scenario 1c: the access control for (i) the protection information, i.e. measurement and

operation command and (ii) the deployment and modification of control code.

Quality Attributes

Table 6.1 summarises the scenarios elaborated in the previous paragraph using the no-

tation described in Chapter 4. From the description, the following quality attributes are

derived: Performance, predictability, modifiability, adaptability and security.

• Performance. The time required to generate a response is highly critical for success-

ful operation of the system. If, based on the sensed situation, a decision is delayed,

equipment damage or even harm to human life may be the consequence.

• Predictability. If a device participates in the remote backup protection system, it

must behave deterministically. A unit must be able to guarantee that a response is

generated within a specified time window. Not meeting this constraint renders the

unit contribution useless as the response cannot be processed and will be discarded.

• Modifiability. Automation devices are deployed to operate for decades. The environ-

ment and the requirements of the protection system, accordingly, may change over

time requiring adaption to the new situation. Modification includes deployment of

new protection algorithms as well as rules to discover and connect to new devices

that participate in the system.

• Security. Allowing modification of the protection functionality facilitates malicious

manipulation of the devices. Furthermore, opening networks for third parties, e.g. for

other Transmission System Operators (TSO) on tie lines, makes devices applicable

for denial of service attacks which may interrupt the protection functionality.

6 A Data Centric Architecture for Large-Scale Industrial Systems 105

• Adaptability. Although protection devices can be assumed to be very reliable, in-

creasing the number of entities in the system also increases the probability of failure.

Individual devices need to adapt to internal as well as external conditions and their

dynamic change over time. The quality attribute of Adaptability can be further

classified as

– Scalability. The ability to adapt to a changing number of entities in the system.

– Flexibility. The adaption to conditions which characterise the application dur-

ing runtime.

– Stability. The capability of a system to maintain its functionality even in the

presence of frequent adaptions.

Tactics

Applying the methods for architecture selection as described in Chapter 4, this section

identifies a set of tactics with the aim to ensure that the requirements of quality attributes

are met. These tactics are used to identify architectural patterns, i.e. proven methods and

best practices, to design a suitable architecture. Tactics also constitute the basis for the

qualitative evaluation conducted in Chapter 7.

The following lists the relevant tactics according to [11] [103]. Tactics 1,2,3,15 relate to

performance attributes, 5-11 help achieving modifiability, 9,10,11,15 support adaptability,

12-14 aim for security and 15 targets predictability.

1. Reduce computational overhead. Communication between entities is accomplished

by using an efficient encoding.

2. Manage event rate. Entities try to actively control the event arrival rate for non-

critical events.

3. Introduce concurrency. Messages are dispatched asynchronously and in parallel to

other processing tasks, hence network bound delays do not affect internal operations.

4. Fixed priority scheduling. Events are assigned a priority according to their semantic

importance, e.g. a fault message has a higher priority than a message transporting

a general measured value.

5. Maintain semantic coherence. The goal of this tactic is to minimise dependencies on

other modules and encapsulate dependencies within a module by choosing module

responsibilities according to their semantic coherence.

106 6.1 Scenarios

Table 6.1: Remote backup protection quality attribute scenario

Scenario 1a: Remote Protection Function

Source Stimulus Environment Artefact Response Response

Measure

Internal, ex-

ternal (third

party device,

auto config-

ured)

Fault, Re-

sponse

Normal,

overloaded

Communication

(IP stack, higher

level protocol

stacks e.g. IEC

61850), request

dispatcher, query

execution sys-

tem, protection

function

Protection

function

evaluation

and initiate

control

command

(operate

breaker)

Time (clear

fault before

equipment

damage),

Time with

varying

number of

entitites

Scenario 1b: Engineering and Maintenance

Source Stimulus Environment Artefact Response Response

Measure

System oper-

ator

Modify,

update,

protection

schemes

Runtime Communication

(routes), query

execution system

Deployment

of modifi-

cation

Number of

elements

affected,

effort, affects

on quality

attributes

Scenario 1c: Access Denial

Source Stimulus Environment Artefact Response Response

Measure

Not trusted

third party

Try to

modify

or update

protection

schemes

Networked Communication,

query execution

system, com-

munication and

memory modules

Blocks

access

to mod-

ification

service

Time to

circumvent

security

measures.

Service la-

tency during

an attack.

6 A Data Centric Architecture for Large-Scale Industrial Systems 107

6. Generalise the module. Having a more general module allows for a broader appli-

cability. For example, the query processor (s. Section 6.3) is a very general module

which allows for flexible (re-)programming of the network.

7. Information hiding. This is a very general approach to decompose a system into sub

systems and modules, assigning responsibilities to modules and specifying which

information is public and which is private.

8. Restrict communication paths. Restricting the interaction of modules with each other

reduces dependencies and prevents ripple events where modification of one module

yields cascading modifications in many other modules.

9. Use an intermediary. If A depends on B in any other type than semantic, an inter-

mediary C can be introduced which manages the dependency. Intermediaries can be

repositories, e.g. blackboards, spaces, facades, proxies, mediators or factory patterns.

10. Runtime registration. A strategy to defer binding time to enable loose coupling of

system components. Usually this tactic introduces additional overhead to registra-

tion and management of subscriptions. However, in static environments the overhead

can be concentrated in an initial start-up phase.

11. Virtualise the network. In heterogeneous environments entities communicate using

different protocols and standards. The strategy is to abstract from networked nodes

by providing a unified access to services and data, e.g. using content based address-

ing.

12. Authorise Users. Authorisation assigns rights to users and groups of users such that

they can access and modify data. Authorisation is realised using some kind of access

control pattern (passwords, certificates, etc.).

13. Maintain data confidentiality. This tactic protects data from unauthorised access

through, e.g. encryption of data and communication, Virtual Private Networks

(VPN) or Secure Socket Layer (SSL) connections.

14. Data integrity. Critical data, such as fault information, needs to be delivered as

intended. Hashes and checksums ensure that delivered data has not been tampered

with.

15. Virtualise the processing kernel. Subdividing processes into discrete blocks of com-

putation enables the achievement of deterministic real-time behaviour. Using event

based kernels, however, may yield sub-optimal utilisation of hardware which restricts

number and complexity of services executable on a device.

108 6.1 Scenarios

6.1.2 Scenario 2: Automated Outage Management

While the first scenario focussed on a field level mechanism, the scenario described now

is located at the interface between the field or control level and the business process

level. Since multiple players are involved in the scenario, the description starts with the

introduction of roles and associated responsibilities.

Description

Figure 6.2 illustrates the typical roles and relationships in power networks. Generation

companies (GenCos) operate power plants; they can be located at different levels of the

physical energy network, ranging from supergrid (e.g., large coal power plants or nuclear

plants) over high-voltage grid (e.g., industrial powerplants) to medium- and low-voltage

grids (wind or solar parks down to private solar installations).

Figure 6.2: Power network topology (inspired by [28])

The control centre of a GenCo is responsible for co-ordinating two levels of activities,

which in the sequel is referred to as vertical integration and horizontal integration. First,

using supervisory control and data acquisition (SCADA) systems, the operating centre

remotely controls the equipment located in the generation stations, with which it is nor-

mally connected via a dedicated plant control network to guarantee real-time control.

These activities depend on field information and events coming from a multitude of sen-

sors, devices, plants, and substations to be filtered, aggregated, and visualised. The process

6 A Data Centric Architecture for Large-Scale Industrial Systems 109

of gathering, aggregating, routing, and interpreting this information within an enterprise

control system is called vertical integration.

Second, the information gathered using vertical integration is used as a basis for plan-

ning, enacting, monitoring, and co-ordinating both internal and cross-organizational busi-

ness processes. The business processes involving cross-organisational interaction and co-

ordination with the partners in the energy network, and, in particular the transmission

system operators (TSOs), and the distribution system operators (DSOs) are called hori-

zontal integration. One example of this is the process of co-ordinating activities between

a GenCo, TSOs, and DSOs in case of an outage. Vertical integration is used to determine

type and extent of a local outage at the GenCo. In dealing with a local outage situation,

the resulting information will support the decisions made in the business processes that

guide co-ordination between the GenCo and its partners. Hence, the effects of the local

outage can be isolated and spread and malfunction in other parts of the network can be

prevented.

In general, the propagation of outage information involves three principal actors. The

first actor is a system operator (TSOs/DSOs) who has a complete overview of the tie

line maintenance and operation and is in a position to provide a coherent picture of the

situation at a given instance in time. The second actor is a market information aggregator,

who may be a commercial entity that simply specialises in providing electricity market

information, and who offers the information to the public. Such a provider may also make

the information available to a selected distribution list as an additional service. Finally,

the third actor is an information receiver or interested market participant who wishes to

obtain such information.

Already in 1999, the European Transmission Systems operators Organisation (ETSO)

was founded to harmonise and develop the European electricity market. ETSO members

include the Union for the Co-ordination of Transmission of Electricity (UCTE), the as-

sociation of TSOs in Ireland (TSOI), the United Kingdom TSO association (UKTSOA),

and the association of the nordic TSOs (NORDEL). ETSO takes care of cross TSO data

exchange and standardisation. ETSO also standardises cross TSO processes like imbalance

settlement, reserve resource planning, and outage transmission. In this context ETSO has

standardised an electronic document that system operators may use to transmit informa-

tion about outages to a market information aggregator. An outage document is issued by

a system operator and refers to information for generation over 100 MW network lines

which have influence on the offered capacity. Outage events can be either planned, i.e.,

planned shutdown of an asset, or unplanned, i.e., the forced shutdown due to failure or

other emergency situations. In the current release, the outage document is limited to out-

ages of tie lines and network interconnections. Future extension to other outage scenarios

110 6.1 Scenarios

is intended.

OMSGIS

Distribution

Automation
AMI

CIS

SCADA MDM

WFM

Customer

Field Crew

Figure 6.3: Outage management system integration (inspired by [71])

Outage Management Systems (OMS) are tightly integrated (Figure 6.3) into the utility’s

IT infrastructure. Recent deployments integrate various subsystems such as trouble call,

Customer Information Systems (CIS), network connectivity, field data, Work Force Man-

agement systems (WFM) and geo-spatial information. In the near future, Smart Grid

technologies such as Advanced Meter Infrastructure (AMI) including Meter Data Man-

agement (MDM) will further improve outage management system by providing real-time

data on service availability and restoration.

Scenarios

The outage information publication process can be broken down to three scenarios, namely

(i) outage detection, (ii) outage information publication, and (iii) outage information

modification:

• Outage detection (scenario 2a): Detecting outages, especially in remote areas, is

typically a manual process, i.e. customers recognising the outage, call their utilities

to complain about it. In the US this fact causes average outage times (measured

as System Average Interruption Duration Index (SAIDI) or customer minutes lost

(CML)) of 120-160 minutes whereas it is 60-80 minutes in Europe. Quite obviously,

automated outage detection is of immediate benefit for utility and customer. In

order to fully automate outage management, the system needs to be able to detect

outages and anomalies. Therefor, it must be able to monitor respective assets, access

their status data and have means to identify the faulty component.

• Outage Information Publication (scenario 2b): whenever an outage situation occurs

(either forced or planned) the information needs to be published. The conformity of

publications is validated and if the information is incorrect the publication is rejected

6 A Data Centric Architecture for Large-Scale Industrial Systems 111

and the incident is logged. If the information is correct it is stored persistently and

accessible for interested internal as well as external partners.

• Outage information modification (scenario 2c): an outage situation may be modified

to indicate its progress or to correct any data that is found to be invalid. Accordingly,

the following possibilities exist:

– For an outage the following information may be revised: start date, start time,

end date, end time, and affected interconnector.

– For an outage the following information may be added: start time, end date,

end time, and affected interconnector.

– If an affected asset is incorrect or the planned maintenance is cancelled prior

to the start time, the outage in question has to be deleted and eventually new

outage information has to be provided.

Quality Attributes

Table 6.2 summarises the scenarios elaborated in the previous paragraph using the method

described in Chapter 4. From the description the following quality attributes are derived:

observability, awareness, availability, integrability, adaptability.

• Observability. Individual entities may undergo a complex state evolution when exe-

cuting processes in the system. Often entities must co-operate to achieve a common

goal. Failure detection and state assessment of remote entities rely on open an in-

terface to state and performance information.

• Awareness. Entities are highly connected. Actions taken by one entity may have

effect on other entities. Complex cascading effects may influence system performance

and stability. When making control decisions, entities must be aware of either the

full system state or an estimation thereof.

• Availability. Industrial systems require individual entities to be reliable and highly

available. The requirement includes the availability of function as well as data.

• Integrability. Outage detection and publication mechanisms directly interface with

the business process infrastructure of the utility. Aiming fully automated processes,

integration into the existing IT infrastructure is mandatory.

• Adaptability. Similarly to the previous scenario, adaptability in the sense of scalabil-

ity, stability and flexibility plays an important role. Power system communication

112 6.2 Architecture Overview

infrastructures are underutilised during normal operation. In fault situations, how-

ever, multiple sensor equipment is triggered which causes intense data exchange

between entities. Moreover, additional equipment is excited which further boosts

the load on communication and compute infrastructures. Systems must cope with

these varying loads and maintain functionality.

• Testability. In this scenario the system gains a new quality of complexity. Consisting

of many modules that are distributed on a global scale, sub modules of the OMS

must be testable to verify their correctness before being integrated.

Tactics

In the previous scenario description quality attributes and tactics have been identified

which also apply for the outage management scenario. Integrability, observability and

awareness are new attributes which can be achieved using the following additional tactic.

• Language Interfaces. Languages constitute a natural interface for communication not

only for humans but also for technical systems. Instead of providing object based

interfaces, coupling between components or services can be achieved by providing a

language with shared vocabulary. Components provide a language interpreter with

a respective grammar as their primary interface.

In the following sections the tactics identified in both scenarios are used as foundation to

build an architecture. The discussion starts with a high level view on key components and,

gradually, adds more detail when covering individual components and their relationships.

6.2 Architecture Overview

After introducing the key concepts of this work in Chapter 5, concretising the technical

requirements as well as choosing appropriate tactics in the beginning of this chapter, the

following sections present an architectural solution.

The information architecture integrates all assets, entities, business players, consumers

and providers of energy services. It includes enterprise IT as well as the transmission

and distribution network with components hosted by various devices such as energy au-

tomation equipment, meters, SCADA systems, sensors and further reaches into consumer

homes on smart meters and other devices. All participants are networked by some kind of

6 A Data Centric Architecture for Large-Scale Industrial Systems 113

Table 6.2: Vertical integration quality attribute scenario

Scenario 2a: Outage Information Creation

Source Stimulus Environment Artefact Response Response

Measure

Internal Fault or

planned

outage

Normal query execution

system, device

state memory,

monitoring func-

tion

Detection

of the

fault, gen-

eration of

an outage

document

Detection

rate, Detec-

tion time

Scenario 2b: Outage Information Publication

Source Stimulus Environment Artefact Response Response

Measure

System oper-

ator, outage

detection

system

Detected

or planned

outage

Networked

(cross-

organisational)

query execution

system, index

cloud, access

control mod-

ules, notification

system

Storage

outage in-

formation

and notify

observers

Availability

time, no-

tification

time

Scenario 2c: Modification of Outage Information

Source Stimulus Environment Artefact Response Response

Measure

System oper-

ator

Update the

outage in-

formation

Runtime query execution

system, access

control module

consistent

update of

the data

Availability

time, no-

tification

time

114 6.2 Architecture Overview

network technology i.e. ethernet, DSL, PLC or other. In the following, unless otherwise

stated, participants are referred to as nodes.

The architecture links all nodes of the network in an application layer overlay to provide a

global address space for all assets in the network. The overlay manages the mapping from

virtual node addresses to physical hardware addresses and abstracts from network topolo-

gies and technology. The mapping supports both keywords as well as complex declara-

tive queries. Keyword mappings are realised by a distributed hashtable (DHT) which is

spanned over all networked devices (Figure 6.4). In order to support complex queries,

a subsection of the address space is dedicated to the so called index cloud, a globally

accessible meta data index and storage for data items. The cloud consists of index nodes

organised in a dedicated structure as detailed in Section 6.4. Additionally to the central

index, data sources host a local query engine which is capable of processing distributed

queries as explained in Section 6.3. Index cloud and query processors implement a data-

centric architecture. Data can be described, structured, distributed and processed using

a data-centric programming language.

DHT

Substation

Relay

Generator

Substation

Indexing Group

Indexing Range

Substation

Relay

Figure 6.4: Overall architecture

Avoiding transferral of field data to a central service, the architecture can achieve higher

efficiency and more detailed and frequent monitoring of the power grid by processing data

close to its origin. Optimal operation would be achieved if all nodes are directly connected.

Due to the diversity and age of the existing infrastructures this might not be realistic.

Instead, integration methods are required that connect legacy devices to the ecosystem.

The architecture supports three levels of integration: for data sources with sufficient com-

pute resources, the query engine can be directly hosted by the data source. Data sources

which do not provide the required resources to support a query engine by themselves but

have a device in their proximity are integrated by the neighbouring query engine acting

as a proxy that reads individual measurements from the device, and processes them in the

query context. Finally, data sources neither support a common communication standard

nor allow adaption of their software, require an additional hardware component which

acts as gateway to read, process, and forward data.

6 A Data Centric Architecture for Large-Scale Industrial Systems 115

Node meta data provides information on device capabilities and attributes along with

a node locator. It must not be confused with data item meta data as introduced in

Section 5.4. Node meta data is structured in a table called nodes which is stored in

the memory of every node. Using the sparse table model, the nodes table contains an

unlimited number of columns yet for each row two columns are mandatory namely: ID and

physical address (Figure 6.5). The ID column equals the virtual address of the node which

persists even if the physical address, which is the address supported by the underlying

network technology, changes. This is particularly useful for nodes that frequently change

their physical addresses, e.g. mobile nodes or nodes connected via DSL. By convention

the physical address has the format type://address, e.g. ipv4://133.23.52.2 for IP based

networks and mac:// 00:25:00:44:62:a5 for ethernet mac addresses.

50hz

...

12hz

9764 ipv6://::0ADE:70D6...

78 mac://00:25:00:59:2f:9b2345634

23 mac:// 00:25:00:44:62:a5345634

ipv4://192.168.2.1435

Physical AddressIDROWID

Figure 6.5: Nodes table

The nodes table allows for device lookup based on their descriptions (e.g., “send a message

to a device which can measure frequency”). Additionally to discovering devices, the virtual

addressing scheme can be used to route information in a declarative way (e.g., “send

measurements from devices that can measure frequency to a device that can archive

data”). To formally specify node discovery as well as routing information, the query

language introduced in Section 6.5 is used.

An ID is assigned to every node during bootstrap. Therefor, nodes chose an arbitrary ID

from a very large ID space. The size of the ID space guarantees that the ID is unique

in the ecosystem. The ID uniquely identifies the node within the ecosystem. Along with

the ID, private public key pair may be generated and can be used to sign transmissions

between nodes. However, the signature is optional reflecting the fact that some nodes have

severely constraint resources and hence are not capable of executing any cryptographic

functionality.

116 6.3 Node Architecture and Query Processors

Event
Kernel

Operating System

Communication

Monitoring

Query

Processor Memory

D
e

v
ic

e
 D

ri
v
e

rs

C
u

s
to

m
 M

o
d

u
le

s

S
e

c
u

ri
ty

Figure 6.6: Node architecture

6.3 Node Architecture and Query Processors

A node is the central concept of a networked entity in the ecosystem. It is comprised of a

set of standard modules yet can be extended by further device specific capabilities. The

standard modules are (i) Communication, (ii) Memory, (iii) Kernel, (iv) Query Processor,

(v) Monitoring. Security is not a module but a general concept which may be realised as

part of other modules, e.g. communication, memory as well as the host operating system.

Figure 6.6 shows the five modules and their interaction. The kernel executes scheduled

instructions, called events. Modules interact solely by scheduling events with the kernel

which either rejects them or guarantees their timely execution. The following sections

explain purpose and functions of each of the modules as well as their interactions between

each other.

6.3.1 Communication

The communication module provides an abstraction of the physical network. Its interface

allows to send and receive messages to either one or many other nodes whereby nodes can

be addressed by their ID or a declarative query. Despite the system DHT, the module

further allows to join and leave additional overlays. Messages contain an address header,

ID or query, a sender address with optional signature, followed by a type field, a conversa-

tion id, content length and a content field of arbitrary length. Header fields are separated

by a separator tag #. Message type 0 is reserved for the transmission of programs (s.

section 6.3.3) while other types can be defined by the user. The conversation id enables

6 A Data Centric Architecture for Large-Scale Industrial Systems 117

TCP/UDP/IP

Messaging

Comm
Manager

Chord ... gnutella

Overlays

Figure 6.7: Communication module

the communication module to efficiently map different messages to the same interaction.

The content of type other than 0 is opaque to the communication module and requires

an application or program for interpretation. Type 0 messages are placed in the memory

program queue (s. Section 6.3.2) and an event is scheduled with the kernel to initiate its

execution (s. Sections 6.3.3 and 6.3.4).

Messages that expect a response are sent by specifying an response event. As soon as

the response arrives, the communication event maps the response to the event by the

conversation id. Subsequently, the event is scheduled for execution, e.g. a message to

request a data item from another node would include an event to write the item to

memory using a defined key.

The communication module maintains a table called nodes in the local memory. The table

is a local version of the global nodes table and contains all nodes currently connected.

It has one further mandatory column called latency which is updated by the monitoring

module. New nodes are added to the table when the communication module establishes

a connection to a previously unconnected node. Nodes are removed from the table if the

connection is closed by the communication module, the monitoring module detected a

failure or a node left the system.

To discover nodes and route information between them, the module maintains one or

several overlay networks. While every node participates in the system wide DHT, for

certain applications, e.g. to group nodes that are geographically close or nodes measuring

a similar event, the communication module can create additional overlay networks. If a

node participates in overlays other than the the system-wide DHT, additional address

columns are inserted into the nodes tables. Accordingly, the overlay to be used to send a

message is determined by the specified address which is in the format: overlay://address,

e.g. gossip://abc. To send a message to other nodes their physical network addresses need

118 6.3 Node Architecture and Query Processors

to be determined. If the specified address is an ID, the system-wide DHT is used to

determine a route to the receiver. If the address is specified declaratively it is forwarded

to the query processor which retrieves the information as described in Section 6.3.3.

Additionally to overlays, the communication module maintains local network structures,

e.g. node groups or multicast trees. These structures are used to efficiently disseminate or

collect information for specific tasks, e.g. high detail state assessment or load balancing.

Local structures, however, are defined implicitly by rules. The communication module

merely accomplishes discovery and maintains availability information. The concept of

local structures is further detailed in Section 6.3.3.

Depending on the security mechanism chosen for the node, the communication module

may be responsible to execute authorisation procedures. Depending on the domain and de-

vice type different security requirements may exist. Therefore, the communication module

does not specify a particular security mechanism. However, an example of a fine-grained,

role-based data access mechanism is provided in Section 6.6.3.

6.3.2 Memory

The memory module provides a mechanism to store and retrieve data items. Its interface

includes store<K,O>, get<K> and list<> operations. Data items are stored and retrieved

using an arbitrary key K, e.g. data item ID. By convention four keys are reserved namely:

event list, programs, nodes and state. The event list contains the currently scheduled events

(s. Section 6.3.4). The data item identified by programs contains a queue of programs

currently running on the node. It is maintained by the kernel. The item nodes is a table

containing all nodes currently known to the node. The data in the table is maintained by

the communication component. The state refers to a table representing the current state

of the physical or virtual device embodied by the node. Examples are the position of a

switch or the voltage the device measures.

The list operation lists all objects currently stored in memory. It is used for maintenance

purposes to check the validity of data items that are currently stored in memory. Expired

items are removed from the memory and tables are administrated accordingly by removing

pointers to expired rows. However, determinism for the clearance of expired data is not

guaranteed. The only guarantee the memory assures is that the expired data is removed

shortly after it expired whereby “shortly” is not further defined. Changes to the memory

module become visible only between kernel time slots (s. Section 6.3.4). For instance,

consider two programs A,B and one data item identified by key K. If both programs

execute within the same time slot and program A, which executes first, changes K, the

6 A Data Centric Architecture for Large-Scale Industrial Systems 119

changes are not visible to B until the next time slot. If B tries to change K within the

same time slot an exception is raised and any changes previously committed in this time

slot by B are rolled back.

Additionally to providing storage for data items, the memory acts also as cache during

query processing. Storing intermediate query results in memory increases the performance

especially for continuous queries as well as data items that are requested frequently. As-

suming that data items, e.g. representing a measurement, are valid for a limited period of

time, the query optimiser detailed in Section 6.3.3 can achieve considerable improvements

by including the content already contained in memory.

The memory component is the only component allowed to have state. Other components

must use the memory if they want to retain a value between computation cycles. Since

operations in modules must not block, components push their current state to the memory

if a computational step is complete and retrieve their state upon the next activation.

This ensures that the entire node state is captured by the memory component. Using its

interface state and state evolution can be observed and actions to stabilise, e.g. resource

consumption or entropy reduction, can be taken (s. Section 7.3).

Similarly to the communication module, the memory module may need to execute certain

security functionality. Besides authorisation, it may need to verify permissions on a per

table or per item base. The security mechanism is most likely determined by a standard, e.g

IEC, relevant to the application domain the node operates in. Therefore the specification

of the memory module does not include a specific security mechanism. Instead, for an

example of a fine-grained, role-based access control mechanism, it is refered to Section

6.6.3.

6.3.3 Query Processor

The query processor translates a query into a form which is executable on one or more

nodes. Declarative query statements are compiled to one or many programs which are

executed either locally or remotely. Using information from the nodes table, programs

are optimised according to the quality of service constraints specified in the query. In the

sequel, the concepts program and optimiser as well as execution are described in further

detail.

120 6.3 Node Architecture and Query Processors

Programs

A program is a sequence of asynchronously executing instructions. The instruction se-

quence is not static but can be rewritten during execution by adding or removing in-

structions. A program can hence reflect the current environment to react to failures.

Additionally, a program can be split and distributed to more than one node. Programs

can also join to execute on a single node.

The instruction set consists of selectData, lookupNode, lookupTable, evalExpression, write-

Data, readData, assignQuery, destroyQuery, sendMessage, optimizeQuery whereby:

• selectData: selects rows from a local table that match a given set of conditions

• lookupNode: uses selectData to retrieve nodes that match a given set of conditions

• lookupTable: queries local memory or global index to find a table with a given name

• writeData: writes a data item to memory

• readData: read a data item from memory

• assignQuery: assigns a query to a given node. If the assignment fails due to a com-

munication error or exceeded resources, it triggers the optimise instruction with the

aim of rewriting the query such that an alternative node is chosen.

• destroyQuery: stop a previously assigned query locally or on a remote node.

• sendMessage: send the specified message to a node identified by the given address.

• optimizeQuery: analyses the program in the context of the current execution envi-

ronment, i.e. local memory and node tables. If more than one node is involved in

the query, the optimise instruction tries to find the optimal node set to execute sub-

queries. Optimality is derived from the quality of service constrains specified with

the query. For instance, an optimal node can be one with lower latency or a node

with strong encryption capabilities. For each query context, the optimise instruction

stores additional node information, e.g., overloaded or unreliable nodes, in memory.

All instructions work asynchronously using the memory to store intermediate results.

Therefor, they allocate a private data item in memory referred to as program context. The

program context stores the current status of the execution such that if an instruction is

executed, the current state can be processed.

6 A Data Centric Architecture for Large-Scale Industrial Systems 121

Indexing Group

Monitoring routine

Service Group

Find new group candidates

Uptime

...

77 3h

Node

...

Group State Table

Add candidatesUpdate state

Query optimiser

Optimise

Query

Partition
Analyse

OpState

...

q1 <..>

Catalog

...

Node State Table

Assign

Figure 6.8: Program adaption during execution

Query Optimisation and Execution

The query execution subsystem is the most sophisticated of all modules. Its purpose is

to analyse a query and create, given the information on the current state of the environ-

ment, an execution plan such that specified quality attributes are achieved. The section

introduces the concept of the query optimiser as follows: first, key terminology is intro-

duced. Second, using the key terms, the goal of the query optimiser is formally phrased.

Third, key capabilities of the query processor are explained. Subsequently, the execution

strategies are described and further illustrated by examples.

In order to provide a concise description the following key terminology is used.

• Query q. The query currently under investigation.

• The set of nodes N. The set of all nodes in the system.

• Execution candidates n ∈ N . A set of nodes, potentially capable to execute the

query as a whole or parts of it.

• Data sources s. A set of nodes that cannot be replaced by other nodes, e.g. sensors.

where s ∈ n.

• Constraints c. A set of criteria specifying the optimisation target.

122 6.3 Node Architecture and Query Processors

• Cost model. A model to predict the cost of execution, given q, n, s and information

on the current state of the environment.

The above concepts cover all relevant factors involved in the query execution and opti-

misation process. Using this key terminology, the query optimisation goals can be stated

concisely.

Goal: Given a query q, a set of nodes n, a set of sources s and a constraint

set c, find a query structure such that the cost of execution becomes minimal

under the constraints specified.

In order to be able to achieve the optimisation goals, the query processor module must,

first, categorise queries according to their execution properties and scope, i.e. global or

local. Second, it needs to apply a cost model to be able to differentiate between solutions

in the solution space. The cost model includes the definition of a set of parameters and

functions that quantitatively predict the cost of execution for a given query. Third, the

query processor needs to implement an optimisation algorithm which, given q,n,s, and the

information on the current state of the environment, searches the space of semantically

correct alternatives to q with a view to minimise the cost of execution of q. Forth, the

query processor must provide a runtime environment or control loop which continuously

monitors the environment and progress of query execution. It analyses the monitored data

for possible problems or better performing alternatives. The control may rewrite a query

such that its execution costs are less than the current costs.

Queries can be classified into four categories: (i) snapshot distributed, (ii) snapshot discov-

ery, (iii) continuous distributed, (iv) continuous discovery. Distributed queries are queries

returning one or many result sets from one or more arbitrary nodes. Discovery queries are

queries returning one or many result sets containing the meta data of a node from the

index cloud. Snapshot queries are queries returning a single result set while continuous

queries return a stream of result sets. A special form of continuous queries are subscrip-

tions which return a result set only if it differs from the previously returned result set.

Discovery queries are not optimised other than checking if a matching result set is al-

ready contained in the local cache. Continuous discovery queries may be executed as

subscription, i.e. they are registered at the index cloud and whenever an update occurs

that matches1 the query, a result set is forwarded to the receiver. Discovery queries are

passed to the index cloud by choosing an arbitrary ID from the index range, looking up

the corresponding index node by using the DHT and finally transferring the query to the

1Including the WINDOW constraint

6 A Data Centric Architecture for Large-Scale Industrial Systems 123

index node for execution. For a detailed description of the execution process in the cloud

including subscription processing see Section 6.4.3.

Depending on the number of nodes in the system, discovery queries may inflict consid-

erable load on the index cloud. To assure that a continuous query includes all nodes for

optimal result set generation, query processors need to contact the index cloud frequently

looking for new execution candidates. Depending on the overlays supported by a node,

the query load on the index cloud can be reduced. Therefor, a set of additional queries

updates the local nodes table to contain all information necessary to restrict discovery to

the local table only. Listing 6.1 shows such a set of queries, implementing a distributed

clustering algorithm. Clusters are build up gradually by gossiping location information

between nodes. At iteration k = 0, nodes are initialised with a random set of cluster

centroids {Ci,j,k=0 : 1 ≤ j ≤ K} where K, the number of centroids, is a parameter to be

specified. Each node determines its membership to the cluster with closest centroid. In

each iteration, the ith node Ni picks a selection C of all n nodes at random and com-

putes the current centroid by averaging over a determined value at the currently selected

nodes. A node belongs to a certain cluster if its local value does not exceed a minimum

distance from the average of all selected nodes. Nodes that share the same cluster are

kept in the local nodes table. Nodes that belong to another cluster are purged from the

local nodes table. The approach unloads the index cloud in two ways. First, the queries to

discover new nodes are light weight with a small set of constraints. Second, once clusters

converged, the discovery rate can be reduced allowing to include information from the

nodes tables of other nodes in the cluster. Instead of the average function, an arbitrary

correlation function can be used. Hence, nodes sharing a commonality form clusters and

therefore decrease the effort necessary to execute and optimise distributed queries within

the network.

While discovery queries are executed at the cloud, distributed query execution is handled

locally by a continuous five stage process (Figure 6.9). In the first stage all information

necessary for optimisation is collected. This includes look-up of data sources, retrieval of

state and execution schedules from execution candidates, i.e. all known nodes capable of

executing the query as a whole or parts of it. In the second stage the query is optimised and

rewritten based on the information collected in stage one. The result of the second stage is

a query plan, i.e. a program, containing all steps necessary to execute the query including

placement of sub-queries on execution candidates. If no query plan can be found, e.g.

because nodes cannot be resolved or due to conflicting constraints, the execution process

terminates by skipping to state five. Otherwise, in the third stage, the query is rolled out

to all execution candidates. If the rollout process fails, e.g. because one of the execution

nodes failed or execution schedules changed such that the sub-query cannot be scheduled,

124 6.3 Node Architecture and Query Processors

Collection Optimisation Roll out
Execution

and
Monitoring

Shutdown

Failure? Low Performance?

Changed Schedule?

No Execution Plan

Discover Nodes

Figure 6.9: Five stage query execution process

the failure is recorded to the information collected in stage one and execution goes back to

stage two. In the fourth state the query is executed and monitored. If query performance

is not as expected or failures occur, the query is re-optimised by going to stage two. The

fifth stage is reached once the query is complete or an unrecoverable failure occurred. In

this stage unneeded information is purged and sub-queries are cancelled at the execution

candidates.

The query execution process aims to find an optimal set of query configurations given the

supplied constraint set. However, if followed strictly, query optimisation may destabilise

the entire system or find only sub-optimal results as a large fraction of available resources

are bound by query optimisation and re-allocations. As example consider two idle hosts

and a query injected to be optimised for throughput (s. Cost Function A.3). The query

will be scheduled at host 1. Depending on the induced load on the node, node 2 might a

be better execution candidate causing re-configuration of the query and migration to node

2. Being at node 2 however, will make node 1 more attractive since its load decreased.

If implemented poorly, the query might continue to “jump” from node 1 to another

thereby generating considerable migration overhead. Hence advanced – entropy reducing

– optimisation steps are supported (s. Section 7.3.2).

To illustrate query execution and optimisation, consider the continuous aggregate query

Q in graphical form depicted in Figure 6.10. The query shall be executed on the example

network shown in Figure 6.11. Informally, the query states the interest to retrieve the

maximum of the values of the sensors 3, 4, and 5, and of the average of the measured

value of sensor 1 and 2. The query does not contain any a priori knowledge about the

network topology. All five sensors could be part of just one local network, e.g., within a

substation; they could be connected each to a different network, or their connection could

be a combination of the first two cases. The query does specify, however, a set C of quality

of service constraints.

6 A Data Centric Architecture for Large-Scale Industrial Systems 125

Figure 6.10: An example query

Further it is assumed that sensors S1-S5 are specified declaratively in the following way:

• Sensors 1-2 are to be chosen as of type “voltage sensor” and located in a specific

area A1, having the highest accuracy of all other voltage sensors in that area and

featuring strong encryption.

• Sensors 3-5 are to be chosen as of type “voltage sensor” and located in area A2.

The network contains in addition to the sensor nodes 1-5, nodes which are currently known

to the query initiator, which is set to node 10. Nodes are connected via an IP network

and there exist routes between each node. The edges of the network graph in Figure 6.11

show all one-hop links of individual nodes. Edges are labelled with the latency between

the two nodes connected by the edge. Nodes have different compute capacities. Sensor

nodes 1-5 have only minimal resources limited to sensing and delivering data. Node 10

has more compute resources, however its memory is limited to hold a maximum of one

data item. Nodes 6-10 have enough resources to save multiple items as well as compute

additional functions.

In the following, using an example network and query, the query execution process is illus-

trated. In stage one nodes are discovered by issuing look-up queries, containing the sensor

description, to the index cloud. The discovery is the first step towards meeting the quality

of service constraints as only nodes are selected that meet certain qualities, i.e. accuracy

and security. Subsequently to discovery, the process advances to stage two where the op-

timiser needs to (i) rewrite the query such that it optimally fits the underlying network

topology and (ii) find suitable nodes capable of executing sub-queries. Query rewriting

starts by partitioning the query into all possible sub-queries. Thereby a sub-query is either

126 6.3 Node Architecture and Query Processors

Figure 6.11: An example network

a query that retrieves a single data item from a node or an aggregation which takes two or

more data items to merge them into a single item. Aggregations can be broken further into

sub-queries until the minimum fan-in is reached, e.g. SUM(A,B,C,D)=SUM(SUM(A,B),

SUM(C,D)). However, the semantics of the aggregation operator must be main-

tained, e.g. AVG(A,B,C,D,E) �= AVG(AVG(A,B,C), AVG(D, E)). In the context

of the example query this yields: Q, Qs1=S1, Qs2=S2, Qs3=S3, Qs4=S4, Qs5=S5,

Q1=AVG(Qs1,Qs2), Q2=MAX(Qs3,Qs4,Qs5), Q3=MAX(Qs4, Qs5), Q4=MAX(Qs3, Q1),

Q5=MAX(Qs4, Q1), Q6=MAX(Qs5, Q1), Q7=MAX(Q2, Q1), Q8=MAX(Q1, Qs3,

Qs4, Qs5), Q9=MAX(Q1,Qs3,Qs4,Qs5), Q10=MAX(Q4,Qs4,Qs5),Q11=MAX(Q5,Qs3,Qs5),

Q12=MAX(Q6,Qs3,Qs4).

Subsequently, after breaking Q into sub-queries, the optimiser builds all semantically

correct variations of Q. Following the example, the optimiser would produce: Q, Q10, Q11,

Q12. Using the quality of service criteria, each query candidate is assigned a cost value

according to Equation 6.1.

cost(Q) =
�

i

ci · wi (6.1)

Where ci =
�

j

�
l cl(ql) is the cost for the ith quality of service constraint over all sub-

queries ql and wi is the corresponding weight. Cost functions for the different quality of

service constraints, specified as detailed in Section 5.6, are listed in Appendix A.1 - A.5.

6 A Data Centric Architecture for Large-Scale Industrial Systems 127

(a) Query A (b) Query B (c) Query C

Figure 6.12: Multi-query optimisation

For each query, a vector �w of weights is generated using the constraint set C for the query.

For example, a query that is to be executed as fast a possible would put a high weight on

latency and service time and zero weight to all other constraints. The optimiser chooses

the query such that cost(Q) = min(
�

i ci ×wi). To discuss the impact of QoS constrains

on optimisation in the following, different constraint sets are evaluated. To be able to

demonstrate individual influence of a constraint, only the corresponding weight is set to 1

while all others are set to 0. However, constraints regarding the resources detailed above

remain considered. For a constraint set specifying a minimal latency for execution, the

optimiser rewrites the query as depicted in Figure 6.14a. The optimiser did not rewrite the

query. Figure 6.14b shows the placement of aggregation operators on the set of available

nodes. The optimiser paid attention to the fact that node 10 is unable to store more than

one item and thus placed all aggregations on node 9. In this example nodes 1-5 and node

10 cannot be used due to resource restrictions, leaving 8 and 9 for optimisation. Node 5

is connected to nodes 8 and 9 via a single hop. Nodes 1-3 are one hop away from 8 and

9 whereby the maximum latency to 8 is 44ms. Node 4 is two hops away from either 8

(4-5-8 102ms) or 9 (4-5-9, 97ms). Thus, since the latency is determined by the maximum

latency between executing peers, node 9 is chosen.

The second constraint set in this example specifies to optimise for response time. Apart

from latency, response time depends on computational speed of the node and the sup-

ported bandwidth. Figure 6.15 shows the result of the optimisation. Node 8 is more

capable in terms of computation while the bandwidth supported by node 9 is larger.

Hence, balancing between bandwidth and computational power, the optimiser places the

average function on node 8 while putting the maximum with increased fan-in on node

9. Correspondingly, Figure 6.16 shows the result for a network composed of nodes with

equal resources, minimal latencies and maximal throughput.

128 6.3 Node Architecture and Query Processors

282524232120171716131211985540Execution time

Data items from sensor 1

Data items from sensor 2

Data items from sensor 3

Item valid in cache

Item not contained or invalid in cache

Figure 6.13: Valid data items contained in cache of node 6 during execution of queries

A-C

Multi-Query Optimisation

Aside from static optimisation and assignment of queries to available resources, nodes

optimise the combined execution of multiple queries. This section explains the process of

multi-query optimisation and elaborates the difficulty associated with this step. Multi-

query optimisation is also an important aspect covered in the evaluation conducted in

Chapter 7.

During mutli-query optimisation result sets are shared among queries and multiple queries

are consolidated into a minimum set of simplified queries. Hence, with multi-query optimi-

sation, communication as well as computation costs can be reduced while still maintaining

all quality of service constraints. While the general idea of reusing query results might

seem very simple, in the following an example of three simple queries is provided, which

demonstrates the complexity of this optimisation step.

Consider the placement of three example queries provided in Figure 6.12. Query A re-

quests a measurement from sensor 1 every 3 minutes (Figure 6.13), query B requests the

maximum of sensors 1-3 every 5 minutes (Figure 6.13) and query C requests the minimum

of sensor 1 and 2 every 2 minutes (Figure 6.13). Furthermore, assume that readings of

sensor 1 are valid for 3.5 minutes, sensor 2 for 6 minutes and sensor 3 for 4 minutes. All

three queries are executed concurrently, but the execution of query B starts 5 minutes

later than A. Query C starts 16 minutes later than A. All queries finish after 30 minutes

(Figure 6.13). Obviously, all queries work on the same data items. When A and C start,

they can reuse their results, hence they can be replaced by two queries α, β where α

requests data items from sensor 1 every 3.5 minutes and β requests items from sensor 2

every 6 minutes. When query B starts, a new query γ is generated that requests items

from sensor 3 every 4 minutes.

6 A Data Centric Architecture for Large-Scale Industrial Systems 129

(a) Query (b) Placement

Figure 6.14: Optimisation for latency

Figure 6.13 shows the data item availability as requested during execution. Starting from

the bottom, each row represents items from a sensor 1 to 3. Labels represent points in

time when a query executes.

Instead of explicitly rewriting queries, multi-query optimisation operates twofold. Nodes

provide a two way cache mechanism to reduce the number of required transmissions. First,

received result sets and intermediate results are cached locally. Additionally, each node

records sent items together with the send time. Therefore, a node knows which items are

present at the receiver. Consequently, items are sent only if they have never been sent

before, or if their validity in the receiver cache expired. Second, each query is optimised

as elaborated in the previous section. In addition to the quality of service criteria, a

cache criteria is used in the cost calculation, such that nodes that cache required items

lead to lower costs of the placement. This approach has two benefits: first, there is no

additional overhead of rewriting queries if new queries arrive or finish and, second, since

items arrive only when they should, query windows do not need to be adjusted in the case

items need to be retrieved acyclic. As elaborated in Section 7.3.2, aggregation, caching

and multi-query optimisation may yield sub-optimal results. Using the caching criteria,

however, continuous optimisation finds the optimal aggregation points and hence optimal

multi-query execution.

6.3.4 Event Kernel

The entire node is controlled by an event-based kernel module. The kernel operates by

fetching an event from the event list (Figure 6.17) in memory and executing it. The event

list is segmented into equally sized sections, called slots henceforth, each representing a

130 6.3 Node Architecture and Query Processors

(a) Query (b) Placement

Figure 6.15: Optimisation for response time

(a) Query (b) Placement

Figure 6.16: Optimisation for throughput

6 A Data Centric Architecture for Large-Scale Industrial Systems 131

discrete portion of time. Starting from the current instant, it extends into an (almost)

arbitrary distant future. Therefore the kernel implements a local virtual clock cl with

the current time tc being the current time slot. Events can be inserted into the list by

providing (i) a timestamp specifying a point in time, relative to the current time, when

the event shall be executed and (ii) the event code to execute. Insertion into the event

list is constrained by the following:

• The timestamp must always lie in the future, i.e. timestamp > tc with tc being the

current time

• The number of possible events per slot is limited. If a slot has reached its capacity

insertions are rejected causing program execution to fail.

• Events in the same time slot are executed in FIFO order with the exception of

certain kernel events which are always executed first.

Event code must be linear and non-blocking without loops and threads. It may consist of

program instructions (s. Section 6.3.3) or further kernel instructions. Kernel instructions

are of high priority and control activity of all modules. The kernel instructions are:

• fetchEvent: a cyclic instruction scheduled as the first event during start-up. It fetches

the next event in the event list and triggers its execution. After execution it schedules

itself for tc + ∆t whereby ∆t refers to the slot duration. The instruction has the

highest priority, and is thus executed first for each slot.

• triggerCommunication: a trigger for the communication module to send and retrieve

messages or to join, leave or maintain overlays.

• triggerMonitoring: a trigger for the monitoring module to drive the monitoring pro-

tocol and update the local and global node tables.

• triggerMemory: a trigger for the memory module to drive maintenance tasks such

as garbage collection.

How instructions are implemented depends on the underlying hardware and operating

system. To prevent deadlocks, instructions must always execute asynchronously. If hard-

real time is the goal, instructions must be implemented such that their execution stays

within a strict time frame. This can be achieved by taking care that instructions, which

could potentially require more time depending on the environment, are broken down into

smaller instructions, e.g. memory maintenance may need more time for memories with

132 6.3 Node Architecture and Query Processors

...

t0

t1

t2

t3

t4

t5

tn

P
ro
c
e
s
s
in
g

Figure 6.17: Event list processing model

many items than with fewer items, hence the maintenance instruction could be broken

down to first work on the first k items, then on the 2nd, 3rd etc. items.

For certain situations, e.g. consistent read and write operations (s. Section 6.4.2), the

synchronisation of event execution on more than one node is required. The kernel features

synchronisation based on a variant of a Chandry-Misra-Bryant (CMB) protocol [95]. The

method synchronises the local clocks of each node in a group of nodes Gs. A kernel may

not proceed to next time slot until all other kernels within Gs acknowledged the complete

procession of the current time slot tc. To prevent deadlocks kernels exchange so called

null messages to signal the group Gs that all events in the local timeslot tc were executed.

The constraint formulated earlier that no event may be scheduled with timestamp <= tc

ensures that causality of execution is always maintained. In order to reduce the number of

null messages, the kernel extends the original CMB protocol by look-a-head mechanisms

[22], [86] [33] (Algorithm 1). The look-a-head mechanism exploits the fact that there

will always be a network based latency between communicating kernels. Therefore, for

each received message a small delay dl is added prior to scheduling. The value of dl is

updated for each timeslot and set to the minimum of latencies of all nodes within Gs.

The mechanism allows kernel to process all events in the event list until tc + dl without

synchronisation via null messages.

Algorithm 1 presents the scheduling and synchronisation methods. The main loop (lines

1-13) executes all events up to the execution limit determined by the minimum latency

to kernels in Gs. Lines 14-21 adjust the minimal delay dl. Line 23 sends a response to

a kernel that reached its execution limit. The message contains the current local time -

1, to signal the last timeslot were all events have been processed. This is mandatory to

ensure consistency if cli = cll, i.e. current local time for kernel ki equals current local time

of kernel kl with ki, kl ∈ Gs. Line 26 ensures that execution is not blocked by failed nodes

(s. Section 6.3.5).

6 A Data Centric Architecture for Large-Scale Industrial Systems 133

Algorithm 1 Kernel scheduling with look-a-head synchronisation
Require: For all kernels, ki ∈ Gs, start time ts is synchronised

1: while node = alive do

2: if tc < executionLimit then

3: events = fetch(tc)

4: for all events do

5: execute(event)

6: end for

7: else

8: nodes ← min(kl, nodeLatencies) � Get all nodes that block execution

9: for all nodes, ni do

10: send(ni, null, cl)

11: end for

12: end if

13: end while

14: on receive message (MESSAGE, local time of sender cls) from ki

15: te ← tc + dl � New local execution time te

16: nodeLatencies ← nodeLatencies ∪ ki, te

17: if tc − cls < dl then

18: dl ← tc − cls

19: end if

20: exeuctionLimit ← min(te, nodeLatencies)

21: end

22: on receive message (null, local time of sender cls) from ki

23: send(ki, cl − 1) � Only events in cl − 1 are fully processed

24: end

25: on receive message (NODEFAILURE, ki)

26: remove(ki,nodeLatencies)

27: end

134 6.4 Index Cloud

6.3.5 Monitoring

Awareness of the state and availability of the other nodes is not only mandatory for query

execution but also contributes to the robustness and efficiency of the entire system. Hence

each node has a configurable monitoring module to collect information about other nodes

as well as to provide a flexible interface for other nodes to gain information on its current

state. Nodes monitor all other nodes currently contained in the local nodes table. The

monitor module engages in a simple probing protocol by sending the monitored node

a probe message. The monitored node responds with its state, meta data and failure

hooks. The local nodes table of the probing node is updated with state and meta data

information. A failure hook is a program to be executed if the monitored node failed, e.g.

to remove the failed nodes meta data from the global index. A failing node is detected if

more than three probe messages remain without response.

6.4 Index Cloud

While the previous sections introduced the modular node architecture, this section details

the second key concept of the data-centric architecture for large-scale industrial systems,

namely the Index Cloud. The responsibility of the index cloud is to provide global access

to distributed information. Nodes publish a description of their capabilities (node meta

data) and the data they provide (data meta data) in the index cloud and query the index

cloud to find other nodes or data. Technically the index cloud is a storage for data items,

however, it is not intended for massive volumes of data. High volume data should be

handled at the nodes level as explained in Section 6.3.3. Aiming at a scalable meta data

index for node meta data, the index cloud is optimised for the management of lightweight

data.

The index cloud is comprised of a set of nodes, called index nodes henceforth, located in a

specific ID range of the underlying DHT. To query the index, nodes choose an ID that lies

within the index range at random and use the system DHT to route to the corresponding

index node. Depending on the mode of operation, the type of consistency and level of

availability, the ID range is segmented into several zones whereby each zone guarantees

certain qualities of service.

The cloud has two modes of operation called fully replicated and partitioned. In fully

replicated mode, all data published to the cloud is replicated to all index nodes. This mode

ensures high availability and strong read performance. However, write operations suffer

increased latencies and the cloud does not scale with the number of nodes. Additionally,

6 A Data Centric Architecture for Large-Scale Industrial Systems 135

in the case of large data volumes, nodes may become unable to store the data or keep

the index in memory. Therefore, in partitioned mode, all data published to the cloud is

partitioned among a number of nodes. In this mode the index cloud consists of a number

of node groups whereas each group contains the full index. Subsequent sections illustrate

the self-organising formation of the index cloud with respect to both modes and their

implications on data management and consistency.

6.4.1 Formation

The cloud is comprised of transient nodes such that no assumptions on their capabilities

can be made. With increasing number of nodes in the cloud the probability of failure

increases proportionally. Foundation for reliable operation of the index cloud is a sta-

ble structure that connects all nodes within the cloud. This section introduces structure

generating and maintaining algorithms.

Fully Replicated

To simplify cloud structure maintenance, a dedicated node, the cloud master, co-ordinates

all administrative tasks. As convention, the master is the index node with the lowest ID

in the index interval. In theory any node could adopt the role of the master. However, as

a reliable master can bring major performance improvements it is assumed that a capable

and reliable node is positioned as master.

Algorithm 2 Formation algorithm for the fully replicated mode
Require: � Node ni in list of active nodes

1: on receive message (JOIN, idcand) from ni

2: nid ← rand(rangeindex)

3: activeNodes ← activeNodes ∪ nid

4: send(nodeid, nid)

5: for all n ∈ activeNodes do

6: send(n, activeNodes)

7: end for

8: end

Index nodes join the DHT with an initial ID, IDcand, chosen from a dedicated ID range,

and query the master to assign them a suitable operative ID by choosing an unassigned

ID from the index range with uniform probability (Algorithm 2). The master maintains a

list of all currently active nodes in the cloud. Upon update of the list, it is pushed to all

136 6.4 Index Cloud

DHT

Substation

Relay

Generator

Substation

Indexing Range

Meter

Relay

(a) DHT

Index Range

Read Zones

Write Zones

Start ID End ID

(b) Read/Write Zones

Figure 6.18: Partitioned cloud zones

nodes in the cloud using the write operation detailed in Section 6.4.2. Additionally to the

list, new nodes receive the full index from the master. The master also probes the nodes

in the cloud by passing them a validity token. If the token is not acknowledged timely,

the master removes the respective nodes from the list of index nodes. If a token has not

been renewed and expired, nodes leave the cloud and the DHT as the connection to the

master might be interrupted. They may try to rejoin the cloud at a later point in time.

The availability of the master is ensured by a watch dog mechanism. The nodes with

the second and third lowest ID monitor the master by frequently probing the master by

sending a validity token and requesting a copy of the current list of index nodes. The

index node with the second lowest ID recognises a master failure by a response delay to

the probe request or the arrival of coordination requests (joins) from other index nodes

as they assume the master to be the node with the lowest ID. A master recognises its

failures or separation from the cloud by an expiring validity token.

Partitioned

For the partitioned mode of operation, the index cloud is partitioned into so called zones.

Equally to the fully replicated mode, a master co-coordinates the cloud formation. After

joining, the master determines an ID for the new node. Therefor, it divides the index range

into sections of equal size. By choosing an ID from the interval with uniform probability,

the new node is mapped to a section. The node with the lowest ID in a section becomes

zone master co-ordinating all administrative tasks of the zone. Zones at this level are

called read zones. A read zone consists of k write zones, i.e. sub-sections of equal size

within the read zone (Figure 6.18b). Again, a write zone master is the node with the

lowest ID in the write zones range.

Whereas each read zone is a replica of the entire data currently stored in the cloud,

write zones store only a subset of the data. Data within a read zone is partitioned by

6 A Data Centric Architecture for Large-Scale Industrial Systems 137

the item identifier. Given a uniform distribution of identifiers, the following hash function

uniformly maps objects with identifier OID to write zones:

H(OID) =
IDzonemaster + Lreadzone

(Hash(OID) mod Swz)
(6.2)

where Lreadzone is the length of the read zone, i.e. �IDhighest − IDlowest� and Swz, the

size, i.e. the number of write zones, of the read zone and Hash is a general purpose hash

function such as SHA1. Since partitioning is at the item level and item content is opaque

to the architecture it is the responsibility of the application to partition large items.

To read data from a partitioned cloud, client nodes choose an ID from the index range

at random. The receiving index node distributes the query to all other write zones in its

read zones as well as executing the query locally. Subsequently, the result of local and

sub-queries is passed to the client. To write data to a partitioned cloud, clients choose an

ID from the index range at random to forward the write request to the respective index

node. Using Equation 6.2, it determines the write zone for the item to be written and

forwards the write request. Additionally, it forwards the request to all other read zones

using Equation 6.2 and adding the read zone length modulo the read zone length.

With increasing data volume or changed load patterns, zones can be adjusted such that

data is distributed to more nodes. To join two bordering zones, the zone master with

lowest ID of both zones acts as co-ordinator. To ensure consistency for data items with

conflicting versions, it retrieves the item from n other read zones choosing the item with

the newest version.

Similarly to the fully replicated mode, zone masters are monitored by the two nodes with

the third and second lowest IDs. Additionally data can be replicated using the mechanisms

described in Section 6.4.2.

While in the fully replicated scenario, the master merely assigns IDs to newly joining

nodes, in the partitioned case, additional configuration overhead is needed. Read and

write zones must be configured in dependence of the expected total read- and write load.

If load patterns are known a priori and are expected to be stable, this process can be done

manually during design time. However, using the monitoring capabilities of the nodes as

illustrated in Section 6.3.5 and feeding this information back to the index master, the

cloud can be reconfigured automatically. Since an index node’s performance depends on

the hardware, available resources, network infrastructure, caching mechanism, write-read

ratio and number of items stored, a prerequisite of the cloud self-configuration or self-

optimisation is a model of the throughput per index node. Particularly the relationship

between read and write operations has influence on the performance. Replicating a data

item increases read performance proportionally with the number of replicas. However,

138 6.4 Index Cloud

Algorithm 3 Formation algorithm for the partitioned mode
Require: � Node ni in list of active nodes

1: on receive message (JOIN, idcand) from ni

2: nid ← rand(rangeindex)

3: activeNodes ← activeNodes ∪ nid

4: masterwrite ← getWriteMasterForId(nid)

� Update performance model

5: �m ← probe(ni, loadPattern) � Probe with current load pattern

6: nodeModel ← approximate(�m) � Levenberg-Marquardt [113]

7: cloudModel ← cloudModel ∪ nodeModel

8: send(nodeid, nid, masterwrite) � Inform new node of write master for registration

9: optimise(cloudModel, loadPattern) � Optimisation may be done lazy

10: end

11: function optimise(model m, pattern p)

12: �copt ← �ccurrent

13: for all Configurations �ci ∈ �C do

14: t ← t + eval(�ci, m, p)) � Compute throughput based on �ci, m, p

15: if t > tmax then

16: tmax ← t

17: �copt ← �c

18: end if

19: end for

20: if �copt �= �ccurrent then

21: �ccurrent ← �copt

22: partition(�ccurrent)

23: end if

24: end function

25: function partition(Configuration �c)

26: while i ← i + |activeNodes| mod c(readers) < index do

27: masterread ← i

28: j ← i

29: send(ASSIGN READ MASTER ROLE, i, mastercloud)

30: while j ← j + |activeNodes| mod c(writers) < i + |activeNodes| do

31: send(ASSIGN WRITE MASTER ROLE, j, masterread)

32: end while

33: end while

34: end function

6 A Data Centric Architecture for Large-Scale Industrial Systems 139

maintaining consistency causes write operations to become more resource demanding in a

replicated scenario. Similarly write performance can be increased by partitioning data over

many nodes. In turn, read performance decreases since many nodes must be contacted

to execute a query. Write-read ratio has also influence on the performance of caching.

Low write-read ratios allow for increased throughput by caching while many writes dis-

able caching benefits. Using this information, the master creates a structure model of

the cloud by collecting from each node measures on their read and write throughput in

dependence of the write read ratio (current load). Subsequently, zones are configured, i.e.

segmentation into a certain number of read and corresponding write zones, such that the

total throughput can be guaranteed. For example, given an index node (implementation

and hardware) with an average throughput2 of 1986 read and 14 write operations per

second, a write-read ratio of 0.007 and a total required throughput of 16000 read and 115

write operations per second, a cloud with 6 read zones and 41 write zones would meet

the requirement. For a detailed discussion on finding the optimal configuration refer to

Section 7.4.1.

Algorithm 3 presents the formation mechanism. When sending a join request the new node

is probed with a load pattern characteristic to the current load pattern. The measurement

yields an updated performance model of the index cloud. The new node receives an id

and corresponding write master. Subsequently it contacts the write master for registration

(Algorithm 2). Optimisation and partitioning may be done after each node join. However,

for large index clouds it might be more efficient to initiate optimisation after a series of

joins and leaves.

6.4.2 Index Data Management

Being able to scale to hundreds or thousands of index nodes, the index cloud is a data store

providing the illusion of infinite resources. While formation algorithms explained in the

previous section maintain the structure of the cloud, this section details the management

of data within the cloud by describing the algorithms and concepts for storing and retrieval

of data under a particular quality of service constraint, namely: consistency.

In [83] Leslie Lamport defined three consistency models for data stores: safe, regular

and atomic. Safe consistency means that a read which is not concurrent with a write

returns the last value written. Regular consistency guarantees that a read always returns

a written value which is not older than the value written by the last preceding write.

Finally, atomicity guarantees regularity plus it ensures that a read does not return an

2Numbers taken from an analysis of the load patterns on Siemens internal Web 2.0 applications

140 6.4 Index Cloud

older value than a previous read. While atomicity is desirable for critical applications, it

causes considerable overhead to enforce. On the contrary, safe and regular consistency are

easier to achieve yet they are insufficient in distributed systems since in the first case a

read concurrent with a write returns an arbitrary value and in the second multiple reads

may return outdated versions.

Considering the fact that the index cloud is built of a large number of individual nodes

based on commodity hardware, consistent management of data within the cloud is chal-

lenging. The asynchronous nature of node interaction as well as a variety of failure scenar-

ios require sophisticated algorithms to consistently read and write data [21] [10]. Nodes

of the index cloud are virtually close, i.e. within an ID range. However, in the physical

world they can be separated over large distances, connected via heterogeneous networks

and based on different hardware thus experiencing unpredictable delays. Consequently,

depending on individual node dynamics, operations may take varying times to complete.

Therefore, it is impossible to differentiate a faulty from a slow process. The definition of

operation timeouts is sub-optimal since when chosen to strict, operations might fail in an

overload scenario while when chosen conservatively, performance is poor.

In both fully replicated as well as partitioned mode, nodes of the index cloud must access

multiple other nodes for read and write operations. Since no assumptions can be made

on the reliability of nodes and their communication resilience, read and write algorithms

must be able to compensate failure events. Additional to node and communication fail-

ures, Byzantine faults may yield corrupted data, e.g. due to hardware defects or security

breaches.

Cloud data management features different modes of consistency to balance advantages

and drawbacks of operation performance and consistency. In strong consistency mode, it

is assured that if process A has made an update, subsequent accesses by A or any other

process (B,C,D) will return the updated value. Strong consistency induces heavy write

overhead on the system as all replicas need to be contacted and need to confirm that

the value has been updated before the operation ends. In dynamic environments, e.g.

in large replication groups, strong consistency may be unachievable as at any point in

time a number of replicas may be offline. In eventual consistency mode it is not assured

that all subsequent accesses return the updated value. However, if no updates are made,

eventually all accesses will return the updated value. In the absence of failures the window

of inconsistency is determined by communication latency, number of replicas and system

load. Corresponding to the consistency modes, the data cloud features a strong write and

eventual write method. Consistent write methods, however, are not sufficient. If process A

writes to the cloud, aiming to write at n replicas and receiving n acknowledges, yet k out

of n replicas write the item incorrectly or not all due to a hardware failure or malicious

6 A Data Centric Architecture for Large-Scale Industrial Systems 141

intent, consistency compromised. Therefore, in addition to the modes for updating data,

two read modes are supported. In weak read mode a value is read from a single node in

the cloud. This mode is very fast yet susceptible for inconsistent data or maliciously or

otherwise corrupted data. In strong read, data is read from n replica nodes. A value is

returned based on a quorum decision of all nodes participating in the read. The mode is

considerably slower than weak reads, however, it allows for consistent and save operations.

In the following, the four operations are described in detail.

For a strong write operation, the client node selects an arbitrary index node from the index

range. If the cloud is in partitioned mode, and the selected index node is not responsible

for the item to be written, the request is forwarded to the appropriate write zone. The

item is then written locally as well as to all replicas. In fully replicated mode these are

all index nodes. In partitioned mode they are all nodes in the write zone plus all nodes

in all write zones of other read zones. The write operation completes if respective nodes

acknowledged the write. It fails if at least one node fails to acknowledge timely.

Similarly to the strong write operation, for eventual writes, an index node is selected

at random. If the index node is not part of the correct write zone and the cloud is in

partitioned mode, the request is forwarded. In fully replicated mode, the item is written

to all index nodes. If k out of n index nodes acknowledged the write, the operation ends

successfully and fails if less k node acknowledge timely. In partitioned mode, the item is

written locally as well as to the write zone’s masters of all other read zones. If k write zone

masters out of n read zones acknowledged the write, the operation terminates successfully

and fails otherwise. In both cases, replicas that failed to respond to the write request are

recorded with the stored item at the node servicing the client request as well as the master.

The node retries to write the item to the failed nodes until it discovers, by receiving a

updated cloud list from the master, that the target node left the cloud or a new version of

the item appears or the write completes successfully. If the node originally servicing the

client request fails, the master assigns another node to retry the writes until the above

stop criteria are met. Additionally, epidemic entropy reduction algorithms may be applied

to speed up the harmonisation of item versions.

For a weak read operation, a client node selects an index node at random. In fully repli-

cated mode, the index node executes the read locally and returns the result set(s). In

partitioned mode, the read is executed locally as well as distributed to all write zones of

the current read zone. If all write zones return their result sets, in case of a continuous

read their result sets for a given iteration, the node receiving the client request joins the

result sets and forwards them to the client. If at least one of the write zones fails to

respond timely the read operation fails.

142 6.4 Index Cloud

In fully replicated clouds, for consistent writes, the number of replicas that acknowledged

a write equals the number of index nodes, hence a read on a single node guarantees

strong consistency. However, unless explicitly stored with a data item, the cloud cannot

determine whether the item was written strong or eventually consistent. Hence, for a

read at least n − w + 1 nodes, where n the number of index nodes and w the number

of nodes that need to acknowledge an eventual write, need to be contacted. Out of the

n − w received results, the result set with the highest version is selected and forwarded

to the client. To ensure atomicity the selected version is written back to all replicas. In

partitioned mode, all write zones in all read zones are queried and the selected result is

written to the local write zone which initiates the write to all respective write zones in all

other read zones.

6.4.3 Query Execution

Query execution in the index cloud differs from execution on regular nodes. Queries ar-

riving at the index cloud are executed without prior data discovery. In the fully repli-

cated cloud, the query can be directly executed on the local memory. Depending on the

consistency requirement specified with the query, other index nodes must eventually be

contacted before the result set is returned to the client. In partitioned mode, the query is

executed at least locally and on all other write zones of the current read zones. In case of

strong consistency other read zones are contacted as described in the above section before

the result is forwarded to the client. Unlike to distributed execution, sub queries are not

scheduled at other nodes for continuous execution but the index node which received the

client request co-ordinates the execution by reissuing requests when needed. This elimi-

nates the need to optimisation and reduces the overhead during reconfigurations and node

failures.

The above sections detailed the second key concept of the data-centric architecture for

large-scale industrial systems, the index cloud. The third important concept is a data-

centric language which combines individual nodes and provides means to formally state

data structures and data flow, quality attributes and application requirements. The query

language is introduced in the following section.

6 A Data Centric Architecture for Large-Scale Industrial Systems 143

Listing 6.1: Distributed discovery
CREATE TABLE CENTROIDS(DOUBLE c)

SELECT INIT ()

N −> SELECT ∗
FROM @NODES LIMIT 10 ORDER BY RANDOM

WINDOW (0 , FOREVER, 10 minutes)

INSERT INTO N

(SELECT ∗ FROM NODES)

WINDOW(1 ,FOREVER,10 minutes)

AVG −> SELECT AVG(va lue)

FROM NODES

WINDOW (2 , FOREVER, 10 minutes)

SELECT CENTROID(c)

FROM CENTROIDS

WINDOW (4 , FOREVER, 10 minutes)

DELETE FROM NODES

WHERE (va lue − MYCENTROID < 10)

WINDOW (3 ,FOREVER,10 minutes)

FUNCTION INIT () {
FOR (1 to K) {

INSERT INTO CENTROIDS(RANDOM)

}
}

FUNCTION CENTROID(c e n t r o i d) {
DOUBLE minimum = 100 ;

FOR EACH (c e n t r o i d) {
IF (c e n t r o i d − AVG < minimum) {

minimum = c e n t r o i d − AVG ;

MYCENTROID −> CENTROID

}
}

UPDATE CENTROIDS

SET C=AVG

WHERE C=MYCENTROID

}

144 6.5 Query Language for Service Ecosystems

6.5 Query Language for Service Ecosystems

Consisting of tens of thousands of nodes, each with individual properties and connected

through heterogeneous networks, an efficient mechanism is required to access, provide

and control information flows in the ecosystem. To cope with the diversity inherent in

the ecosystem, the user or the application programmer should be able to focus on the

key attributes that uniquely determine the characteristics of the modelled system. In

other words, the user should be able to state what he wants to accomplish without being

specific how the underlying system will execute it. A flexible interface is required to

support multiple applications with differing requirements. The interface must support the

achievement of the following goal:

Goal: Given an interest I in data and a set of quality criteria C, find a formal

representation of interest and quality criteria. Allow the injection of I and C to

retrieve corresponding information from the system. Ensure that requirements

of multiple applications are supported. Provide the flexibility to gradually

adjust the requirement during the lifetime of the system.

During the scenario analysis at the beginning of this chapter a language interface was

suggested as tactics to achieve the identified quality attributes. Languages are the most

universal interfaces available. In the context of technical systems, coupling between com-

ponents or services can be achieved by providing a language with shared vocabulary. The

completeness of a language, i.e. the ability to principally express any computable function

in a language, can be formally proven by implementing a Turing machine in the language.

Hence practicality and suitability of a language can be evaluated qualitatively as well as

quantitatively.

Declarative programming languages allow to specify the logic of a computation without

describing its control flow. Hence they fulfil the requirement to specify the “what” with-

out the “how”. Widely known examples of declarative programming languages include

Prolog, Haskell and Linda. The Structured Query Language (SQL) [67] is partially, e.g.

SELECT FROM TABLE .. queries, a declarative language. Although SQL became a de

facto standard considerable issues have been identified, e.g. in [30]. However, fact is that

SQL is easy to understand, simple to integrate and has a large developer community.

This observation is also supported by the emergence of new, on the SQL based, query

languages such as Google QL (GQL) [55] and Salesforce Object Query Language (SOQL)

[45]. Taking this into consideration, in the following, the Service eCoSystem Query Lan-

guage (SCSQL) based on the SQL is introduced as interface for the ecosystem. The brief

introduction focusses on the core concepts. The language is designed such that a developer

6 A Data Centric Architecture for Large-Scale Industrial Systems 145

with basic knowledge of the SQL should be able to start immediately. However, the full

version of Extended Backus-Naur Form (EBNF) of the grammar is provided in Appendix

B.

6.5.1 Foundations

The language is data centric, therefore most types, operators and statements are designed

to store, update, retrieve or route data from one or more sources to one or more specified

sinks. The query execution and optimisation subsystem as explained in Section 6.3 allows

for location transparent management of data. This means that the programmer does not

need to know where or how the data is stored. He neither needs to know if it is stored on

one or more nodes nor whether it needs to be delivered to a single or multiple nodes.

Listing 6.2: Declarative routing from source nodes to receivers

S−> SELECT ∗ from NODES

WHERE l o c a t i o n = ’LOC A ’

R−> SELECT ∗ from NODES

WHERE type = ’HMI ’ AND l o c a t i o n s = ’LOC B ’

M−> SELECT v o l t a g e FROM S

WHERE v o l t a g e > 225V

WINDOW(0 ,1 h ,10 s)

RECEIVER R

The example Program 6.2 demonstrates this capability of routing information declara-

tively. The first statement selects a set of nodes located at the specified location. The

-> operator binds the set to a variable S. The binding operator has a similar semantic

as a pointer in the C programming language. Data selected by the select statement is

not copied to a local memory, but rather S points to the data which may be located at

another node or even distributed to more than one node. Transparent to the programmer,

the underlying runtime system ensures the availability of data at the right time, place

and quality. The second statement selects a set of receivers to fulfil certain criteria. In

this particular case, they must be of type Human Machine Interface (HMI) and located

at a specific location. Eventually, the third statement opens a measurement stream from

the source nodes to the specified sinks. Stream elements are filtered to readings above the

specified threshold. The execution semantics of Program 6.2 is sequential, i.e., S R M.

However, optimisations may yield a different but semantically correct execution order

which remains transparent to the programmer (s. Section 6.3).

In certain situations it is convenient to explicitly address a node or set of nodes. Therefor,

SCSQL provides the @-operator. Anything to the left of the operator is interpreted as

146 6.5 Query Language for Service Ecosystems

variable, or table, while anything to the right of the operator is either a variable or a

table specifying one or multiple nodes3. During optimisation, queries bound with the @-

operator are excluded from the execution candidate node set and are fixed similarly to

sources (s. Section 6.3).

The window parameter of the M statement has also implications on the execution of R

and M. Since M depends on the availability of R and S, R and S may be executed multiple

times such that the timely availability of information is assured. However, R and S are

only executed during the window of activity.

6.5.2 Programs

The program concept groups queries and declarations into reusable modules. Programs

may consist of multiple declarations, queries and user defined aggregation functions. A

program is defined using the Program keyword followed by a unique name or identifier.

The name is used to manage the program, i.e. control the execution life cycle, retrieve

results or remove it from memory. Program statements are enclosed in curly brackets as

shown in example listing 6.3.

Listing 6.3: Example program

Program he l l oWor l d {

S −> SELECT ∗
FROM NODES

WHERE type = HMI

UPDATE S

SET d i s p l a y = ” He l l o World ! ”

}

Besides providing the popular “Hello, World!” example, Listing 6.3 underlines once more

the data centric character of the language. SCSQL does not have specific input/output

functionality. Instead it focusses entirely on organising, storing, updating and moving

data. Hence, in Listing 6.3, selected nodes of type HMI are passed a piece of data, in this

case a string, to set a variable referenced by “display”. Receiving this information, the

nodes decide how to handle it, e.g. choosing a method to display information on a screen,

logging it to a database or simply discarding it.

3Variables or tables must at least include the node ID.

6 A Data Centric Architecture for Large-Scale Industrial Systems 147

6.5.3 Queries

Queries are specified in SQL like semantics. Standard select statements can be extended

with WINDOW(from, to, interval) and RECEIVER <NODESSET> statements. The window

statement specifies the activity window of a query. The query is activated when the time

specified by from is reached. Execution stops on to. During execution new values are

emitted every interval. Logically it follows to < from. If from−to
2 < interval the query

is executed exactly once. If interval == 0 a new value v is emitted for every vt+1 �= vt

whereby the difference is measured and detected by the host node. The detection is non

deterministic and no temporal guarantees are assured.

The RECEIVER statement takes either a single node or a set of nodes as parameter. Data

delivery is planned and optimised by the execution subsystem and therefore transparent

to the programmer. If the node that received the program is not a member of the receiver

node set, it most likely will not receive any of the specified measurements as they are

forwarded directly from source to sink.

6.5.4 Numbers

SCSQL supports integers and floating-point numbers. The integer type, INT, is signed

and exact, while the floating point type, Double, is signed but approximate. Integer values

range from −231 to 231, Doubles are 64-bit double precision in correspondence with IEEE

754 [69]. Integers and doubles are declared using the INT and Double keywords.

Listing 6.4: Numbers

INT abc = 1

Double de f = 2 .0

6.5.5 Strings

Unlike in other languages, strings in SCSQL are not sequences of a primitive character

type but the String type is primitive itself. Strings are declared by the keyword String.

A string can be concatenated by the + sign (Listing 6.5).

Listing 6.5: Strings

S t r i n g abc = ”ABC”

abc = abc + ”DEF”

// abc = ABCDEF

148 6.5 Query Language for Service Ecosystems

6.5.6 Conditional Execution

SCSQL supports common control structures found in most programming languages in-

cluding if,else,then and if,else,then,if constructs. A FOREACH loop construct allows

for iterative computation on result sets.

All standard conditional boolean operators, i.e. AND, OR, NOT are supported. In addition

to boolean operators, comparison with ==,<=,<,=>,>, i.e. equal, less than or equal, less

than, greater than or equal and greater than, methods are supported.

The use of boolean operators and comparison methods is limited to the WHERE section of

a SELECT statement and the body of user defined functions is explained in the following

section. Note: the runtime system does not enforce real-time behaviour if programs include

non-linear or conditional statements.

6.5.7 User Defined Funtions

Additional to the standard aggregation functions MIN, MAX, SUM and AVG, users can

define their own functions. Listing 6.6 provides an example of a simple user defined func-

tion which filters all values outside a band defined by two thresholds.

Listing 6.6: Strings

FUNCTION F i l t e r (INT v a l) {
INT h igh = 10

INT low = 3

i f (v a l > h igh OR v a l < low) {
RETURN NULL

}

RETURN va l

}

User defined functions can be used as regular aggregation functions. Values are passed to

the function as they occur in the selection. The function is called for each row matching

the query.

6.5.8 Quality Attributes

Queries can be annotated with hints on the quality that is expected from

the produced result set or stream. The keywords for quality attributes are:

validity, accuracy, encrypt, sign and restrict. Each of the keywords implements

6 A Data Centric Architecture for Large-Scale Industrial Systems 149

Compiler

Program Runtime

Query
Processor

Node
Node

Data Tables

Program Code

JVM Bytecode
Node Module API
Utility Functions

Internal data
storage

Figure 6.19: Compiler framework architecture

the quality attribute to the corresponding description in Chapter 5. Validity takes as ar-

gument an integer which determines the minimum time in milliseconds an item must be

valid on execution. Accuracy takes either HIGH or LOW as argument and controls whether

hard- or soft real-time processing is enabled. The security attributes cause message con-

tent to be encrypted and signed respectively. The restrict keyword limits access to

certain roles.

6.5.9 Compiler Architecture

SCSQL programs are compiled using a flexible compiler framework. Programs are trans-

lated into an internal, language independent representation which can be translated to

multiple target systems. The compiler starts by parsing user defined program source code

and generates an Annotated Syntax Tree (AST). From the AST, target code, e.g. Java

Virtual Machine (JVM) byte code, is generated. The process is illustrated in Figure 6.19.

The generated byte code contains all objects and methods necessary to execute the query

on a target node. The runtime block adds additional functionality for standalone execu-

tion. Hence, programs are converted entirely to run on a target system. Depending on

the target, the program may include the entire runtime environment4 hence requiring no

additional software.

The advantage of generating JVM byte code is that it is relatively compact, i.e. a single

.class file contains the entire program including all failure handling, communication etc.

Additionally Java is supported by a large variety of platforms ranging from servers to

handheld devices. Although possible, generation of byte code other than Java would most

likely be less compact as additional functions like type conversions and marshalling code

would have to be included.

4For Java it might make sense to assume that at least a JRE is in place

150 6.6 Implementation View

Once generated, programs are either packaged and transferred, in case of standalone

deployment, or, if handled by a node, scheduled and sent by the communication module

to the target node(s). In both cases query execution is handled as outlined in Section 6.3.

6.6 Implementation View

While previous sections described the data-centric architecture for large-scale industrial

systems, this section illustrates selected components of an example implementation. The

purpose of the discussion is to provide an implementational view on key aspects and

interfaces to address technical issues. Provided information may serve as a guide for

future extensions and addition of modules.

6.6.1 Asynchronous Request Handling

Node functions operate asynchronously. Triggered by the event kernel, a module retrieves

state from the memory module, computes the next step and stores the state back to the

memory. Surely, reading and writing to the memory is implemented by reference such

that no data is actually copied.

The event-based architecture allows the integration of additional modules. However, cus-

tom modules must obey conventions to not undermine the processing concepts of the

node.

• A new module must not block in any way. No loops or waits are allowed.

• Modules are strictly forbidden to use threads or wait for a lock to be released.

• Except the memory module, modules are not allowed to store state. Upon activation

modules retrieve state from memory, process and store the state back to memory.

The processing model of a node is single threaded with the exception of the communi-

cation module which maintains its own thread pool with client and worker thread for

asynchronous I/O. Low level networking is handled by the Netty (www.jboss.org/netty)

library which provides an asynchronous event-driven network application framework. The

communication module queues incoming and outgoing messages, thereby encapsulating

and de-coupling the I/O and kernel process threads.

The communication module is one of the modules most likely subject to extension. Adding

new overlays or security layers requires knowledge of the internal implementation. Figure

6 A Data Centric Architecture for Large-Scale Industrial Systems 151

MessageHandler

messageReceived ()

Kernel

parseMessage ()

activate()

scheduleEvent()

Ext. Peer

request()

Communication
Module

sendResponse()

response()

Internal Thread
Pool

Figure 6.20: Asynchronous message handling

6.20 illustrates, in greatly simplified manner5, the message handling process. Requests

arriving at the node’s server socket are dispatched, parsed and queued into an internal

message queue. This is handled by the internal thread pool. Under high load situations

the communication module might decide to discard incoming request messages. Response

messages, however, are never discarded. One could argue that this behaviour compromises

the real-time capabilities, yet no system with fixed capacity resources can guarantee real-

time behaviour in the face of overload. However, overloading is unlikely as it would mean

that, e.g. during a denial of service attack, simultaneously large numbers of query requests

arrive at the the node. In any case, real-time nodes should be engineered such that they

are shielded in a security domain and hence cannot overload.

Parsers and message decoders are part of an overlay component. Messages are mapped

according to their type header. However, no further action is taken by the overlay until

the activation by the kernel. During activation, overlay modules examine the content of

the message and decide on further actions. Due to the restriction to avoid looping and

blocking during kernel activation, message examination instruction is rather simple. It

basically checks the type of the message and generates events to further process it. If

the message cannot be mapped to an overlay it is wrapped into an event and passed to

a respective module, i.e. either custom or query processor (type 0). The internal thread

pool of the communication module also dispatches the outgoing messages queue from the

internal out queue. The outgoing queue is filled either by the kernel, e.g. responses, result

5The message handler is actually split to several classes, i.e. RequestMessageHandler, ResponseMes-
sageHandler, MessageParser, MessageEncoder, MessageDecoder and EventGenerator plus utility func-
tions.

152 6.6 Implementation View

SQLStatement
TableSourceProxy

Memory Ext. Peer

get(table)

get(table)

request(subquery)

map(table, subquery)

deliver(subquery
 resultSet)

set(table)

gen_subquery

Figure 6.21: TableSourceProxy

sets, monitoring or internally triggered by failures to parse messages or unknown types.

6.6.2 Data Discovery

In the easiest of cases, all data necessary to execute a query is already contained in the

local memory. If, however, the query references a table residing in the memory of another

node, or the data contained in memory does not meet the quality requirements, the query

needs to be extended by one or several sub-queries to fetch missing data.

Sub-query creation is initiated by the query optimiser if data is not available at the time

of scheduling. Queries are compiled to an SQLStatement object which in turn accesses

(events) the memory component via a TableSourceProxy which will detect the missing

data using readData instructions. In Figure 6.21 the process is illustrated. Upon execution

the SQLStatement requests table data from the TableSourceProxy. If the table is not in

memory, the proxy triggers the optimiser to reconfigure the queries. The proxy maps the

result set of the sub-query to the table requested by the local SQLStatement, hence, the

remote access remains transparent to the SQLStatement. Listing 6.7 further illustrates

the case by providing a concrete query and the corresponding sub-query.

The first statement is the query as injected. As table2 becomes unavailable, a sub-query

is generated which retrieves the required data, in case of the example v1 and v2 to local

memory. As optimisation the WHERE clause could be transferred for execution on node2.

In this case only v1 would be transmitted and the evaluation of the main query would be

rewritten to evaluate the WHERE clause only on table1. For the clarity of the example

6 A Data Centric Architecture for Large-Scale Industrial Systems 153

Listing 6.7: Example query targeting multiple data sources
//main query

S −> SELECT v1

FROM TABLE t ab l e1 , t a b l e 2

WHERE v2 < 10

WINDOW (0 ,100 ,10)

// gene r a t ed subque ry

TABLE2 −> SELECT v1 , v2

FROM TABLE tab le2@node2

WINDOW (0 ,100 ,10)

table names are chosen to be short and descriptive. In a productive setting, tables would

be named using namespaces to avoid conflicts.

6.6.3 Role-based Access

Depending on the type of devices that host a node, different security mechanisms may be

appropriate. In certain cases an authentication mechanism executed by the communication

module may be enough to prevent unauthorised use of the node. In other cases more fine-

grained access may be desirable, e.g. automation equipment at a tie line. The TSO owning

the device requires full access to the functionality. However, in order to support fully auto-

mated business processes the owner may want to allow other TSOs to directly receive data

from a field level device. Write access, however, shall remain forbidden. In this section, a

fined-grained Role Based Access Control (RBAC) mechanism for node data is introduced.

The concept is based on Shibboleth (http://shibboleth.internet2.edu), an attributed-based

authorisation service emerged from the Internet2 community. One of the initial goals of

the Shibboleth project was to support cross-organisational identity federation. Hence, it

is well suited for cross-TSO device access. RBAC solutions like Shibboleth are rather

complex and, thus, are not covered in detail by this work. Extensive material is available

in related publications and the community web site (http://shibboleth.internet2.edu).

Figure 6.22 shows a simplified version of the authentication process. For the scenario,

we assume a query that is issued at a node inside the organisation the node is located

but requesting information that is located at an external node which hosted by another

organisation and protected by the security mechanism.

As a prerequisite, stakeholders need to exchange security certificates (e.g. X.509) and ne-

gotiate role attributes, i.e. define which roles exist and how they are named. Once the

attributes are fixed, no further manual adjustments regarding the user/role mapping are

required. Instead each stakeholder manages role memberships locally by using already

154 6.6 Implementation View

Node
Authorisation

LDAP Ext. Node

authorize

[authorized?]
getAttributes

assignQuery, attributes check
 access

[authorized?]
result set

[denied?]
null

Figure 6.22: Role based access

existing infrastructures and services, e.g. LDAP, to assign role attributes to users. Con-

sequently, user requests are authenticated locally at each stakeholer. The authorisation

process executes as follows:

1. A query is issued to retrieve data from a secured node outside the organisation

2. The query issuer authenticates at the local authentication service

3. The query plus the signed role attributes are sent to the remote node

4. The node verifies the signature and checks whether the associated role is allowed to

access the requested data

5. Depending on the previous step, the query is scheduled locally or the request is

denied

Authorisation is done for each request; hence the procedure is slightly different from the

standard Shibboleth process. Authorisation attributes are encoded in a message. Commu-

nication modules supporting the authorisation method validate the attributes and pass

them to the memory component in form of a program. The initial program sequence per-

forms the security checks. If access is denied, the program finishes and creates an empty

result set. Otherwise the query is executed regularly. If the query is continuous, at the

beginning of each iteration, the security sequence is executed. A continuous query aborts

if the security rules were changed and the check failed. The failure is reported back to the

caller.

6 A Data Centric Architecture for Large-Scale Industrial Systems 155

6.7 Summary

This chapter presented a data-centric architecture for large-scale industrial systems. Based

on two scenarios, detailed requirements and tactics to satisfy these requirements were de-

duced. Using the tactics, the architecture consisting of loosely coupled distributed query

processors has been developed. The three key concepts of the architecture are (i) the

modular node built of five essential modules, (ii) the index cloud providing global access

to nodes and data, and (iii) SCSQL, the data-centric query language to query, structure

and route information between architecture components. The tactics maintain semantic

coherence, generalise the module, information hiding led to the five module architecture.

The query processor implements manage event rate, reduce computational overhead, fixed

priority scheduling by its optimisation capabilites. The event kernel results from the tac-

tics: introduce concurrency, fixed priority scheduling, virtualise the processing kernel. The

communication module corresponds to virtualise the network and security aspects, i.e. data

integrity, authorise users, and confidentiality. The concept of the index cloud implements

use an intermediary and runtime registration.

The event-based processing model does not only ensure real-time capabilities but also

allows for extensions by further custom modules. At the heart of a node operates the

query processor which configures execution of queries and manages multiple query life

cycles. Node capabilities can be extended by adding custom modules and device drivers

for specific hardware functions like sensors and actors. Concentrating all state in a single

module, allows the query optimiser to include information on other queries, state of com-

munication, resource consumption, entropy and current complexity. The benefits of this

approach will be further examined in the following chapter.

Instead of propagating an entirely de-centralised approach, two general node classes are

differentiated: index nodes and regular nodes. Index nodes are determined to maintain

a global meta data index of all nodes currently participating in the ecosystem. As the

availability and consistency of meta data information may be critical, the index cloud

features several write modes from eventual consistency to atomic writes. The index cloud

is able to scale with the number of nodes participating in the ecosystem. It automatically

configures itself to read and write zones in order to serve varying read and write loads.

Designed to scale to thousands of nodes, the architecture requires efficient means to access

information as well as monitor the health of the system. The high level query language,

SCSQL, provides a pragmatic language based interface to declaratively specify interest

in information. The compiler framework is able to generate target byte code and enables

developers to write application specific code at a high level of abstraction and without

the need for further configuration or deployment overhead.

156 6.7 Summary

The following chapter will evaluate the presented architecture by the quality attributes

identified in Section 6.1. It implements the architecture evaluation methods described

in Chapter 4. Additionally, the performance of the index cloud is investigated and the

stability of the processor network is discussed. Although the benefits of the query language

are rather qualitative, e.g. encapsulation of complexity, its impact is evaluated by proving

its capability to express arbitrary functions.

Chapter 7

Evaluation

In contrast to large-scale systems in other domains, e.g. media or communication, the

industrial domain has particular (non-functional) requirements, e.g. stability and safety,

that must be addressed essentially. The concepts and architecture developed in Chapters

5 and 6 are designed to meet these requirements.

Applying the evaluation methods presented in Chapter 4, this chapter evaluates the appli-

cability and suitability of the architecture. Subsequent to the evaluation of the architecture

itself, selected components are investigated with regard to their complexity, performance,

availability, reliability and stability. Finally, the expressiveness of the programming lan-

guage is proven. Applying the language to a standard problem, i.e. a control loop, its

suitability, compactness and implications to modifiability are shown. The chapter con-

cludes with a summary of key findings.

7.1 Architecture Evaluation

Implementing the methods introduced in Chapter 4, this section evaluates the architecture

presented in Chapter 6. The aim of this evaluation is to (i) demonstrate the suitability of

the architecture for the systems under investigation and (ii) to elaborate the superiority of

the design chosen versus alternative approaches. The evaluation is based on the scenarios

taken from Section 6.1 and the quality attributes summarised in Tables 6.1 and 6.2.

7.1.1 Identification of Architectural Styles

Architectural styles, also called architectural approaches, are commonly used [11] to de-

scribe the architectural aspects of software quality. In this first step of architecture evalu-

158 7.1 Architecture Evaluation

ation, the architectural styles of the architecture presented in Chapter 6 are identified. In

correspondance to the methods presented in Chapter 4 a qualitative analysis is conducted

to elaborate wether architectural decisions support functional as well as non functional

requirements.

1. The architecture is event-based. The node kernel manages the inter-module commu-

nication by scheduling and dispatching events. Events can be both external, e.g. new

measurements, or internal, e.g. scheduled maintenance events. Using memory tables,

events can be broadcasted to one or more components. At global scale, nodes reg-

ister subscriptions for particular events. They are informed if matching data items

are added, changed or purged.

2. The architecture is data-centered. Local and global nodes tables are used as black-

boards to exchange information between nodes and individual queries and programs.

Other tables and references to tables on other nodes can also be used as blackboards.

The state of a node is comprised of the tables contained in memory. Considering the

replication capability of the index node as well as the support for various consistency

models, it may also be interpreted as repository [11].

3. The query processors manifest a virtual machine style. The query language intro-

duced in Chapter 6 is Turing complete (s. Section 7.5.1). Hence, arbitrary functions

can be implemented on top of the query processor.

4. The architecture is layered. On the lowest level of abstraction, the communica-

tion module abstracts from the specifics of the physical network and the hardware

drivers encapsulate particular hardware characteristics. The middle layer is com-

prised of monitoring, kernel, query processor, and memory. At the top layer resides

the application logic, i.e. the queries or programs developed in the query language.

5. The architecture uses an Aggregator-Escalator-Peer [60] style. Nodes contributing

to the execution of a query are constantly monitored by the node managing the

execution. It aggregates the states as well as local measurement to re-optimise the

execution.

6. The architecture follows a pipes and filters style. Since, in fully replicated mode,

index nodes do not share state, functionality between query nodes and index nodes

can be added transparently. Hence, additional caching, authorisation, partitioning

or compression features can be added on demand.

7 Evaluation 159

Table 7.1: Evaluation of architectural styles for quality attributes

Style P
er

fo
rm

an
ce

P
re

d
ic

ta
b
il
it
y

M
od

ifi
ab

il
it
y

S
ec

u
ri

ty

S
ca

la
b
il
it
y

F
le

xi
b
il
it
y

S
ta

b
il
it
y

O
b
se

rv
ab

il
it
y

A
w

ar
en

es
s

A
va

il
ab

il
it
y

In
te

gr
ab

il
it
y

T
es

ta
b
il
it
y

Event-Based + + + - + + +

Data Centred + + + + +

Virtual Machine + +

Layered + + +

Aggregator-Escalator-Peer + + +

Pipes and Filters + + + + + +

7.1.2 Influence on Quality Attributes

Recalling the scenario descriptions in Chapter 6, the following quality attributes were iden-

tified: performance, predictability, modifiability, security, scalability, flexibility, stability,

observability, awareness, availability, integrability and testability. Using the architectural

styles identified in the previous section, the contribution of each style to the achievement

of the quality attributes is now analysed.

Table 7.1 summarises the evaluation. A plus (+) sign indicates positive influence, a minus

sign (-) negative influence and a blank indicates that the style has no influence on the

attribute.

For this evaluation step it is distinguished between system and node level. The latter

focussing on the software architecture of individual node, i.e. the modules and their inter-

actions as described in Section 6.3. The former treating index nodes and query processors

as holistic architectural artefacts, i.e index cloud and distributed query processor.

Event System

On the node level, the event system style contributes to performance as it limits the

amounts of threads to be handled at the server. Using asynchronous handling of client

requests allows to serve a high number of concurrent clients. Additionally, by the dis-

cretisation during event scheduling, the outcome of the execution of event code becomes

predictable. The event system style decouples the node modules which communicate solely

asynchronously and through an mediator, i.e. by scheduling events with the kernel. Hence,

160 7.1 Architecture Evaluation

modules can be exchanged, divided or aggregated without adjustments on the sender side.

On the system level, the event system style enables integration. External applications can

register subscriptions at the index cloud to be informed of system modifications. Since

subscriptions declaratively describe an interest in data modifications, individual sender

and receiver components are completely decoupled. Having each execution step as discrete

object together with a time of execution allows to record event streams for later replay

in controlled environments. Hence, the approach contributes to testability.

Data Centred

On the system level, the data centred style (blackboard) contributes to integrability by

providing a unified and standardised interface to heterogeneous and highly distributed

data. At the node level, the memory constitutes the local blackboard for local queries

to exchange information. Since individual data stores can be accessed by other nodes,

they act as caches and enable replication. Hence, availability and scalability is increased.

Furthermore, the local memory stores information on the state of the node in the form of

tables. Thus observability is supported by the unified access to state information in the

memory.

Virtual Machine

The virtual machine enables the portable execution of programs. Since the execution

environment can be fully controlled, i.e. by the limited instruction set, the style contributes

to security of individual node and the entire system.

Layered

At the node level the layered style organises modules such that in each layer a higher level

of abstraction is achieved. The communication module and device drivers abstract from

the physical network and underlying hardware allowing other modules to address data in

a transparent and declarative manner. Kernel, memory and query processor constitute the

basis of an execution system which can be programmed with a high level programming

language. Programs written in this language operate at the highest level of abstraction.

Layers are separated by well defined interfaces and hide concrete implementations. Conse-

quently, individual layers can be exchanged leaving the modules in other layers untouched.

This not only contributes to modifiability but also to testability, as, e.g. individual mod-

ules can be replaced by an event recorder/player or the communication module could be

replaced by a network simulator.

7 Evaluation 161

Aggregator-Escalator-Peer

Using the aggregator-escalator-peer style, the autonomous, self-organising, self-healing

and self-optimising behaviour of the system is supported. The monitoring component

retrieves information of all nodes currently participating in a controlled action. Based

on this aggregated information, nodes can re-optimise the current execution. It hence

supports for stability, observability and awareness.

7.1.3 Quality Attributes

While the previous section showed how the architectural styles support identified quality

attributes, in the following, contributions to the achievement of the quality attributes by

respective architecture components is discussed.

Performance

On a qualitative level performance is achieved by the event-based processing model. De-

pending on the underlying operating system, thread management can take considerable

processing time. In contrast, the single threaded processing model of a node uses a mini-

mum of resources. The ability of the SCSQL framework to compile queries into standalone

programs that run natively on a target system circumvents complex middlewares and

hence contributes to performance quality. On a quantitative level Section 7.4.1 elaborates

processing performance under varying workloads.

Predictability

The kernel forces modules to schedule computation on fixed, discrete time events. Prior

to scheduling queries and programs, the kernel checks whether resources are available and

time limits can be met. Hence, once a program is accepted by the kernel, it is guaranteed to

meet the defined limits. If the kernel, however, is implemented in user space it is dependent

on the predictability attributes of the underlying operating system functions. If deployed

on automation equipment, which often is operated by real-time operating systems, the

kernel is implemented as single real-time task and hence inherits the real-time behaviour

of the OS.

Blocking I/O as in the communication module is encapsulated and, in combination with

the strict scheduling of the kernel, cannot affect stability of a node. In context of overload,

e.g. during Distributed Denial of Service attacks (DDoS) predictability and real-time

162 7.1 Architecture Evaluation

qualities will be affected. This problem is not unique to the architecture but applies to all

real-time systems. If the capacity of resources is reached the service cannot be maintained.

A node aims to shield itself from overload by denying requests that conflict with schedules.

If, however, message queues in the communication module overflow important messages,

e.g. related to query reconfigurations, might get lost. Like in any industrial system, it is

the responsibility of engineering to shield critical components from overload such that the

safety of the installation is not compromised.

Modifiability

The node architecture constitutes a minimal yet universal compute model. Kernel and

processing system can be implemented with low implementation complexity1. Hence, the

effort required to stabilise the code base such that it is able to operate stable for decades is

manageable. The universality of the language interface allows for device updates at a high

level of abstraction and without the danger to compromising the stability of the node.

Hence, nodes can be updated to run application specific code. This supports the imple-

mentation of evolving requirements and changed operation patterns. The universality of

the language is formally proven in Section 7.5.1.

Security

Security has several dimensions. First, opening nodes to run arbitrary programs developed

in SCSQL might allow attackers to inject malicious operations that prevent the node from

fulfilling its application tasks. Second, data transmitted between nodes can be intercepted,

manipulated or discarded. Third, flooding a node with requests (denial of service attack)

may hinder the node to service regular requests.

The primary interface of a node is the communication module. Internally it is implemented

as layered architecture to abstract from lower level networking towards message and event-

based processing. This allows for the implementation of standard authentication protocols,

e.g. login/password based access or private/public keys as demonstrated in Section 6.6.3.

In the same manner protocols like Secure Socket Layer (SSL) can be used to encrypt and

sign the traffic between nodes. Which method is chosen for a concrete deployment, depends

on the hardware and environment the node is operating in. It might be greatly differing

from a substation scenario where SSL might be impractical due to resource limitation and

a control centre where the node operates on a server with dedicated hardware to process

SSL communications.

1In the prototype implementation less than 3500 lines of code

7 Evaluation 163

The proposed node architecture is, from the SCSQL developer’s point of view, a closed

environment which does not allow to access lower level operating system functions other

than defined by respective (custom) module interfaces. If the target architecture is a Java

virtual machine, additional security measurements apply.

Adaptability

Adaptability has been identified as quality attribute in the context of scalability, flexibility

and stability. With the concept of networked query processors, individual queries can be

broken into sub-queries and distributed to remotely available resources. Hence, as a core

feature, nodes scale with the number of available resources. The index cloud is capable

to adjust its structure in order to reflect different load characteristics. This feature is also

quantitatively evaluated in Section 7.4.

The parameter driven query optimiser contributes to the achievement of flexibility quali-

ties. Having the entire state of the node concentrated at the memory module, allows the

optimiser to assess the current state as well as the state evolution, i.e. state changes over

time. It can further reconfigure the query load in order to reflect current environmental

conditions.

Stability has been partially covered by the previous discussion of modifiability and secu-

rity. The ability of the kernel to shield the node from uncontrolled resource consumption

ensures that programs are executed complying with all specified quality constraints. Re-

strictions apply in the context of overload as discussed previously. Processing stability is

further discussed in Section 7.3.2.

Observability and Awareness

By the language based interface and the concentration of state in the same data model

as other data, nodes provide a unified interface to their current condition. The query op-

timiser uses this information to decide whether the migration of a (sub-)query to another

node will yield more efficient resource utilisation or destabilise query execution.

Apart from its own state the node is guaranteed to have up to date information of the cur-

rent state of its neighbours. The monitoring component gathers state relevant information

from other nodes and detects node failures. Based on the collected data, the optimiser

can create detailed statistics in order to determine the best execution candidate in terms

of reliability and reputation.

164 7.1 Architecture Evaluation

Availability

The minimalist processing environment as well as the kernel functions to protect core

programs ensure the stabile operation of all nodes. The inherent ability of the optimiser

to transparently relocate query execution ensures that, even in the event of individual node

failure, query execution can continue. The index cloud provides a watchdog mechanism to

detect master failures and seamless failover. Data stored in the index cloud is replicated

such that it remains available even if individual nodes fail. Node availability is further

investigated in Section 7.4.3.

Integrability

Large-scale systems are rarely built from scratch but rather emerge from the integration

of existing systems. SQL is the query language used in almost any2 business application.

The query language provided in Section 6.5 is based on SQL and hence supports the major

constructs of the language. The adaption to industry standard connectors like JDBC is

straight forward. Therefore vertical integration from the field level, i.e. the nodes, directly

into the business process is possible. From the perspective of the business application the

entire network of nodes including the index is represented as a single database with tables

and data objects similar to a regular RDBMS. Using standard SQL queries, the application

is not limited to data access and manipulation but may also describe data flow between

nodes and other infrastructure, e.g. warehouses and archives. Using the extensions of

SCSQL, applications are additionally enabled to enforce quality constraints, conveniently

express information routes and pre-process large volume data streams in-network.

Testability

By the event-based kernel, node modules are loosely coupled. This allows to replace a

module seamlessly with test modules or record event streams for later debugging in a

controlled environment. Hence, entire systems with thousands or millions of nodes can be

tested before their deployment. Therefor, the simulation tool described in Chapter 4 is an

ideal candidate. To simulate a node, kernel and communication module must be replaced

with their simulation counterparts. Since the processing model avoids extensive thread

usage, thousands of nodes can be simulated on commodity hardware. The discrete event

processing of the kernel allows for deterministic and reproducible simulations.

2Every application that uses RDBMS as database

7 Evaluation 165

Ecosystem Concept

Since the scenarios are based on use cases of today, the openness and de-central organi-

sation of the ecosystem were not identified as quality attribute. However, in short to mid

term the need for alternative engineering methods for large-scale systems will become im-

manent (compare ULS section in Chapter 2). Hence, this section evaluates the openness

and data model of the ecosystem. Moreover, it is shown how the architecture implements

the three core services identified in Chapter 5.

The focus of this work, and a key driver for the ecosystem concept, is the achievement

of timely delivery of data. The sole information that a certain sensor exists, that it has a

particular hardware address, that it is manufactured by a specific vendor is not relevant for

most operational processes. What matters is the sensed value upon which control decisions

are made. Together with the raw data, meta data describing type and accuracy might also

be useful. The ecosystem for energy services is aimed to meet these requirements for future

large-scale systems. It abstracts from low level information aggregation and implements

data access at specified qualities of service.

The data and table model allow to structure data yet leave flexibility for data evolution

(changes to structure and quality requirements over time). For example, if the meta data

of a device is published to the index cloud, it is stored in the nodes table using a column

for each attribute of the meta data. If, at a later point in time, device meta data changes,

e.g., because, the device was upgraded with a new feature or a feature previously not

included in the description is added, the description is updated in the data cloud without

the need for a schema update of the entire data base.

The architecture of Chapter 6 supports the three core services (identification, registra-

tion and incentive) required for successful operation of an ecosystem. Identification is

implemented by the communication module. Sender ID as well as conversation ID map

conversations to concrete ecosystem entities. Optional security mechanisms such as the

one provided in Section 6.6.3 further extend this features by identity management func-

tions. The index cloud acts as global registry for all data available in the ecosystem. It

allows to publish and search for nodes, services or other general data. The architecture

does not implement explicit services for financial transactions. However, the security mech-

anisms of the communication module, the storage functionality of the memory module

together with the discrete processing style and the SQL-based interfaces enable seamless

integration with standard accounting and transaction systems. Negotiations, trades and

transactions are logged internally, e.g. in transaction tables. Integration similar to the

vertical integration scenario of Chapter 6 allow further processing in standard business

process engines.

166 7.2 A Measure of Complexity

In Section 5.6.2 the requirement of having the right data at the right place and time was

concretised by specifying a set of quality attributes for ecosystem data. SCSQL supports

the implementation of the attributes by providing means to formally represent them as

query statements. Moreover, the corresponding runtime system enforces their achievement

(s. Section 6.3).

7.1.4 Summary

Previous sections evaluated the architecture presented in Chapter 6. Following the classi-

fication and contribution of individual architectural styles, each of the identified quality

attributes where discussed and their achievement confirmed. Also the limitations of the

architecture in the case of overload were illustrated.

In the following, key components are evaluated quantitatively. Therefor, the simulation

methodology described in Chapter 4 is applied. For each experiment, environment and

resource models are explained. However, before the discussion starts, a metric for a quan-

titative measurement of complexity is introduced in the following section.

7.2 A Measure of Complexity

For the quantitive evaluation of the architecture a simple complexity measure is intro-

duced. The measure is based on the observation that complexity in a distributed system

is determined by the degree of distribution, i.e. the number of elements contained in the

system, the diversity of the elements and the dependencies between the elements. This can

be shown with a simple experiment. Consider a distributed system3 with nodes connected

by some kind of network. An external event occurs that affects all nodes simultaneously4.

The challenge for the nodes is to log the event as measured. However, they do not log

the event locally but at another node, hence they have a simple dependency. In an ideal

world event logs at each node would contain exactly the same signal after the experiment.

Considering the degree of distribution, diversity and dependency, the ideal world assump-

tion is not realistic and one would expect variations in the records. To provide a metric

to measure the degree of variations, the variance of measurement inherent in the system

is used. Each measurement reading corresponds to a state of a node. The variance of

states, therefore, provides a metric on the number of different states which, in this work,

3A network of query processors.
4Focussing on the complexity of the system it is assumed that the event reaches the nodes exactly at

the same time. This might not be possible in nature.

7 Evaluation 167

-80

-60

-40

-20

 0

 20

 40

 60

 80

 0 20000 40000 60000 80000 100000

Si
gn

al

Iteration

(a) Signal

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 1e+12

 0 10000 20000 30000 40000 50000 60000 70000 80000

Va
ria

nc
e

Iteration

ideal
asynchronous

feedback

(b) Variance

Figure 7.1: Signal and variances in an example system

is defined as complexity of the system.

Figure 7.1 illustrates an experiment with ten nodes. The signal as shown in Figure 7.1a

is applied to the system. Figure 7.1b shows the resulting variances. In the ideal case, the

variance is constant at zero during the entire simulation time. If asynchronous behaviour is

added (lower curve), the variance increases as the nodes measure at slightly different points

in time. By adding dependency (topmost curve), the logging of the signal is influenced by

the actions taken at another node. The variance explodes and the system is in an entirely

uncoordinated state.

7.2.1 Higher-Order States

Higher order states emerge through node interaction. For example, if node A with state

Sa communicates with node B having state Sb they share a common composite state Sab

consisting of the conjunction of Sa and Sb. Composite state space increases with the degree

of interaction among nodes. A system is considered more complex if the interaction among

nodes is intense and hence the outcome of an action taken at node A which is interacting

with k other nodes is difficult to predict. The degree to which an action taken by node A

affects node B can be determined by the covariance. It is measured:

cov(A, B) =
1

n− 1

n�

i

(ai − a) ∗ (bi − b) (7.1)

where A and B are discrete random variables and a is the average over the state history.

A and B are sampled by recording states of node A and B. Analysing the entire system at

time t yields a covariance matrix COV (St). The Frobenius norm, �COV (St)�2, provides

a measure of higher order complexity. Figure 7.2a shows the covariances for the example.

168 7.2 A Measure of Complexity

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 0 10000 20000 30000 40000 50000 60000 70000 80000

C
ov

ar
ia

nc
e

Iteration

ideal
asynchronous

feedback

(a) Covariance

 0.1

 1

 10

 100

 0 10000 20000 30000 40000 50000 60000 70000 80000

En
tro

py

Iteration

ideal
asynchronous

feedback

(b) Entropy

Figure 7.2: Covariance and entropy

As expected, the covariance value for the dependency case is much higher than for the

ideal and asynchronous case which are almost the same. The covariance value, however,

depends on the unit of measured values. Hence, the raw covariance value determines only

whether there is a dependency (positive or negative value) or not (zero value). To compare

two values the Pearson coefficient is used:

�(X, Y)
Cov(X, Y)�

(V AR(X) ·
�

V AR(Y)
(7.2)

7.2.2 Entropy

Another factor increasing the complexity of large distributed systems is the difficulty of

determining the outcome of a particular action committed. Thereby, the predictability

becomes worse with increasing entropy or randomness in the system. Classically, the

entropy H of a system can be measured according to

H =
k�

i=1

pilog(
1

pi
) (7.3)

where p1...pk is the set of probabilities for the k states the system can be in. Thus, if the

system can be only in a small number of states each with high probability, the entropy

is small, whereas systems with large numbers of states with low probabilities have high

entropy and hence the predictability of an outcome to a corresponding action is more

difficult.

Figure 7.2b plots the entropy for the example above. Although in all three cases the nodes

have the same number of states, the entropy differs considerably. In the asynchronous and

7 Evaluation 169

feedback case the probabilities are lower, hence making the outcome of an action taken

less predictable. In the ideal case the entropy is zero which is reasonable since all nodes

are in perfect sync and hence the outcome of an action is based on a complete known

state and therefore predictable.

7.2.3 Summary

The complexity of a system at a given time t is described using three metrics namely:

the variance of states currently in the system, the covariance of state changes, i.e. the

influence an action has on other nodes and the entropy inherent in the system providing

a measure on the predictability of an outcome of an action. In the following sections

these metrics are applied to evaluate how algorithms as well as architectural artefacts

influence complexity. Additionally, the effort required to control the system is evaluated

at several layers of abstraction, e.g. for the implementation of node modules or programs

written in the query language. The rationale is that a programmer in a high level language

needs to pay attention to fewer states since the underlying middleware provides the basic

functionality for, e.g. communication or data management, hence effort required to achieve

correct and robust programs is lower in the high level language.

7.3 Nodes

The five module node architecture has been qualitatively evaluated in Section 7.1. This

section continues the evaluation by choosing key elements critical for the achievement of

quality attributes. The quantitative investigation starts with the declarative monitor oper-

ator MONk, and continues with analytical and simulative analysis of the query execution

system with particular focus on the various facets of complexity.

7.3.1 The MONk Operator

In Section 6.3.3 the ability of local node discovery was introduced. This section evaluates

this capability using MONk [51], a declarative operator to monitor groups of sensors,

detect anomalies, and cluster nodes according to their semantic proximity. This section

proceeds by presenting a foundation of the operator, i.e. a distributed k-means variant,

followed by two applications, i.e. outlier detection and hierarchical clustering.

MONk is designed to extract relevant information from a large set of globally distributed

data sources. In the context of electricity networks it can be used to monitor high voltage

170 7.3 Nodes

Listing 7.1: MONk Definition
MON k([COLUMNNS] , [CORRELATION FUNCTION] , [DISTANCE] , [NEIGHBOURS] , [INITIALIZATION])

COLUMNS: A s e t o f column names to mon i to r

CORRELATION FUNCTION : The c o r r e l a t i o n f u n c t i o n

DISTANCE : The maximum d i s t a n c e a node may have from the c e n t r o i d

NEIGHBOURS : The number o f n e i ghbou r s to exchange wi th i n each i t e r a t i o n

INITIALIZATION : A s e t o f i n i t i a l c e n t r o i d s

power lines or transformers in substations. With the information extracted by MONk,

relays or other control equipment can react to fault situations or take action to optimise

network configurations. The operator executes similarly to the basic algorithm in Listing

6.1: It first partitions a set of given nodes into groups or clusters. Group membership is

determined by some correlation function. Correlation functions can be as simple as the

mean of a measured phenomenon or, e.g. more complex, the interplay of several different

phenomena, e.g. voltage and temperature over a given time interval. Within groups, nodes

gossip information with respect to the change of the measured phenomenon. The gossiping

of information is implemented by the monitoring component which retrieves information

from nodes contained in the local nodes table as described in Section 6.3.5. Using a

distance metric, each node determines its deviation from the common group state, e.g.

distance of own measurement to the mean over all measurements within its group. Based

on this local computation it is decided whether the node belongs to the query result set R

like specified in Query 7.2 (lines 5-6). In the listing, a subset of nodes is selected and fed

to the MONk operator which uses the average of the measured phenomena as correlation

function and the Euclidian distance to determine its deviation from the stable state.

Listing 7.2: MONk Query Example
1 N −> SELECT ∗
2 FROM SENSORS

3 WHERE type=’ v o l t a g e ’

4

5 R − > SELECT MON k(vo l t age , AVG, DIST , 10 , {1 , 101})

6 FROM N

The operator initialises at each node by computing the minimal distance to the given

initial means ({1,101}). It then chooses 10 neighbours at random. Collecting their mea-

sured values and applying the average function, the initial average is updated. Neighbours

with strong deviations from the average are replaced by randomly chosen nodes from the

supplied set.

An experiment demonstrates the capabilities of MONk. We consider a set of nodes that

measure a Gaussian signal (Figure 7.3). The initialisation process and the convergence

7 Evaluation 171

 0

 20

 40

 60

 80

 100

 120

 140

 0 500 1000 1500 2000 2500 3000

Signal
distance
average

Iteration

S
ig

n
a
l
s
tr

e
n
g
th

(a) MONk Initialisation phase

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2000 4000 6000 8000 10000

Signal
Distance
Variance

Neighbour signal

Iteration

S
ig

n
a
l
s
tr

e
n
g
th

(b) MONk Failure detection

Figure 7.3: Outlier detection at runtime. Simulation with 5000 nodes;k=10 neighbours

of the mean is depicted in Figure 7.3a. The topmost curve, representing the mean, fol-

lows the signal quite nicely with a small delay. The delay is due to the time required for

the mean to converge. It can be reduced by increasing the intensity of gossiping between

nodes. The bottom curve shows the distance from the mean as measured by one randomly

chosen node. In an ideal case, the distance should remain almost constant i.e. a horizontal

line. However, as elaborated in [5] and [15], stability of the algorithm depends on various

conditions of the execution environment. Therefore the simulation was done using realis-

tic network models with varying transmission latencies. Furthermore we do not assume

synchronised clocks at the nodes and MONK is capable to handle failure situations like

failing nodes and message loss.

The MONK allows to cluster nodes according to a correlation function. MONK can be

extended to build a hierarchy of clusters. Therefor, the algorithm is executed as elaborated

above. Once clusters begin to converge, for each cluster a cluster head is selected. To

accomplish this, nodes of the same cluster exchange their distance to the cluster centroid

with the nodes in their nodes table. The one that is closest to the cluster centroid becomes

the cluster head. In the case of equal distances two cluster heads may be chosen. This

has no influence on the stability of the algorithm. Once the cluster head is determined

the process is complete for the first level of the hierarchy. In the next round cluster

heads engage in the gossip to generate clusters of the next layer with an increased cluster

radius. The process is continued until the largest cluster radius has been processed. This

hierarchical clustering method can be used to cluster nodes in order to implement a remote

backup protection system as introduced in the corresponding scenario in Chapter 6.

Based on data from the European transmission network, UCTE, the hierarchical version

172 7.3 Nodes

Figure 7.4: Different cluster layers

of MONk has been simulated. In an experiment MONk was set up to cluster all electrical

substations in Germany. Simulations involved 147 substations from the four major electric

utilities, i.e. EON, EnBW RWE and Vattenfall.

Correspondingly, Figure 7.4 illustrates simulation results. The figure shows exemplary

substation clusters at three different layers. Clusters emerge after a few iterations and

stabilise quickly initiating the formation process at the next layer. Besides the dynamics of

the simulated communication network, substation information is static. Hence simulations

support the assumption of a stable and reliable overlay. Geographic information from

substations can be considered static with a high reliability of devices. Therefore, after the

initialisation phase completed, discovery queries can be set to long periods of inactivity

or transformed to subscriptions.

Clustering and grouping of nodes is an important capability of the node architecture.

Using MONk enables content based clustering of nodes. Grouped nodes increase the

intensity of communication as the monitoring module automatically monitors the nodes

in the local node table. Hence, detailed and up to date information about neighbouring

nodes are available. This property can also be utilised to implement highly available

execution of queries and programs as elaborated in [50], [52], [38] and [110].

7.3.2 Query Execution

The query optimisation process is critical in order to fulfil quality of service constraints and

make effective use of available resources. Depending on the type of query, effort required

for optimisation is considerable. In particular aggregation queries constitute a complex

7 Evaluation 173

problem as the search space, consisting of alternative aggregation trees is large O(N !).

The problem of finding the optimal query configuration falls in the class of NP-Hard

problems.

Lemma 7.3.1 Optimisation of aggregation queries is NP-Hard.

Proof Consider k sources S0...Sk, i nodes A0...Ai that can be used to compute an ag-

gregation and a receiver R. Let the graph G = (V, E) with nodes V contain all nodes

and sources and edges E and let the edges of nodes be able to directly communicate with

each other. The aggregation tree with the sources at the leaves and the receiver of the

root is the reverse of a multicast tree. A multicast tree with the minimum number of

edges is a minimum Steiner tree on the network graph G. Hence, assuming an arbitrary

placement of sources and a general graph G, finding the optimal aggregation points is

NP-Hard [79].

For very small queries the optimisation overhead is negligible. More complex queries

such as the one depicted in Figure 7.5 require considerable time to find the optimal

configuration. The example query requires already 45 seconds to optimise for six resource

candidates on an Intel Core Duo 2 computer with 2.8 Ghz. On the same machine it takes

almost an hour to optimise for 10 execution candidates.

Figure 7.5: Example query taking considerable effort to optimise

This behaviour is clearly not acceptable and must be anticipated. In the last 30 years a

considerable body of research has been conducted on query optimisation for local and dis-

tributed problems yielding excellent results with heuristic approaches. In the open design

of the query optimiser additional optimisation methods can be implemented. Heuristic

query optimisation itself is outside the scope of this work, it is at this point referred to

the related literature [3], [101] and [151]. Another aspect of aggregation query optimisa-

tion, however, is covered in the next paragraph.

174 7.3 Nodes

(a) Query A (b) Query B (c) Query C

Figure 7.6: Multi-query optimisation

Multi-Query Optimisation

In this section the ability to optimise multiple queries is analysed using an example sce-

nario. Considered are the three example queries from Section 6.3.3, however, with a slightly

different initial placement as shown in Figure 7.6.

Implementing the cost based optimisation approach, queries are optimised for data reuse

if the optimisation constraint includes the cost of data retrieval. Two queries processing

the same data sources can share the data contained in memory and hence save redundant

transmission of data and re-processing of intermediate results such as aggregated values.

Since optimisation is applied iteratively for all queries currently in execution, queries

processing the same data will be clustered in the same nodes or reconfigured such that

sub-queries cluster at the same nodes. For aggregation trees with depth ≥ 2 result sharing

and early aggregation may produce sub-optimal results as illustrated by the following

example based on the three queries in Figure 7.6.

The optimiser determines the minimum cost for each query. Hence, for query B, it decided

to place the aggregation of the measurements of sensors 1 and 2 at node 6 while retrieving

the measurement from sensor 3 directly for the final aggregation at node 11. Although

individual optimisation yields optimal results for each query, in the context of multiple

queries the result is sub-optimal. Although one aim of aggregation is to reduce transmis-

sions over the network it may cause additional traffic. While in a multi-query context,

results are shared among queries, aggregation functions compress information thereby

generating a query specific result which cannot be shared with other queries. In the above

example this becomes evident by counting the messages transmitted for each query execu-

tion cycle. By comparing the results for different placements with or without aggregation

7 Evaluation 175

Query A Query B Query C
�

00 1.5 - - 1.5

03 1.5 - - 1.5

05 - 4.5 - 4.5

06 2.5 - - 2.5

09 4/3 - - 4/3

10 - 13/3 - 13/3

12 4/3 - - 4/3

15 1.2 44/15 - 62/15

16 - - 43/30 43/30

18 1.2 - 43/30 79/30

20 - 46/15 47/30 139/30

22 - - 5/3 5/3

24 - - 5/3 5/3

25 - 19/6 - 19/6

26 - - 5/3 5/3

28 - - 2.5 2.5

30 - - 2.5 2.5
�

317/30 18 433/30 43

Table 7.2: Relative costs per transmission with aggregation disabled

the aggregation efficiency can be measured. Tables 7.2 and 7.3 summarise the results5.

Without aggregation, i.e. individual transferral of data items to the sink nodes, a total of

43 messages is transmitted. Interestingly, with aggregation enabled, i.e. compression on

the first level possible (nodes 6 and 11) a total of 44 messages are transmitted.

While the example shows the complexity arising in a multi-query context, a careful set-up

of the cache weight in the optimisation criteria will lower cost to placements with fewer

aggregations and hence yield the best fitting solution during iterative optimisation of the

query. Also the query optimiser might utilise heuristic or evolutionary approaches to find

the optimal configuration in the long run.

5To calculate the costs per query in the case of shared result sets, equal fractions are counted (e.g. if
one message transports result set for three queries, 1/3 is added to the cost of each query).

176 7.3 Nodes

Query A Query B Query C
�

00 1.5 - - 1.5

03 1.5 - - 1.5

05 - 4 - 4

06 2.5 - - 2.5

09 4/3 - - 4/3

10 - 23/6 - 23/6

12 4/3 - - 4/3

15 1.2 3.4 - 4.6

16 - - 1.4 1.4

18 1.2 - 1.4 2.6

20 - 53/15 38/15 91/15

22 - - 31/12 31/12

24 - - 19/12 19/12

25 - 43/12 - 43/12

26 - - 19/12 19/12

28 - - 2 2

30 - - 2 2
�

317/30 18.35 181/12 44

Table 7.3: Relative costs per transmission with aggregation enabled

7 Evaluation 177

Complexity

The network of nodes may exhibit complex behaviour which may yield inefficient resource

allocation and even endanger the stability of the entire system. Being limited to partial

knowledge about the system state, query processors can only optimise the local resource

utilisation, i.e. its own resources plus resources of neighbouring nodes. Figure 7.7 shows

the outcome of an experiment where the three types of simple queries (Figure 7.6) from

the previous section have been injected in a network with 200 nodes. The optimiser is

set to produce query configurations such that resource (computation) consumption is op-

timised among nodes. For matters of simplicity, all nodes have just a single resource of

uniform capacity with the load dynamics pictured in Figure 7.8. The curve is the result

of benchmarking a single node hosted on a Core Duo 2 Intel system with 4 GB of RAM

running Windows XP. The test load consisted of the queries in Figure 7.6 executed as

snapshot queries. Up to 6000 concurrent clients, i.e. injection, execution and result set

delivery, where simulated. During the experiment the same queries are executed as con-

tinuous queries. To observe the behaviour independent of external events, query injection

happens within an initial warmup phase at which end (after 1000 iterations) all queries

are scheduled.

Figure 7.7 illustrates the memory of a randomly chosen node in the experiment. The

figure can be interpreted as follows: since the memory module is the only component

able to store information between compute cycles (s. Section 6.3.2) it contains the entire

node state. Assuming that the memory has unlimited capacity, each microstate, i.e. item

stored to a memory cell, can be identified by a unique position (an integer value). For

example, the communication module might be in the middle of the execution of an sta-

bilisation protocol. A node might wait for a defined time interval until a response arrives,

hence it stores the current protocol state together with a time-out value in memory. This

information is assigned a unique and consecutive position specifically for this particular

information. In the sequel, memory cells currently storing information are referred to as

active, while empty cells are non active. Figure 7.7 shows the state evolution by depicting

active microstates with a black dot and not active microstates with a white dot. The sum

of all microstates at the same horizontal level represent the complete state of the node at

a given point in time. The state evolution starts with the top row and proceeds gradually

towards the bottom.

The experiment shows two characteristics very common in large distributed systems. Af-

ter the warmup phase is complete and all queries are active, the system seems to be in a

stable and predictable state (low entropy). After some time and without external stimuli

the dynamics changes abruptly. Thus, generalising from the observations, the first charac-

178 7.3 Nodes

Warm-up complete

All queries active

s0 sn

State

T
im

e

t0

tk

(a) Initial cache evolution

s
0

s
n

State

T
im
e

t
k

t
n

(b) State explosion long time after the last
query became active

Figure 7.7: State evolution as measured at a single node in an experiment with 200 nodes

and constant query load. Illustrated is the content of the memory of a randomly chosen

node in the experiment. Each microstate, i.e. item stored to a memory cell, can be identifed

by a unique position (an integer value, x-axis). Active memory cells are depicted as black

dot and not active cells with a white dot. The state evolution starts with the top row and

proceeds gradually towards the bottom.

7 Evaluation 179

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

1000 2000 3000 4000 5000

O
pe

ra
tio

n
Ti

m
e

(m
s)

Concurrent Clients

measurement
exponential fit

Figure 7.8: Node resource dynamics

teristic is that effects of actions taken may become apparent after considerable amounts of

time. In the Peer-to-Peer and Grid Computing lab at Siemens Corporate Technology this

phenomenon has been observed in many highly distributed systems. Effects can be delayed

by hours or even days. The fact makes failure analysis and debugging extremely difficult,

as failure situations are hard to reproduce and the failure root causes are extremely dif-

ficult to identify. The second characteristic is that once the system state changes it does

so rapidly and without many prior indications. State variations at one node affect the

state at other nodes, causing a chain reaction which has the potential to render the entire

system unusable. Both characteristics are implicit and it is clear that they cannot be con-

trolled easily as the state evolution depends on many only partially known and randomly

occurring stimuli.

In correspondence to the visualisation of the state evolution in memory (Figure 7.7), Fig-

ure 7.9 shows the entropy measured during the same experiment. Shown are the effects

with the stabilisation mechanisms both enabled and disabled. Without stabilisation, en-

tropy increases rapidly (topmost curve). In this situation about 90% of effort on a node

is spent for reallocation of resources. After the initial increase, entropy oscillates with

large amplitudes. In this state the system is not only inefficient; its behaviour becomes

also hard to predict, which directly influences the optimisers in other nodes which might

try to also allocate resources on other nodes at the same time. Since their assessment

of their resource utilisation is most likely not accurate, their optimisation output further

180 7.4 Index Cloud

 0

 50000

 100000

 150000

 200000

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

E
nt

ro
py

Time

Entropy with Stabilisation
Entropy without Stabilisation

Figure 7.9: Nodes with disabled stabilisation enter an uncontrolled state

contributes to the reallocation overhead. On the contrary, with stabilisation mechanism

applied, i.e. including entropy costs in the optimisation process, the entropy remains al-

most constant in a bounded condition with slight periodic oscillations as shown by the

lower curve in Figure 7.9.

7.4 Index Cloud

Additionally to the standard query processing functions, index nodes offer additional func-

tionality to handle large data sets consistently. This section deals with the data manage-

ment capabilities of the index cloud. It uses the simulation methods described in Section

4.3 to evaluate the algorithms presented in Chapter 6. The basis for the simulations con-

stitutes a prototypical implementation of the node architecture and corresponding data

management algorithms. The node kernel was replaced by a simulation kernel (s. Section

4.3). Additionally the communication module is replaced by its simulation counterpart

which is able to load different network models. Unless otherwise stated, a realistic network

model [78] is used to provide a real-world environment.

7 Evaluation 181

Table 7.4: Failure induced write load

Nodes Writes Per Second Writes Per Second Writes

(MTTF 30 minutes) (MTTF 24 hours) (MTTF 10 years)

1000 0.56 0.01 2 / week

10000 5.56 0.12 3 / day

100000 55.56 0.16 1 / hour

1000000 555.56 11.57 11 / hour

10000000 5555.56 115.74 2 / min

100000000 55555.56 1157.41 19 / min

7.4.1 Performance

The index cloud has considerable influence on system performance. It is optimised for

read operations and capable of delivering timely information for local query processing.

However, with increasing system size, load patters shift from mainly read to mostly write

operations. Assuming that the index cloud is used primarily as index for node meta data,

writes occur only when new nodes arrive, i.e. new devices are installed, or nodes reregister

due to a failure situation, e.g. system failure or network interruption. In the following a

model for read and write workloads is elaborated. Based on this model structure and

algorithms of the index cloud are evaluated.

Table 7.4 summarises write loads in correspondence to the number of nodes in the system

and an assumed mean time to failure (MTTF). While MTTFs of 30 minutes are common

for nodes in the Internet [141], MTTF in the range of years are more likely for devices

in an industrial environment. Although, due to the lack of a broad installed base, no

data is available for metering equipment at end-users, a MTTF of 24 hours is assumed

for the following considerations. The assumption is supported by the fact that most DSL

providers reassign IP addresses on a 24h base. Moreover, for the further analysis it is

assumed that consumer devices constitute the majority of all participating nodes and

hence an MTTF of 24h as lower bound is the base for all further calculations.

In addition to the write operations triggered by system or network failures, soft state

data items need to be renewed to prevent their deletion. The renew operation is less

complex since it targets only non persistent data and does not require indexing6. However,

considering a renewal time of 1 hour would yield already 3000 operations per second

in a system with 10 million nodes and one data item per node (node meta data). For

6Since the data item is not updated and metadata as well as item content remain the same

182 7.4 Index Cloud

certain applications, a renewal time of 1 hour might be too long, e.g. frequently executed

queries over many nodes will require considerable rewrite overhead until the failed node

is removed from the nodes tables. The monitoring system introduced in Section 6.3.5,

however, improves this process by quickly detecting node failures and by using the failure

hook mechanisms to clear outdated data promptly. Hence, renewal times can be set to

higher values. A renewal time of a week would reduce the number of renewal requests to

17 per second. Assuming 10 monitoring nodes and an MTTF of 24 hours the number of

updates by failure hooks is in the worst case 10 × 115 = 1150 per second whereas only

the update by the first monitoring node has influence on performance because the data

item will be removed and further updates will fail. Taking this into consideration the

administrative write load Loadw on the index cloud in a system with 10 million nodes is

115 + 115 + 17 = 247 updates per second.

Estimating the read load on the index cloud is difficult as it depends on the types of

devices currently active in the system as well as applications using the system. To provide

a rough estimate it is assumed that data is read from each device, i.e. at least one query

per node exists. In general, data needs to be read from the global nodes table every time a

declarative query is executed unless meta data is cached in the local nodes table7 and no

new execution candidates need to be found. Considering a continuous query for every node

in the system and an optimisation interval of 5 minutes to find new execution candidates

yields read load of 33333 read operations per second in a 10 million node system or in

other words 10 million concurrent queries. The resulting read/write ratio is 247/33333 =

0.0078.

To find new candidates for query execution, however, a subscription could be more effi-

cient. In the context of the scenario above, the throughput of subscriptions that need to

be fired equals the number of writes plus the effort to evaluate all subscriptions for the

update plus overhead to renew the subscription. The number of updates that need to be

transferred to clients depends on the query structure. A query selecting a large number

of rows is more expensive than queries with smaller result sets. Hence the outgoing load

for subscriptions is Lso = Sri× Loadw with Sr the size of the results set for subscription

i. Hence total subscription load is Sl = Lw + Lsq + Lso.

Independently of the consistency mode, the write performance of fully replicated clouds is

limited by the maximum number of write operations supported by the slowest index node

since eventually all updates need to be written at any node. Depending on their config-

7State information is not part of the global index but is retrieved by the monitoring module during
execution

8Numbers are based on a Siemens internal report on the load patterns of corporate enterprise appli-
cations, e.g. wikis, blogs, social networks

7 Evaluation 183

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 1000 2000 3000 4000 5000 6000 7000 8000

Th
ro

ug
hp

ut
 O

pe
ra

tio
ns

/s

Time

0% writes
0.7% writes

4% writes

(a) Throughput over time

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 500 1000 1500 2000 2500 3000 3500 4000

Th
ro

ug
hp

ut
 O

pe
ra

tio
ns

/s

Concurrent Connections

0% writes
0.7% writes

4% writes

(b) Throughput vs. concurrent Connections

Figure 7.10: Index node operation throughput

uration, partitioned clouds could yield better performances in the context of high write

load requirements. To provide a rough estimate on read and write throughput, an index

node has been implemented and extensively tested. The testbed consisted of two Apple

Laptop Computers with Intel Core 2 Duo CPUs clocked at 2 GHz, 2 GB of RAM and

connected via 1000baseT ethernet. In a base test, the behaviour of the node with regard

to different write-read ratio was tested. Therefor, the client computer created a table on

the index and filled it with 10000 rows and generated 100000 queries. Generated at ran-

dom, queries requested rows by specifying five conjunctive conditions, i.e. “attributeA=B

AND attributeB=C AND ...”. Subsequently, up to 4000 concurrent client connections9

were simulated and each client issued read and write operations on the index node in

the ratio elaborated above. The index node implements a simple caching scheme where

query results are cached by the query and invalidated once an item matching the query

is written. For all simulations time measured is net execution time at the server without

query compilation and transfer over the network. Since performance greatly depends on

the implementation efficiency, hardware, network and test data set, experiments were not

designed to measure peak throughput rates. Rather, the behaviour, in particularly with

variation of different write-read rations, shall be investigated.

Figure 7.10a shows the throughput for 100 concurrent connections over approximately 2

hours time averaged over three sequential runs. The figure shows that in the absence of

write operations caches heat up quickly and throughput settles at around 4100 operations

per second. With 0.7% of all operations being writes, the node starts with a throughput

around 2500 operations per second due to the initial writes of the 10000 rows. Over

time throughput converges to a rate around 2000 operations per second. For 4% write

9The number of concurrent connections was limited by a bug (id 6932633) in the OSX ethernet driver
on the client side.

184 7.4 Index Cloud

 100

 1000

 10000

 0 0.2 0.4 0.6 0.8 1

O
pe

ra
tio

n
Th

ro
ug

hp
ut

Write / Read Ratio

Characteristic Function
Measured Throughput

(a) Throughput vs. write-read ratios
Th

ro
ug

hp
ut

 1
0^

6
(O

p/
s)

Throughput
Target Throughput

 0 10 20 30 40 50 60 70 80 90 100
Read Zones 0

 10
 20

 30
 40

 50
 60

 70
 80

 90
 100

Write Zones

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

(b) Throughput vs. partitioned cloud configuration

Figure 7.11: Cloud configurations for varying write-read ratios

operations a similar initial behaviour is observed as for the previous case. Eventually,

the rate settles at around 500 operations per second. As Figure 7.10b shows, rates are

stable in the context of varying concurrent connections. To speed up the test, fewer

operations (approximately 400000) were executed per write-read ratio, hence the slightly

lower throughput for the 0% writes case. All experiments were conducted without any

optimisations to network, operating system or sophisticated caching mechanisms at the

index node. Tests with higher read percentages were limited by the client performance as

the index node was utilised below 50%. Tests with many writes prevented efficient caching

and hence increased the load on the index node.

The read and write performance of a partitioned cloud can be controlled by increasing

or decreasing write or read zones. In the following a method to find the optimal con-

figuration for a given operation load (read-write ratio) is developed. Figure 7.11a shows

total cloud throughput for different write-read ratios measured using the same set-up as

detailed above and executing 60000 operations during each run. A ratio of 0 means only

read operations, 0.5 means 50% each and 1 means only write operations. Clearly, the per-

formance curve depicted is specific for the particular index node implementation, caching

scheme, the operating system, the hardware and network infrastructure. To achieve the

performance requirements elaborated in previous paragraphs (33333 read and 247 write

operations/s) the sum of individual node throughputs must match the required load.

Equation 7.4 models the node behaviour with T (n) the throughput for index node n un-

der given conditions. To find T (n) the measured curve in Figure 7.11a is approximated

(using a standard interpolation algorithm [113]) with Equation 7.5.

7 Evaluation 185

readLoad + writeLoad =
�

i

T (n) (7.4)

T (x) =
c0

(1 + x
v0

)m
+

b

a
× (x + 1) (7.5)

with c0 = 4110.14, v0 = 0.024, m = 2.04172, b = 500.113, a = 2.20358 (Figure 7.11a).

With the characteristic function known, equation 7.4 can be solved. Plotting all configu-

rations for different read and write zones, Figure 7.11b shows all solutions that meet the

requirements as surface above the target plane (x,y, 33580).

Automating the method described above and feeding the configuration information back

to the index master allows for autonomous organisation of the cloud. The monitor-

ing module determines the base for the characteristic function and the master fits the

curve and computes the optimal number of read and write zones. Thereby not only

the configuration effort is minimised, also the cloud can adapt to changing load pat-

terns by adjusting the number of read and write zones. In the extreme case, the par-

titioned cloud degenerates to a fully replicated cloud to achieve maximum read perfor-

mance, i.e. wz = rz = 1 → Throughputread = n × Throughputnode, with n being the

number of index nodes. On the other extreme, write performance is maximised with

rz = 1, wz = n → Throughputwrite = n × Throughputnode. Reconfiguration effort, how-

ever, is considerable such that load pattern detection must be stable.

7.4.2 General Behaviour

While in the previous section experiments on a concrete testbed gave insights into how

the index cloud must be configured for various load demands, in this section the general

behaviour of the index cloud with varying consistency properties is analysed. To be able

to conduct experiments with large numbers of nodes, simulations were executed on the

distributed discrete event simulator of Chapter 4. As network model the Kings data set

[56] was used. The simulation time frame (tic) equivalents one millisecond real-time.

To simulate limited node compute and network resources, utilisation was modelled with

ce
P

t−tk
O−c

5 , with c, being the capacity of the resource and
�

t−tk
O the number of resource

uses in the time period t− tk.

The index cloud behaviour is massively influenced by the different consistency models.

While strong consistency ensures that when an item is written subsequent reads always

access the newest version, eventual consistency allows a time window where a read sub-

sequent to a write may not return the latest version. From a client perspective eventual

consistency writes are faster than strong consistency writes. Inconsistent reads, however,

186 7.4 Index Cloud

 10

 100

 1000

 10000

 0 5 10 15 20 25 30 35 40 45 50

Ti
m

e/
Fa

ilu
re

s

Replica

write time
read failures

(a) Write time vs. read failures

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20 25 30 35 40 45 50

Fa
ilu

re
s

Replica

MTTF 1 second
MTTF 10 seconds

(b) Write failures vs. number of replicas

Figure 7.12: Stability of the write operation

may require additional failure handling at the client. Figure 7.12a shows the relation be-

tween time required for a write operation for different numbers of acknowledges required

for a successful write and number of read failures. In the simulation an average online

time for index nodes was set to 30 minutes. Moreoever a write load of 10 writes per second

and constant read load of 100 reads per second was set. A read failure is defined as an

item that is read and has a version number smaller than the latest item written with the

same ID. As depicted in Figure 7.12a, writes requiring few acknowledges are consider-

ably faster than writes requiring more acknowledges. Additionally, eventual consistency

write performance is less dependent on the number of replicas. Failures increase inversely

proportional with the write times. This behaviour complies exactly with the definition

of strong consistency. In the strong consistency model, write performance is constraint

by the performance of the slowest replica, while eventual consistency write performance

solely depends on the k fastest replicas.

Performance of the write operation is also bound to the reliability of replicas. Especially

in the strong consistency case a low mean time to failure (MTTF) can cause considerable

delay. Figure 7.13a-b shows the write performance of successful write operations for a

MTTF of 1 minute and 30 minutes. The write operation is not only slower in average

but the number of write failures increases with the number of replicas (Figure 7.13b).

Consequently, strong consistency might not be achievable in large index clouds when

the average MTTF drops below a certain threshold. This is shown in Figure 7.12 where

very short MTTF values were simulated. Failures increase exponentially with the number

of replicas rendering successful writes impossible. On the contrary, eventual consistency

write operations are unaffected by the total size of the cloud and are more reliable to node

failure (s. Figure 7.12a-b) since, when k acknowledges are needed, n− k out of n replicas

7 Evaluation 187

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5 10 15 20 25 30 35 40 45 50

Ti
m

e

Replica

100% acknowledged
50% acknowledged
25% acknowledged

(a) MTTF 30 minutes

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 5 10 15 20 25 30 35 40 45 50

Ti
m

e

Replica

100% acknowledged
50% acknowledged
25% acknowledged

(b) MTTF 1 minute

Figure 7.13: Performance of the write operation

can fail before the write operation as a whole fails10.

Read operations in fully replicated mode are executed on a single node that received the

request. Stability of the read operation in fully replicated mode is therefore dependent

solely on the availability of one index node. In partitioned node, a read request is dis-

tributed to all write zones within a read zone to retrieve partial results. The operation is

similar to the write operation as more index nodes need to be contacted and the read will

fail if one node handling a sub query fails. Therefore, the failure probability of the read

operation in partitioned mode increases proportionally with the size of the read zone sim-

ilarly to the write failures depicted in Figure 7.12b. Independent of the operating mode,

the read operation depends on the availability of individual index nodes. The availability

and its influence on the data cloud is further analysed in the following section.

7.4.3 Availability

The availability of index nodes has considerable influence on the index cloud. As elab-

orated in the previous section the success of read and write operations depends on the

availability of individual nodes. Besides analysing the availability of index nodes, this sec-

tion investigates the availability of stored data, since in case of failure of large numbers

of nodes even replicated data might get lost.

Assuming equal mean time between failures (MTBF), the failure of individual nodes being

independent of other nodes and a service time ts for a read or write operation, then the

probability that an operation fails is:

10This assumes equal MTTF for all nodes in the index cloud.

188 7.4 Index Cloud

Pf =
MTBF

ts
(7.6)

Concretely, for a MTBF of 24 hours and ts = 400ms and considering that the operation

affects a single node only, the probability is 4.63× 10−6. If the operation includes several

nodes, the probability for node failure is the sum of individual probabilities, i.e. the

probability of a strong consistent write failure in a large cloud with 1000 nodes is 1000×
4, 64×10−6 = 4, 64×10−3. Hence, with the exception that number of write zones = 1 and

read zones = 1, strong consistent writes in partitioned mode are more reliable than in

fully replicated mode when considering the same number of index nodes. However, since

in fully replicated mode the number of replicas is generally larger, data availability is

higher in the fully replicated scenario. Given n index nodes and data which is replicated

to r replicas including the node responsible for storing the item, each having an average

availability of Ai the probability that data is lost Ploss is:

Ploss = (1− Ai)
r (7.7)

Concretely, assuming an index size of 100 nodes with average availability of 99.9% and

r = 3 replicas or three read zones Ploss is (1 − 0.999)3 = 1.00 × 10−9. A fully replicated

scenario yields Ploss is (1 − 0.999)100 = 1.00 × 10−910−44. Assuming an average host

availability αh for all nodes, Equation 7.8 determines the number of required replicas in

order to achieve a minimum data availability.

Ad = 1− (1− αh)
r (7.8)

r =
log(1− Ad)

log(1− αh)
(7.9)

Using Equation 7.8, Table 7.5 shows the number of replicas needed to achieve a given

data availability while assuming an average host availability of αh = 0.8.

In above considerations individual node failures are not correlated. In certain situations,

e.g., blackouts or network failures, large numbers of nodes may fail at the same time. The

question to answer in this scenario is how many nodes may fail at the same time until

data availability can no longer be guaranteed? The recursive Formula 7.10 elaborated in

[134] is used to answer this question.

7 Evaluation 189

Table 7.5: Number of replicas needed to achieve a given data availability. Average host

availability is 0.8.

Target Availability Replication Factor (r)

0.8 1

0.9 2

0.99 3

0.999 5

0.9999 6

0.99999 8

g(n, k, r) =






0 if n < 0

1 if
n = k and

0 ≤ n ≤ 2

�r
i=0 g(n− i− 1, k − i) otherwise

(7.10)

The probability of data loss if k out of n nodes fail is Ploss = 1− g(n,k)
m(n,k) with m(n, k) =

�
n
k

�
,

i.e. the number of variations to choose k nodes out of n and g(n, k) the number of ways to

choose k out of n failing nodes without data loss. Figure 7.14 shows the result for varying

number of nodes and a replication factor of r = 3. The probability of the loss of an entire

replication group decreases with the total number of nodes. Independently of the number

of nodes, if 2
3 of the nodes fail, the probability that at least one replication group fails

is 1. Surely, in fully replicated mode all nodes must fail before any data is lost. Loosing

data in partitioned mode is equivalent to losing the same write zone in all read zones.

Assuming three read zones and no replication within a write zone Formula 7.10 can be

applied. For replication factors other than 3, the formula can be extended as elaborated

in [134].

A critical element for the availability of the index cloud in both partitioned as well as fully

replicated mode is the index master. If the master is unavailable, new nodes cannot join

and index nodes are not informed of failed nodes. In Chapter 6 it is suggested to chose a

highly reliable hardware system as master. However, even the most reliable server systems

have a probability for failure. To compensate such failures the architecture implements a

watchdog mechanism. A master is monitored by a set of watchdogs which, if a failed master

is detected, take over the master role. Given master and watchdogs have an availability

190 7.5 Programming Language

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70

Pr
ob

ab
ilit

y
O

f D
at

a
Lo

ss

Percentage Of Failing Nodes

 50 nodes
 100 nodes

1000 nodes
2000 nodes

Figure 7.14: Data loss in the presence of massive node failure

of 99.999% the probability master and watchdogs fail simultaneously is (1− 0.99999)w+1,

with w the number of watchdogs. Considering two watchdogs, this yields a probability of

10−15 or highly unlikely. Depending on the rate of probe messages sent from the watchdogs,

in the event of a master failure, there will be a time window where no master is available.

In order to switch to master mode, the effort for a watchdog is limited to the detection

if a probe message remains without response. Hence, given a probe rate of 1 second and

requiring 3 messages without response the system is without a master for 3 seconds in

the worst case.

7.5 Programming Language

In the previous discussion on the achievement of quality attributes, the contributions

of the language interface to modifiability, integrability and, implicitly, to security have

been investigated. A pre-requisite of these contributions is the ability of the language

to express all tasks and interactions within the ecosystem for energy services. Therefore,

in this section, the expressiveness of the language is proven. Moreover, applicability and

usability of SCSQL are shown by implementations of concrete control problems.

7 Evaluation 191

7.5.1 Completeness

Lemma 7.5.1 The SCSQL is Turing complete.

Proof The expressiveness of a query language is defined as the class of functions it can

express on input tape [3]. In the following, it is shown that SCSQL can compute arbitrary

functions encoded as Turing machine. A Turing machine is defined by the tuple M =

(Q, Σ, Γ, δ, b, q0, F) where Q is a finite set of states, Σ ⊆ Γ\{b} is the set of input symbols,

Γ is a finite set of tape symbols, b ∈ Γ is the blank symbol, δ : Q× Γ → Q× Γ× {L, R}
is the transition function with L, left, encoded as 1 and, R, right, encoded as -1, q0 ∈ Q

is the initial state and F ∈ Q is a set of accepting or final states.

In SCSQL the Turing machine is defined in four tables: (i) a table called state keeping

the current state, the current symbol and position on the tape, (ii) a table called accept,

(iii) a table called tape containing the input and (iv) a transition table. Listing 7.3 shows

the table definitions and Listing 7.4 the Turing machine processing logic.

The Turing machine works as follows: For each iteration the current state is read. If, based

on the current state, a transition is defined, the next state, symbol and direction for the

tape head are retrieved from the transition table. The new symbol is written to the tape

and the state is updated with the new state and symbol. The tape head is moved to the

next position. If the position does not exist on the tape a blank is written. If the transition

is not defined, the machine halts returning 0 if the state is accepted or 1 on reject. Finally

lines 42 and 43 initialise the machine and line 45 starts execution.

Using the tables and function in Listings 7.3 and 7.4 any computable function can be

programmed. Therefor, appropriate transition tables must be created which define the

control flow to the function.

Hence according to, e.g. [3], SCSQL is Turing complete.

7.5.2 Control Loop

A control loop is a universal pattern in industrial control systems. Control loops are com-

prised of controller, sensors and actuators. Their purpose is to regulate a variable set-point

(SP), i.e. target condition under dynamic environment conditions. The widely applied

Proportional-Integral-Derivative (PID) controllers try to minimise the error between the

measured process value (PV) and the set-point by calculating appropriate actions, e.g.

heat or cool. The proportional part of the controller constitutes a proportional response,

Pout = Kpe(t), to the error by multiplying the error e = SP − PV , with a constant

Kp. The integral term Iout = Ki ∗
�

e(τ)dτ , is proportional to the magnitude as well as

192 7.5 Programming Language

Listing 7.3: Turing Machine
1

2 STATE −> CREATE TABLE(STRING s t a t e ,

3 STRING symbol ,

4 INT pos)

5

6 TAPE −> CREATE TABLE(STRING symbol ,

7 INT pos)

8

9 TRANSITION −> CREATE TABLE(STRING s t a t e ,

10 STRING symbol ,

11 INT s h i f t ,

12 STRING ne x t s t a t e ,

13 STRING next symbo l)

14

15 ACCEPT −> CREATE TABLE(STRING s t a t e)

duration of the error. Its contribution is controlled via the constant Ki. Eventually, the

derivative part Dout = Kd
de
dt (t) contributes with the rate of change of the error over time

multiplied with the constant Kd.

Heater

Controller

Sensor

Figure 7.15: Simple control loop. Inspired by [87]

Control loops with PID controllers can be implemented with SCSQL compactly. To show

that, consider the temperature control system depicted in Figure 7.15. It consists of a

heater, temperature sensor and controller. As SCSQL abstracts form the underlying in-

frastructure the code to implement the control system is agnostic to the unit location.

Each unit could be located on the same node or distributed over multiple nodes.

Listing 7.5 shows a SCSQL implementation of a PID controller. Lines 21-23 select the

heaters to be controlled. They are specified as nodes of type “heater” and located in an

area called “A1”. Lines 25-27 select corresponding sensors. Eventually, lines 29-33 initiate

the control loop by passing process values from all sensors to the PID function which, in

7 Evaluation 193

turn, adjusts the temperature in the heater.

Apart from implementing a control loop, the example shows other characteristics of the

architecture as well: declarative composition and de-normalised data. Firstly, the control

system is specified at a high level of abstraction by describing parts by their attributes.

This allows for the replacement of individual parts or system upgrades without the need

to adjust the control algorithm. Concretely, the system could consist of one ore multiple

heaters and sensors, sensors could be replaced or added. Independently of the change in

the system, the controller will remain the same. The fact increases the level of flexibility

and allows for systems that adapt to a changing infrastructure. Secondly, due to the data

and table model data is de-normalised and hence the queries in lines 21 and 25 do not

join nor use a foreign key relationship table. In contrast, in a strict relational model the

system would be modelled with three tables, i.e. heaters(id, ..), sensors(id, ..) and

temperaturesensors(heater id, sensor id) or two tables, namely sensors, heaters

and a join to select sensors that belong to the heaters of interest. If there were many

heaters with each having many sensors, the temperaturesensors table would grow very

large quickly. In the model introduced in this work, the relation between sensors and

heaters is stored as column, hence it can be read efficiently, i.e. sequentially, which is the

fastest way to retrieve the relationship even for many heater and sensor objects.

7.5.3 Complexity

The previous section introduced a simple control loop and identified it as a common

pattern in industrial systems. In this section an analysis is conducted to determine the

benefits of the query language when implementing control loops in distributed environ-

ments. The analysis is oriented towards the effort a developer must spent in order to

achieve the functionality. Again, the complexity measure from Section 7.2 is applied to

quantify efforts and complexity.

The development of distributed systems is particularly challenging due to the large variety

of failures and exceptions that can occur. With increasing system size, the probability

of unusual exceptions, e.g. network partitioning, oscillating interruptions or failure of

equipment, increases proportionally. Developers of distributed programs must anticipate

these behaviours and write additional code to compensate failures and handle exceptions.

Due to the high level of abstraction SCSQL provides, all communication related function-

ality, i.e. messaging, asynchronous calls etc., is hidden. Developers specify their interest

in data declaratively and transparently of the actual storage location of the data. In the

example code provided by Listing 7.5, data from a set of sensors is retrieved. This data

194 7.6 Summary

could be gathered directly from a sensor device which might be connected to a local ma-

chine. The sensor could also be installed in a remote location thousands of kilometres

away or the sensor data might be read of a file or an archive database.

The declarative abstraction reduces the number of states a developer needs to take care

of. According to Section 7.2.2, entropy is reduced if either the number of states decreases

or the probability of a few states is significantly higher than that of most other states.

Hence, with lower entropy the implementation complexity for the developer that uses

SCSQL is reduced in comparision to a non data-centric approach. In the above example,

state is kept only in the two tables sensors and heaters. On the contrary, the compiled

version of the program handles nearly thousands of states to co-ordinate resource use,

execute communication protocols and handle exceptions.

7.6 Summary

In this chapter, we evaluated the architecture described in Chapters 5 and 6. Achievement

of quality attributes was shown by discussing the contributions of individual architectural

patterns as well as reflection of applicability in the context of the scenarios. Using a

quantitative complexity measure, critical parts of node and index cloud architecture were

evaluated. The analysis showed quantitatively the fitness of the architectural concepts with

regard to performance, availability, modifiability and adaptability. The index cloud is able

to adjust to different workload patterns and hence can optimise its optimal throughput

autonomously even under changing load conditions.

The cost based optimiser creates locally optimal query configurations given a set of opti-

misation criteria and information contained in local tables. On a global scale, however, it is

not guaranteed to deliver fully optimal results. Yet already optimisation of simple queries

has been proven to be complex (NP-hard) yielding considerable (not acceptable) effort.

Hence, heuristic query optimisation methods are suggested to find query configurations

close to the global optimum.

The network of query processors can exhibit complex behaviour. The strict scheduling

kernel, the single threaded discrete processing model and the query optimiser contribute

substantially to the stable operation of the network. The rejection behaviour of the kernel

prevents node overload and system inefficiencies due to cascading effects. The option

to optimise for entropy dampens global reallocations and achieves schedules closer to

the global optimum. The node module concept, in particular the concentration of the

complete node state in a single module, allows for advanced methods to automatically

analyse health, resource utilisation, and processing efficiency of nodes.

7 Evaluation 195

The monitoring module provides the basis for query optimisation by ensuring the avail-

ability of up to date information of neighbouring node states. The Peer-to-Peer watchdog

mechanism to detect node failures takes away considerable load from the index cloud.

Monitoring module and query processor enable declarative clustering of nodes. Intensified

communication of nodes within groups can be exploited to implement high availability

service execution.

The implementation complexity of the query processor is low. The query processor includ-

ing the optimiser have been implemented with 3500 lines of Java code. The clear code base

provides a promising outlook for future industry grade commercial implementations on a

variety of platforms. On the contrary to the closed processing system, the language based

interface allows applications to modify access, pre-processing and information routes with

evolving requirements.

The programming language defined in Chapter 6 is Turing complete and able to express

any access and control problem in context of the described ecosystem for energy ser-

vices. Besides its completeness, SCSQL allows to implement standard control problems

compactly and intuitively.

The layered module architecture allows direct simulation of very large11 networks of nodes.

Using the distributed discrete event simulator of Chapter 4 only kernel and the commu-

nication module must be replaced by simulation counterparts. Key business logic like the

query and program set remain exactly like in the actual deployment. Hence, simulations

can check dynamics and correctness of a system with very high accuracy prior to the

actual deployment.

11Millions.

196 7.6 Summary

Listing 7.4: Turing Machine Logic
1

2

3 FUNCTION TURING(STRING s t a t e , STRING symbol , INT pos) {
4

5 f o r e a c h (s t a t e , symbol , pos) {
6 M −> SELECT s h i f t , n e x t s t a t e , next symbo l

7 FROM TRANSITION

8 WHERE TRANSITION . s t a t e = s t a t e

9 AND TRANSITION . symbol = symbol

10

11 IF (M) {
12 DELETE FROM TAPE

13 WHERE TAPE. pos = pos

14

15 INSERT INTO TAPE(M. nextsymbol , pos)

16 }
17 ELSE {
18 A −> SELECT ∗
19 FROM ACCEPT

20 WHERE ACCEPT. s t a t e = s t a t e

21

22 IF (A) {
23 RETURN 1 /∗ accep t ∗/
24 }
25 ELSE {
26 RETURN 0 /∗ r e j e c t ∗/
27 }
28 }
29

30 NEXT −> SELECT symbol , pos

31 FROM TAPE

32 WHERE TAPE. pos = pos + M. s h i f t

33

34 IF (NOT NEXT) {
35 INSERT INTO TAPE(’ b ’ , pos + M. s h i f t)

36 }
37 ELSE {
38 INSERT INTO STATE(M. n e x t s t a t e , M. nextsymbol , pos + M. s h i f t)

39 }
40

41 }
42 }
43

44 INIT −> SELECT symbol , pos

45 FROM TABLE

46 WHERE pos=0;

47

48 INSERT INTO c u r r e n t (’ q0 ’ , INIT . symbol , 0)

49

50 SELECT TURNING(s t a t e , symbol , pos)

51 FROM CURRENT

52 WINDOW (0 , 10 , 1)

7 Evaluation 197

Listing 7.5: Control Loop
1 Der ro r −> 0

2

3 FUNCTION PID(Pv , Sp) {
4

5 Kp −> 100

6 Ki −> 0 .9

7 Kd −> 1000

8

9 E r r o r −> Sp − Pv

10 To t a l E r r o r −> To t a l E r r o r + E r r o r

11

12 Pgain −> Kp ∗ E r r o r

13 I g a i n −> Ki ∗ To t a l E r r o r

14 Dgain −> Kd ∗ (E r r o r − Der ro r)

15 Der ro r −> Dgain

16

17 RETURN Pgain + I g a i n + Dgain

18 }
19

20

21 HEATERS −> SELECT ∗ FROM NODES

22 WHERE type = ’ h e a t e r ’

23 AND l o c a t i o n = ’A1 ’

24

25 SENSORS −> SELECT ∗ FROM NODES

26 WHERE connectedTo = ’ h e a t e r ’

27 AND l o c a t i o n = ’A1 ’

28

29 UPDATE HEATERS SET t empe ra tu r e=(

30 SELECT PID(temperature , 180)

31 FROM SENSORS

32)

33 WINDOW(0 ,FOREVER, 1)

Chapter 8

Conclusions and Future Work

Motivated by the requirements of current and near-future industrial systems, this work

presented a generic data-centric architecture for large-scale industrial systems. The ar-

chitecture itself implements the concept of the service ecosystem for energy services, i.e.

an open platform for stakeholders in the Smart Grid domain to collaborate and conduct

business. At the core of the ecosystem is the data which is generated, consumed, trans-

ferred and traded by stakeholders. The simplified data model, comprised of data items

and tables, constitutes a lingua franca for all nodes connected by the ecosystem. The

ecosystem itself builds upon three core services, namely (i) identification, (ii) registration

and (iii) incentive to foster collaboration and engagement. By offering these three services,

the ecosystem providers, the service providers and the service consumers can benefit.

The technical implementation and validation of the concept is the architecture presented

in Chapter 6. It is based upon three key concepts, namely: (i) a modular node comprised

of five core modules, (ii) an index cloud to provide global access to data and (iii) a data-

centric query language, SCSQL, to organise, query and route data between nodes. The

node architecture introduces a general computing paradigm. The five modules provide

the required functionality to execute queries in a distributed context. By design, they also

support assessment and stabilisation of large networks of query processors. Thereby the

discrete execution model and the concentration of state in the memory module play a

particularly important role.

The ability to incorporate several security mechanisms as well as the possibility to clearly

identify the sender of a message, implements the identification service of the ecosys-

tem. The index cloud, which aggregates meta-data of all nodes currently present in the

ecosystem implements the registration service. The ability to concretely express quality

requirements such as verifiability in combination with message signatures and security

mechanisms provide the foundation for monetary incentive services.

200 8.1 Design and Evolution

The thorough evaluation conducted in Chapter 7 showed suitability and correctness of the

architectural approach. Applied tactics and architecture evaluation methods of Chapter

4 showed the capabilities of the architecture to meet the quality requirements that where

identified during the analysis of the scenarios in the beginning of Chapter 6. A proto-

typical implementation of nodes and index cloud allowed the quantitative evaluation of

performance attributes. Expressiveness of the query language was proven such that broad

applicability of the language to typical problems in the industrial domain is assured.

In Section 1.5, the research questions for this thesis were stated. Questions were structured

in three categories namely: (i) Design and Evolution, (ii) Coordination and Control and

(iii) Monitoring and Assessment. Chapters 5, 6 and 7 provided answers for each of these

questions. The following summarises the contributions structured by the three categories.

8.1 Design and Evolution

The research questions in this category were: How can a system be designed that ad-

dresses all individual needs of its users and contributors? How can the system designed be

evolved and adapted to changing policies and requirements? The answer has been elab-

orated in Chapters 5 and 6. The concept of the ecosystem for energy services provides

the basic building blocks for all participants to join and extend the ecosystem. The min-

imalist data model constitutes the foundation for communication and co-ordination. The

open character of the ecosystem allows for decentralised and collaborative engineering

processes similar to the open source approach. The modular node architecture as well

as the query processor concept and the query language enable agile modification and

adoption of concrete technical systems.

8.2 Coordination and Control

Research questions of this category were: How can usage of shared resources be realised

while maintaining the quality of service? How can the system be modified to adapt to new

requirements or changes in the environment without considerable interruptions? How can

users customise their interaction with other users? In the scenario analysis in Chapter 6

the set of requirements concretised these questions. The answer to these question was given

by the modular node architecture as described in Section 6.3. The discrete runtime model

of the kernel enables deterministic execution of queries. The strict scheduling policy as

well as the query optimiser circumvent individual node overload. As shown by the backup

protection scenario, modification or apposition of functionality, e.g. protection algorithms

8 Conclusions and Future Work 201

or devices, is supported by the architecture either by writing corresponding queries in

SCSQL or modification of the node modules. The high level of abstraction provided by

SCSQL eases development efforts and reduces sources of failure.

8.3 Monitoring and Assessment

Due to the size of large-scale industrial systems, the system state can only be partially

assessed. Hence the research questions in this category were: What are meaningful indica-

tors that characterise the current system state? How can the potential effect of a control

action be determined? Since complete state assessment is not possible and hence infor-

mation is imprecise and uncertain, how do monitoring and assessment mechanisms cope

with the constantly and quickly evolving states? Chapters 6 and 7 provided the answers.

The node architecture subsumes the entire state of the node in a central module, namely

the memory module. The module is accessible by the query language and hence can be in-

cluded in query optimisation decisions. State evolution is discretised by the runtime model

such that consistent state assessments also for small groups of nodes become possible. To

estimate system behaviour, a measure for system complexity was introduced in Chapter 7.

The query optimiser may use this information to make advanced scheduling decisions such

that resource allocation overhead is reduced and distributed query execution stabilised.

202 8.4 Future Work

8.4 Future Work

This work covers a particular section of ULS research by the example of power infras-

tructures. Surely a wide range of future work exists. While this work elaborated the key

concepts and provided a prototypical implementation, a concrete deployment in an indus-

trial setting has yet to be done. Promising candidates for a pilot installation constitute

rural communes or isolated islands as their infrastructure is relatively small yet often

based on modern technology.

Moreover further research has to be conducted to identify appropriate mechanisms to

control entropy while operating the system close to its limits. In this context, the research

field of networked control systems constitutes a promising starting point for further re-

search. The methods described in Chapters 6 and 7 are rather strict, i.e. prevent relocation

and suppress optimization. As a result optimal system utilisation cannot be achieved. In

addition probilistic methods and machine learning may be applied to predict the effects

on entropy for each query execution instruction.

Depending on the constraint set supplied with a query, executing nodes create new com-

munication links for efficient and low latency communication. Chapters 6 and 7 supplied

a gossip based clustering mechanism for nodes. In order to determine the semnatic prox-

imity of nodes a simple average function was supplied. The correlation between measured

values might be more complex and involve measurements of many different nodes. Hence,

more advanced data mining methods, e.g. collective hiearchical clustering [73], might be

needed. In this context the key challenge will be to ensure stability of the clustering

algorithm in highly dynamic environment.

The data model and query language proposed in this thesis allow to describe and spec-

ify any object or process relevant in the ecosystem of energy services. Yet it does not

define any domain specific semantics. To support, e.g., the seamless exchange of equip-

ment semantic description of device capabilities might be beneficial. For example, slight

variations in the measurement sensitivity of a temperature sensor might have substantial

influcence on the stability of the system. Having a semantic description of a sensor allows

for automatic compatibility checking and hence prevention of critical events. Additionally

to the data model a domain specific set of core data objects should be developed. This

base ontology will also ease the translation process from various standards to the lingua

franca of the ecosystem.

In index cloud is capable to adapt to varying load patterns. To accomplish this, the master

implements a control loop: measure the characteristic load for each index node, determine

an optimal configuration of read and write zones, and finally, assign corresponding roles

8 Conclusions and Future Work 203

to structure the cloud. In the current implementation the characteristic function of an

index node is determined by running a series of test queries with a range of write/read

loads. Throughput may also depend on other crieria, such as type and structure of the

query, e.g conjuncts or type of data requested. Therefore research should be conducted to

find an optimal set of probe queries and hence increase the accuracy of the characteristic

function.

In context of this work a grammar, compiler, and runtime environment for SCSQL were

implemented. Although the compiler provides basic support for failure detection, the cur-

rent toolchain is not suitable for industrial grade applications. Further tools are required

for development as well as debugging and test. Due to the high level of abstraction, the

developer has only little influence on the final query configuration that is executed. For

debugging purposes, the prototypical implementation of the toolchain allows for offline

visualisation of query configurations via GraphViz [40]. However, particularly for dynamic

re-configurations, real-time visualisation of the query execution is necessary. The eclipse

platform might be a good starting point for a SCSQL development and test suite.

Chapters 5 and 6 focussed on power infrastructures. However, the concepts are generic

and can be applied to a other domains as well. Flexible production systems that support

modern product management strategies like mass-customization, contract manufacturing

and modular automation constitute corresponding starting points.

Although Chapter 6 provided a prototypical solution for a role based access mechanism,

security is not the primary focus of this work. The approach of Section 6.6.3 requires man-

ual negotiation of attributes and signatures. In a scenario with thousands of partners, this

manual process might not be appropriate. Future work should be spend on standardisation

of security methods and access attributes in order to achieve fully automated, cross-entity

processes.

Bibliography

[1] P2PSim A Simulator for Peer-to-Peer Protocols.

http://pdos.csail.mit.edu/p2psim/.

[2] IEC 61000-4-30. Electromagnetic compatibility (EMC) - Part 4-30: Testing and

measurement techniques - Power quality measurement methods. IEC, 2003.

[3] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.

Addison-Wesley, 1995.

[4] Jordi Pujol Ahulló and Pedro Garćıa López. Planetsim: an extensible framework for

overlay network and services simulations. In Simutools ’08: Proceedings of the 1st

international conference on Simulation tools and techniques for communications,

networks and systems & workshops, pages 1–1, ICST, Brussels, Belgium, Belgium,

2008. ICST (Institute for Computer Sciences, Social-Informatics and Telecommuni-

cations Engineering).

[5] Lorenzo Alvisi, Jeroen Doumen, Rachid Guerraoui, Boris Koldehofe, Harry Li, Rob-

bert Van Renesse, and Gilles Tredan. How robust are gossip-based communication

protocols? ACM SIGOPS Operating Systems Review, 41(5):14–18, Oktober 2007.

[6] Mark Armstrong. Competition in two-sided markets. RAND Journal of Economics,

37:668–691, 2006.

[7] Rajive L. Bagrodia, K. Mani Chandy, and Jayadev Misra. A message-based ap-

proach to discrete-event simulation. IEEE Trans. Softw. Eng., 13(6):654–665, 1987.

[8] Suman Banerjee, Bobby Bhattacharjee, and Christopher Kommareddy. Scalable

application layer multicast. In SIGCOMM ’02: Proceedings of the 2002 conference

on Applications, technologies, architectures, and protocols for computer communi-

cations, pages 205–217, New York, NY, USA, 2002. ACM.

[9] Jerry Banks, John Carson, Barry L. Nelson, and David Nicol. Discrete-Event System

Simulation, Fourth Edition. Prentice Hall, December 2004.

BIBLIOGRAPHY 205

[10] Udo Bartlang and Jörg P. Müller. Dhtflex: A flexible approach to enable efficient

atomic data management tailored for structured peer-to-peer overlays. In ICIW ’08:

Proceedings of the 2008 Third International Conference on Internet and Web Appli-

cations and Services, pages 377–384, Washington, DC, USA, 2008. IEEE Computer

Society.

[11] Len Bass, Paul Clements, and Rick Kazman. Software architecture in practice.

Addison-Wesley, Boston ; Munich [u.a.], 2003.

[12] Siegfried Behrendt, Florian Beissner, Daniel Doberstein, Lorenz Erdmann,

Dr. Edgar Göll, Dr. Roland Nolte, Timon Wehnert, and Michaela Wölk. Integrierte

Technologie-Roadmap Automation 2015+. Technical report, ZVEI - Zentralverband

Elektrotechnik und Elektronikindustrie e.V., 2006.

[13] Daniel Bell. The coming of post-industrial society: A venture in social forecasting.

Basic, New York, 1973.

[14] K. Bennett and V. Rajlich. Software evolution: A road map. Software Maintenance,

IEEE International Conference on, 0:4, 2001.

[15] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Gossip algorithms: design, analysis

and applications. INFOCOM 2005. 24th Annual Joint Conference of the IEEE

Computer and Communications Societies. Proceedings IEEE, 3:1653–1664 vol. 3,

13-17 March 2005.

[16] Georg Bretthauer, Gerald Gerlach, Friedrich Harbach, and Dieter Westerkamp.

Automation 2020. Technical report, VDI/VDE-Gesellschaft Mess- und Automa-

tisierungstechnik (GMA), 2009.

[17] Mike Burrows. The chubby lock service for loosely-coupled distributed systems.

In OSDI ’06: Proceedings of the 7th symposium on Operating systems design and

implementation, pages 335–350, Berkeley, CA, USA, 2006. USENIX Association.

[18] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael

Stal. Pattern-Oriented Software Architecture, A System of Patterns. John Wiley &

Sons Ltd, Chichester, England, 1996.

[19] Stefan Bussmann, Nicolas R. Jennings, and Michael Wooldridge. Multiagent Sys-

tems for Manufacturing Control. SpringerVerlag, 2004.

[20] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Design and evalua-

tion of a wide-area event notification service. ACM Trans. Comput. Syst., 19(3):332–

383, 2001.

206 BIBLIOGRAPHY

[21] Tushar D. Chandra, Robert Griesemer, and Joshua Redstone. Paxos made live: an

engineering perspective. In PODC ’07: Proceedings of the twenty-sixth annual ACM

symposium on Principles of distributed computing, pages 398–407, New York, NY,

USA, 2007. ACM.

[22] K. M. Chandy and J. Misra. Asynchronous distributed simulation via a sequence

of parallel computations. Commun. ACM, 24(4):198–206, 1981.

[23] K.M. Chandy and J. Misra. Distributed simulation: A case study in design and

verification of distributed programs. IEEE Transactions on Software Engineering,

5(5):440–452, 1979.

[24] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,

Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable:

a distributed storage system for structured data. In OSDI ’06: Proceedings of the

7th USENIX Symposium on Operating Systems Design and Implementation, pages

15–15, Berkeley, CA, USA, 2006. USENIX Association.

[25] Mitch Cherniack, Hari Balakrishnan, Magdalena Balazinska, Donald Carney, Ugur

Cetintemel, Ying Xing, and Stan Zdonik. Scalable Distributed Stream Processing.

In CIDR 2003 - First Biennial Conference on Innovative Data Systems Research,

Asilomar, CA, January 2003.

[26] Paul Clements, Rick Kazman, and Mark Klein. Evaluating Software Architectures:

Methods and Case Studies. Addison-Wesley Professional, January 2002.

[27] E. F. Codd. A relational model of data for large shared data banks. Commun.

ACM, 13(6):377–387, 1970.

[28] CRUTIAL. Analysis of new control applications. Deliverable D2, 2006. Critical

Utility Infrastructural Resilience, EU Project IST-FP6-STREP-027513.

[29] T. Cucinotta, A. Mancina, G.F. Anastasi, G. Lipari, L. Mangeruca, R. Checcozzo,

and F. Rusina. A real-time service-oriented architecture for industrial automation.

Industrial Informatics, IEEE Transactions on, 5(3):267–277, Aug. 2009.

[30] C. J. Date. A critique of the SQL database language. SIGMOD Rec., 14(3):8–54,

1984.

[31] Ian Davis and Elizabeth Stephenson. Ten trends to watch in 2006. The McKinsey

Quarterly, (1), 2006.

BIBLIOGRAPHY 207

[32] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large

clusters. Commun. ACM, 51(1):107–113, 2008.

[33] Ewa Deelman, Rajive Bagrodia, Rizos Sakellariou, and Vikram Adve. Improving

lookahead in parallel discrete event simulations of large-scale applications using com-

piler analysis. In PADS ’01: Proceedings of the fifteenth workshop on Parallel and

distributed simulation, pages 5–13, Washington, DC, USA, 2001. IEEE Computer

Society.

[34] S. E. Deering. Multicast routing in internetworks and extended lans. In SIGCOMM

’88: Symposium proceedings on Communications architectures and protocols, pages

55–64, New York, NY, USA, 1988. ACM.

[35] Juancarlo Depablos. Internet peer-to-peer communication based distribution loop

control system. Master’s thesis, Virginia Tech Polytechnic Institute, 2003.

[36] Hrishikesh Deshpande, Mayank Bawa, and Hector Garcia-Molina. Streaming live

media over a peer-to-peer network. August 2002.

[37] C. Diot, B.N. Levine, B. Lyles, H. Kassem, and D. Balensiefen. Deployment issues

for the ip multicast service and architecture. Network, IEEE, 14(1):78–88, Jan/Feb

2000.

[38] Kolja Eger, Christoph Gerdes, and Sebnem Öztunali. Towards P2P technologies for

the control of electrical power systems. In P2P ’08: Proceedings of the 2008 Eighth

International Conference on Peer-to-Peer Computing, pages 180–181, Washington,

DC, USA, 2008. IEEE Computer Society.

[39] Thomas Eisenmann, Geoffrey Parker, and Marshall W. Van Alstyne. Strategies for

two-sided markets. Harvard Business Review, 84:92–101, 2006.

[40] John Ellson, Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and

Gordon Woodhull. Graphviz - open source graph drawing tools. Graph Drawing,

pages 483–484, 2001.

[41] European Technology Platform Smart Grid. Strategic deployment document. Tech-

nical report, European Commission, 2008.

[42] European Technology Platform Smart Grid. Strategic research agenda for europes

electricity networks of the future. Technical report, European Commission, 2008.

[43] Eckhard D. Falkenberg, Wolfgang Hesse, Paul Lindgreen, Bjrn E. Nilsson, J. L. Han

Oei, Colette Rolland, Ronald K. Stamper, Frans J. M. Van Assche, Alexander A.

Verrijn-stuart, and Klaus Voss. The frisco report (web edition), 1996.

208 BIBLIOGRAPHY

[44] Marc Fleury and Francisco Reverbel. The jboss extensible server. pages 344–373.

Springer, 2003.

[45] Force.com. Salesforce object query language (soql). http://wiki.

developerforce.com/index.php/BNF_FOR_SOQL.

[46] Michael Franklin, Alon Halevy, and David Maier. From databases to dataspaces: a

new abstraction for information management. SIGMOD Rec., 34(4):27–33, 2005.

[47] International Monetary Fund. World economic outlook : a survey by the staff of

the international monetary fund. World economic outlook : a survey by the staff of

the International Monetary Fund, pages 110–120, 2002.

[48] Minos Garofalakis, Johannes Gehrke, and Rajeev Rastogi. Data Stream Manage-

ment: Processing High-Speed Data Streams (Data-Centric Systems and Applica-

tions). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007.

[49] Johannes Gehrke and Samuel Madden. Query processing in sensor networks. IEEE

Pervasive Computing, 3(1):46–55, 2004.

[50] Christoph Gerdes, Udo Bartlang, and Jörg P. Müller. Decentralised and reliable

service infrastructure to enable corporate cloud computing. In Paul Cunnigham

and Miriam Cunnigham, editors, Collaboration and the Knowledge Economy: Is-

sues, Applications and Case Studies, volume 5 of Information and Communication

Technologies and the Knowledge Economy, pages 683–690, Nieuwe Hemweg 6B, 1013

BG Amsterdam, The Netherlands, October 2008. IIM, IOS Press. Proceedings of

eChallenges e-2008 Conference.

[51] Christoph Gerdes, Kolja Eger, and Jörg Müller. Data centric peer-to-peer commu-

nication in power grids. ECEASST, 17, 2009.

[52] Christoph Gerdes, Christian Kleegrewe, and Jörg P. Müller. Declarative resource

discovery in distributed automation systems. In I. Troch and F. Breitenecker, edi-

tors, MathMod, volume ARGESIM Report, 2009.

[53] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system.

SIGOPS Oper. Syst. Rev., 37(5):29–43, 2003.

[54] Lukasz Golab and M. Tamer Oezsu. Issues in data stream management. SIGMOD

Rec., 32(2):5–14, 2003.

[55] Google. GQL reference. http://code.google.com/intl/de-DE/appengine/docs/

python/datastore/gqlreference.html.

BIBLIOGRAPHY 209

[56] Krishna P. Gummadi, Stefan Saroiu, and Steven D. Gribble. King: estimating

latency between arbitrary internet end hosts. In Proceedings of the SIGCOMM

Internet Measurement Workshop (IMW 2002), Marseille, France, November 2002.

[57] A. Gunasekaran and E.W.T. Ngai. Build-to-order supply chain management: a lit-

erature review and framework for development. Journal of Operations Management,

23(5):423 – 451, 2005. The Build to Order Supply Chain (BOSC).

[58] Matthew Harren, Joseph M. Hellerstein, Ryan Huebsch, Boon Thau Loo, Scott

Shenker, and Ion Stoica. Complex queries in dht-based peer-to-peer networks. In

IPTPS ’01: Revised Papers from the First International Workshop on Peer-to-Peer

Systems, pages 242–259, London, UK, 2002. Springer-Verlag.

[59] N.D. Hatziargyriou, A. Dimeas, A.G. Tsikalakis, J.A. Pecas Lopes, G. Kariniotakis,

and J. Oyarzabal. Management of microgrids in market environment. Future Power

Systems, 2005 International Conference on, pages 1–7, 16-18 Nov. 2005.

[60] M.J. Hawthorne and D.E. Perry. Architectural styles for adaptable self-healing

dependable systems. In In Proceedings of IEEE/ACM International Conference on

Software Engineering (ICSE 2005), 2005.

[61] Joseph M. Hellerstein. Programming a parallel future. Technical Report

UCB/EECS-2008-144, EECS Department, University of California, Berkeley, Nov

2008.

[62] Joseph M. Hellerstein, Michael Stonebraker, and James Hamilton. Architecture of

a Database System. Now Publishers Inc., Hanover, MA, USA, 2007.

[63] Thomas A. Henzinger, Benjamin Horowitz, and Christoph Meyer Kirsch. Embedded

control systems development with giotto. In OM ’01: Proceedings of the 2001 ACM

SIGPLAN workshop on Optimization of middleware and distributed systems, pages

64–72, New York, NY, USA, 2001. ACM.

[64] Katja Hose, Christian Lemke, Jana Quasebarth, and Kai-Uwe Sattler. Smurfpdms:

A platform for query processing in large-scale pdms. In Alfons Kemper, Harald Schn-

ing, Thomas Rose, Matthias Jarke, Thomas Seidl, Christoph Quix, and Christoph

Brochhaus, editors, BTW, volume 103 of LNI, pages 621–624. GI, 2007.

[65] R. Huebsch, B. Chun, J. Hellerstein, B. Loo, P. Maniatis, T. Roscoe, S. Shenker,

I. Stoica, and A. Yumerefendi. The architecture of pier: an internet-scale query

processor, 2005.

210 BIBLIOGRAPHY

[66] Ryan Huebsch, Joseph M. Hellerstein, Nick Lanham, Boon Thau Loo, Scott Shenker,

and Ion Stoica. Querying the internet with pier. In vldb’2003: Proceedings of the

29th international conference on Very large data bases, pages 321–332. VLDB En-

dowment, 2003.

[67] Carolyn J. Hursch and Jack L. Hursch. SQL: the structured query language. TAB

Books, Blue Ridge Summit, PA, USA, 1988.

[68] IEC/ISO. IEC61850 Part 7-3: Basic Communication Structure for Substation and

Feeder Equipment - Common Data Classes. IEC, Geneva, Switzerland, 2004.

[69] IEEE Task P754. ANSI/IEEE 754-1985, Standard for Binary Floating-Point Arith-

metic. IEEE, New York, August 12 1985.

[70] A. Ipakchi and F. Albuyeh. Grid of the future. Power and Energy Magazine, IEEE,

7(2):52–62, March-April 2009.

[71] Ali Ipakchi. Implementing the smart grid: Enterprise information integration. Grid-

Interop Forum 2007, 2007.

[72] Márk Jelasity, Alberto Montresor, Gian Paolo Jesi, and Spyros Voulgaris. The

Peersim simulator. http://peersim.sf.net.

[73] Erik L. Johnson and Hillol Kargupta. Collective, hierarchical clustering from dis-

tributed, heterogeneous data. In Revised Papers from Large-Scale Parallel Data

Mining, Workshop on Large-Scale Parallel KDD Systems, SIGKDD, pages 221–244,

London, UK, 2000. Springer-Verlag.

[74] M. Kim, M.J. Damborg, J. Huang, and S.S. Venkata. Wide-area protection us-

ing distributed control and high speed communications. In 14th Power Systems

Computation Conference, 2002.

[75] Hermann Kopetz. Real-Time Systems-Design Principles for Distributed Embedded

Applications. Kluwer Academic publishers, 1997.

[76] Jouni Korhonen. Four ecosystem principles for an industrial ecosystem. Journal of

Cleaner Production, 9(3):253 – 259, 2001.

[77] Niko Kotilainen, Mikko Vapa, Teemu Keltanen, Annemari Auvinen, and Jarkko

Vuori. P2prealm peer-to-peer network simulator, in. In Proc. 11th International

Workshop on Computer-Aided Modeling, Analysis and Design of Communication

Links and Networks, 2006, pages 93–99. Unpublished, 2006.

BIBLIOGRAPHY 211

[78] Stefan Saroiu Krishna P. Gummadi and Steven D. Gribble. King: Estimating latency

between arbitrary internet end hosts. Proceedings of SIGCOMM IMW 2002, 2002.

[79] Bhaskar Krishnamachari, Deborah Estrin, and Stephen B. Wicker. The impact of

data aggregation in wireless sensor networks. In ICDCSW ’02: Proceedings of the

22nd International Conference on Distributed Computing Systems, pages 575–578,

Washington, DC, USA, 2002. IEEE Computer Society.

[80] Philippe Kruchten. The 4+1 view model of architecture. IEEE Softw., 12(6):42–50,

1995.

[81] D. Kucuk, B. Boyrazoglu, and S. Buhan. Pqstream: A data stream architecture for

electrical power quality. In International Workshop on Knowledge Discovery from

Ubiquitous Data Streams, 2007.

[82] Minseok Kwon and Sonia Fahmy. Topology-aware overlay networks for group com-

munication. In NOSSDAV ’02: Proceedings of the 12th international workshop on

Network and operating systems support for digital audio and video, pages 127–136,

New York, NY, USA, 2002. ACM.

[83] Leslie Lamport. The mutual exclusion problem: part i - a theory of interprocess

communication. J. ACM, 33(2):313–326, 1986.

[84] R. Lasseter, A. Akhil., C. Mamay, J. Stephens, J. Dagle, R. Gullromson, A. Me-

liopoulos, R. Yinger, and J. Eto. White paper on integration of distributed energy

resources - the certs microgrid concept. California Energy Comission, 2002.

[85] R.H. Lasseter. Microgrids. Power Engineering Society Winter Meeting, 2002. IEEE,

1:305–308 vol.1, 2002.

[86] Jan Lemeire, Wouter Brissinck, and Erik Dirkx. 1 lookahead accumulation in conser-

vative parallel discrete event simulation. In Proceedings 18th European Simulation

Multiconference, 2008.

[87] R. W. Lewis. Modelling Distributed Control Systems Using IEC 61499. Institution

of Electrical Engineers, Stevenage, UK, UK, 2001.

[88] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in

a hard-real-time environment. J. ACM, 20(1):46–61, 1973.

[89] Jie Liu and E.A. Lee. Timed multitasking for real-time embedded software. Control

Systems Magazine, IEEE, 23(1):65–75, Feb 2003.

212 BIBLIOGRAPHY

[90] Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E. Gay, Joseph M. Heller-

stein, Petros Maniatis, Petros Maniatis, Raghu Ramakrishnan, Timothy Roscoe,

and Ion Stoica. Declarative networking: language, execution and optimization. In

SIGMOD ’06: Proceedings of the 2006 ACM SIGMOD international conference on

Management of data, pages 97–108, New York, NY, USA, 2006. ACM.

[91] Boon Thau Loo, Tyson Condie, Joseph M. Hellerstein, Petros Maniatis, Petros Ma-

niatis, Timothy Roscoe, and Ion Stoica. Implementing declarative overlays. In SOSP

’05: Proceedings of the twentieth ACM symposium on Operating systems principles,

pages 75–90, New York, NY, USA, 2005. ACM.

[92] Boon Thau Loo, Joseph M. Hellerstein, Ion Stoica, and Raghu Ramakrishnan.

Declarative routing: extensible routing with declarative queries. SIGCOMM Com-

put. Commun. Rev., 35(4):289–300, 2005.

[93] J.A.P. Lopes, C.L. Moreira, and A.G. Madureira. Defining control strategies for

microgrids islanded operation. Power Systems, IEEE Transactions on, 21(2):916–

924, May 2006.

[94] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to develop

domain-specific languages. ACM Comput. Surv., 37(4):316–344, 2005.

[95] Jayadev Misra. Distributed discrete-event simulation. ACM Comput. Surv.,

18(1):39–65, 1986.

[96] Jörg P. Müller. The Design of Intelligent Agents: A Layered Approach. Springer-

Verlag New York, Inc., Secaucus, NJ, USA, 1997.

[97] P. Naur and B. Randell. Software Engineering: Report of a Conference Sponsored

by the NATO Science Committee. Scientific Affairs Division, NATO, 1969.

[98] Linda Northrop, Peter Feiler, Richard P. Gabriel, John Goodenough, Rick Linger,

Tom Longstaff, Rick Kazman, Mark Klein, Douglas Schmidt, Kevin Sullivan, and

Kurt Wallnau. Ultra-Large-Scale Systems: The Software Challenge of the Future.

Carnegie Mellon University, 2006.

[99] The Network Simulator ns-2 (v2.1b8a). http://www.isi.edu/nsnam/ns/, October

2001.

[100] Open Application Integration Specification (OAGIS). Open Application Integration

Specification (OAGIS). Open Application Group, 2008.

BIBLIOGRAPHY 213

[101] M. Tamer Oezsu and Patrick Valduriez. Principles of Distributed Database Systems.

Prentice Hall, 1999.

[102] F. Van Overbeeke and V. Roberts. Active networks as facilitators for embedded

generation. Cogeneration and on-site power production,, 3, 2002.

[103] Manish Parashar. Autonomic Computing: Concepts, Infrastructure, and Applica-

tions. Taylor & Francis, Inc., Bristol, PA, USA, 2007.

[104] Geoffrey Parker and Marshall W. Van Alstyne. Information complements, substi-

tutes, and strategic product design. In ICIS ’00: Proceedings of the twenty first

international conference on Information systems, pages 13–15, Atlanta, GA, USA,

2000. Association for Information Systems.

[105] H. Van Dyke Parunak. Multiagent systems: a modern approach to distributed artifi-

cial intelligence, chapter Industrial and practical applications of DAI, pages 377–421.

MIT Press, Cambridge, MA, USA, 1999.

[106] Dimitrios Pendarakis, Sherlia Shi, Dinesh Verma, and Marcel Waldvogel. Almi:

an application level multicast infrastructure. In USITS’01: Proceedings of the 3rd

conference on USENIX Symposium on Internet Technologies and Systems, pages

5–5, Berkeley, CA, USA, 2001. USENIX Association.

[107] P. Piagi and R.H. Lasseter. Autonomous control of microgrids. Power Engineering

Society General Meeting, 2006. IEEE, pages 8 pp.–, 18-22 June 2006.

[108] Peter R. Pietzuch and Jean Bacon. Hermes: A distributed event-based middleware

architecture. In ICDCSW ’02: Proceedings of the 22nd International Conference on

Distributed Computing Systems, pages 611–618, Washington, DC, USA, 2002. IEEE

Computer Society.

[109] Joseph B. Pine. Mass customization: the new frontier in business competition.

Harvard Business School, Boston, Mass., 1993.

[110] Vivian Prinz, Florian Fuchs, Peter Ruppel, Christoph Gerdes, and Alan Southall.

Adaptive and fault-tolerant service composition in peer-to-peer systems. In DAIS,

pages 30–43, 2008.

[111] James D. Proctor and Brendon M. Larson. Ecology, complexity, and metaphor.

BioScience, 55(12):1065–1068, December 2005.

[112] Raghu Ramakrishnan and Jeffrey D. Ullman. A survey of research on deductive

database systems. Journal of Logic Programming, 23(2):125–149, 1993.

214 BIBLIOGRAPHY

[113] Ananth Ranganathan. The levenberg-marquardt algorithm, 2004.

[114] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Schenker.

A scalable content addressable network. Technical Report TR-00-010, Intel Research

Berkeley, New York, NY, USA, 2001.

[115] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Schenker.

A scalable content-addressable network. In SIGCOMM ’01: Proceedings of the 2001

conference on Applications, technologies, architectures, and protocols for computer

communications, pages 161–172, New York, NY, USA, 2001. ACM.

[116] Eric S. Raymond. The Cathedral and the Bazaar. O’Reilly & Associates, Inc., 2001.

[117] Christian Rehtanz. Autonomous Systems and Intelligent Agents in Power System

Control and Operation (Power Systems). SpringerVerlag, 2003.

[118] M. Ripeanu. Peer-to-peer architecture case study: Gnutella networks. In P2P

’01: Proceedings of the First International Conference on Peer-to-Peer Computing,

page 99, Washington, DC, USA, 2001. IEEE Computer Society.

[119] Daniel. Robey. Designing organizations. Irwin, Homewood, IL, 3rd ed. edition,

1991.

[120] Vincent Roca and Ayman El-Sayed. A Host-Based Multicast (HBM) Solution for

Group Communications. In ICN ’01: Proceedings of the First International Confer-

ence on Networking-Part 1, pages 610–619, London, UK, 2001. Springer-Verlag.

[121] Jean C. Rochet and Jean Tirole. Two-sided markets: A progress report. RAND

Journal of Economics, 37:645–667, 2006.

[122] Jean-Charles Rochet and Jean Tirole. Platform competition in two-sided markets.

Journal of the European Economic Association, 1(4):990–1029, 06 2003.

[123] Stephan Roser. Designing and Enacting Cross-organisational Business processes:

A Model-driven, Ontology-based Approach. PhD thesis, Department of Computer

Science University of Augsburg, 2008.

[124] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object loca-

tion, and routing for large-scale peer-to-peer systems. Lecture Notes in Computer

Science, 2218:329–350, 2001.

[125] Antony I. T. Rowstron, Anne-Marie Kermarrec, Miguel Castro, and Peter Druschel.

Scribe: The design of a large-scale event notification infrastructure. In NGC ’01:

BIBLIOGRAPHY 215

Proceedings of the Third International COST264 Workshop on Networked Group

Communication, pages 30–43, London, UK, 2001. Springer-Verlag.

[126] Pieter Schavemaker and Lou van der Sluis. Electrical Power System Essentials.

John Wiley & Sons Ltd, 2008.

[127] S. Schoenherr. Wireless technologies for distribution automation. Transmission and

Distribution Conference and Exposition, 2003 IEEE PES, 1:375–378 Vol.1, Sept.

2003.

[128] B. Segall and D. Arnold. Elvin has left the building: A publish/subscribe notification

service with quenching. In AUUG97, 1997.

[129] Srinarayan Sharma, Vijayan Sugumaran, and Balaji Rajagopalan. A framework for

creating hybrid-open source software communities. Inf. Syst. J., 12(1):7–26, 2002.

[130] Kazuyuki Shudo, Yoshio Tanaka, and Satoshi Sekiguchi. Overlay weaver: An overlay

construction toolkit. Comput. Commun., 31(2):402–412, 2008.

[131] Atul Singh, Petros Maniatis, Timothy Roscoe, Timothy Roscoe, and Peter Druschel.

Using queries for distributed monitoring and forensics. SIGOPS Oper. Syst. Rev.,

40(4):389–402, 2006.

[132] Adam Smith and Alan B. Krueger. The Wealth of Nations. Bantam Classics, 2003.

[133] Diomidis Spinellis. Notable design patterns for domain-specific languages. J. Syst.

Softw., 56(1):91–99, 2001.

[134] F. Stäber, C. Gerdes, and J.P. Müller. A peer-to-peer-based service infrastructure

for distributed power generation. In Proc. of 17th IFAC World Congress, Seoul,

Korea, Intl.l Federation of Automatic Control, 2008.

[135] Herbert. Stachowiak. Allgemeine Modelltheorie. Springer, Wien ; New York, 1973.

[136] Ralf Steinmetz and Klaus Wehrle, editors. Peer-to-Peer Systems and Applications,

volume 3485 of Lecture Notes in Computer Science. Springer, 2005.

[137] D.B. Stewart, R.A. Volpe, and P.K. Khosla. Design of dynamically reconfigurable

real-time software using port-based objects. Software Engineering, IEEE Transac-

tions on, 23(12):759–776, Dec 1997.

[138] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakr-

ishnan. Chord: A scalable peer-to-peer lookup service for internet applications.

216 BIBLIOGRAPHY

In SIGCOMM ’01: Proceedings of the 2001 conference on Applications, technolo-

gies, architectures, and protocols for computer communications, pages 149–160, New

York, NY, USA, 2001. ACM.

[139] Michael Stonebraker, Paul M. Aoki, Witold Litwin, Avi Pfeffer, Adam Sah, Jeff

Sidell, Carl Staelin, and Andrew Yu. Mariposa: A wide-area distributed database

system. VLDB Journal: Very Large Data Bases, 5(1):48–63, 1996.

[140] R. Strom, G. Banavar, T. Chandra, M. Kaplan, K. Miller, B. Mukherjee, D. Stur-

man, and M. Ward. Gryphon: An information flow based approach to message

brokering. In International Symposium on Software Reliability Engineering (ISSRE

’98), 1998.

[141] D. Stutzbach and R. Rejaie. Towards a better understanding of churn in peer-to-

peer networks. Technical report, Department of computer science, University of

Oregon, November 2004.

[142] Hbase Development Team. Hbase: Bigtable-like structured storage for hadoop hdfs,

2007.

[143] Nyik San Ting and Ralph Deters. 3ls a peer-to-peer network simulator. Peer-to-Peer

Computing, IEEE International Conference on, 0:212, 2003.

[144] D.A. Tran, K.A. Hua, and T.T. Do. A peer-to-peer architecture for media streaming.

Selected Areas in Communications, IEEE Journal on, 22(1):121–133, Jan. 2004.

[145] Richard Veryard. Component-based business: plug and play. Springer, 2000.

[146] Birgit Vogel-Heuser, Gunther Kegel, Klaus Bender, and Klaus Wucherer. Global in-

fomation architecture for industrial automation. Automatisierungstechnische Praxis,

51:108–115, 2009.

[147] A. Vojdani. Smart integration. Power and Energy Magazine, IEEE, 6(6):71–79,

November-December 2008.

[148] Leonard Waverman and Esen Sirel. European telecommunications markets on the

verge of full liberalization. The Journal of Economic Perspectives, 11(4):113–126,

1997.

[149] Yuan Wei, Vibha Prasad, and Sang H. Son. Qos management of real-time data

stream queries in distributed environments. In ISORC ’07: Proceedings of the 10th

IEEE International Symposium on Object and Component-Oriented Real-Time Dis-

tributed Computing, pages 241–248, Washington, DC, USA, 2007. IEEE Computer

Society.

BIBLIOGRAPHY 217

[150] Yuan Wei, Sang H. Son, and John A. Stankovic. Rtstream: Real-time query process-

ing for data streams. In ISORC ’06: Proceedings of the Ninth IEEE International

Symposium on Object and Component-Oriented Real-Time Distributed Computing,

pages 141–150, Washington, DC, USA, 2006. IEEE Computer Society.

[151] Gio Wiederhold. Database Design. McGraw-Hill Book Company, 1977.

[152] Wikipedia. Energiewirtschaftsgesetz — wikipedia, die freie enzyklopdie, 2009. [On-

line; Stand 18. Februar 2010].

[153] Wikipedia. Finanzsystem — wikipedia, die freie enzyklopdie, 2009. [Online; Stand

18. Februar 2010].

[154] Wikipedia. System — wikipedia, the free encyclopedia, 2009. [Online; accessed

2-November-2009].

[155] Wikipedia. Informationsarchitektur — wikipedia, die freie enzyklopdie, 2010. [On-

line; Stand 21. April 2010].

[156] Annita N. Wilschut and Peter M. G. Apers. Dataflow query execution in a parallel

main-memory environment. In PDIS ’91: Proceedings of the first international con-

ference on Parallel and distributed information systems, pages 68–77, Los Alamitos,

CA, USA, 1991. IEEE Computer Society Press.

[157] W. Yang and N. Abu-Ghazaleh. Gps: a general peer-to-peer simulator and its use

for modeling bittorrent. In Modeling, Analysis, and Simulation of Computer and

Telecommunication Systems, 2005. 13th IEEE International Symposium on, pages

425–432, Sept. 2005.

[158] Franco Zambonelli and Mirko Viroli. Architecture and metaphors for eternally

adaptive service ecosystems. Intelligent Distributed Computing, Systems and Appli-

cations, 162/2008:23–32, 2008.

[159] Rongmei Zhang and Y. Charlie Hu. Borg: a hybrid protocol for scalable application-

level multicast in peer-to-peer networks. In NOSSDAV ’03: Proceedings of the 13th

international workshop on Network and operating systems support for digital audio

and video, pages 172–179, New York, NY, USA, 2003. ACM.

[160] Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C. Rhea, Anthony D. Joseph,

and John D. Kubiatowicz. Tapestry: A resilient global-scale overlay for service

deployment. IEEE Journal on Selected Areas in Communications, 22(1):41–53,

January 2004.

218 BIBLIOGRAPHY

[161] Shelley Q. Zhuang, Ben Y. Zhao, Anthony D. Joseph, Randy H. Katz, and John D.

Kubiatowicz. Bayeux: an architecture for scalable and fault-tolerant wide-area data

dissemination. In NOSSDAV ’01: Proceedings of the 11th international workshop

on Network and operating systems support for digital audio and video, pages 11–20,

New York, NY, USA, 2001. ACM.

Appendices

Appendix A

Cost Functions

costlatency(Q) = maxi(costresponsetime(qi)) (A.1)

with qi all sub-queries required to process Q.

costresponsetime(Q) = ta − ts (A.2)

with ta the query execution starts and ts the time, the first result arrived.

costthroughput(Q) = wthroughput ×max(1, e
ts−tm

ts) (A.3)

with ts the throughput specified and ta throughput measured.

costreliability(Q) = wthroughput × e
ts−tm

ts (A.4)

with ts MTBF specified and tm MTBF measured.

costtrust(Q) = wtrust × δ(trustlevel) (A.5)

where δ(x) is 1 iff trustlevel = local trust level and ∞ otherwise.

Appendix B

SCSQL Grammar

s ta tement

:

(f u n c t i o nDe f)∗
(s e l e c t S t a t emen t)+

EOF

−> ˆ(PROGRAM (fun c t i o nDe f)∗ (s e l e c t S t a t emen t)+)

;

f u n c t i o nDe f

:

FUNCTION

f unc t i onType

I d e n t i f i e r

func t i onHead

func t i onBody

−> ˆ(FUNCTION ˆ(FUNCTION NAME I d e n t i f i e r)

func t i onHead

func t i onBody ˆ(FUNCTION RETURN func t i onType))

;

f unc t i onType

:

INT | FLOAT | STRING

;

f unc t i onHead

:

’ (’

I d e n t i f i e r

(COMMA I d e n t i f i e r)∗
’) ’ −> ˆ(FUNCTION PARAMETERS (I d e n t i f i e r)+)

;

222

f unc t i onBody

:

LCURLY

(va r i a b l eTypeDe f)∗
(subStatement)+

RETURN I d e n t i f i e r SEMI

RCURLY −> ˆ(FUNCTION BODY (va r i a b l eTypeDe f)∗ (subStatement)+ ˆ(RETURN I d e n t i f i e r))

;

v a r i a b l eTypeDe f

:

INT I d e n t i f i e r SEMI −> ˆ(INTEGER DEF I d e n t i f i e r)

| FLOAT I d e n t i f i e r SEMI −> ˆ(FLOAT DEF I d e n t i f i e r)

;

subStatement

:

a s s i gnmentExpr −> ˆ(as s i gnmentExpr)

| f o rEachStatement −> ˆ(fo rEachSta tement)

| i f S t a t emen t −> ˆ(i f S t a t emen t)

;

a s s i gnmentExpr

:

I d e n t i f i e r ’= ’ c o n d i t i o n a l E x p r e s s i o n SEMI

−> ˆ(ASSIGNMENT I d e n t i f i e r c o n d i t i o n a l E x p r e s s i o n)

;

fo rEachSta tement

:

FOREACH

I d e n t i f i e r

forEachBody −> ˆ(FOREACH I d e n t i f i e r forEachBody)

;

forEachBody

:

LCURLY

(subStatement)+

RCURLY −> ˆ(FOREACH BODY (subStatement)+)

;

i f S t a t emen t

:

IF

LPAREN

c o n d i t i o n a l E x p r e s s i o n

RPAREN

i fBody −> ˆ(IF c o n d i t i o n a l E x p r e s s i o n i fBody)

;

B SCSQL Grammar 223

i fBody

:

LCURLY

(subStatement)+

RCURLY −> ˆ(IF BODY (subStatement)+)

;

c o n d i t i o n a l E x p r e s s i o n

:

o r C o n d i t i o n a l E x p r e s s i o n

;

o r C o n d i t i o n a l E x p r e s s i o n

:

a n dCond i t i o n a l E x p r e s s i o n

(’ | | ’ ˆ a n dCond i t i o n a l E x p r e s s i o n)∗
;

a n dCond i t i o n a l E x p r e s s i o n

:

c ompa r i s o nCond i t i o n a l E x p r e s s i o n

(’&&’ ˆ c ompa r i s o nCond i t i o n a l E x p r e s s i o n)∗
;

c ompa r i s o nCond i t i o n a l E x p r e s s i o n

:

a r i t hm e t i c E x p r e s s i o n

((EQUALTOˆ

| GREATERTHANOREQUALTOˆ

| LESSTHANOREQUALTOˆ

| NOTEQUALTOˆ

| GREATERTHANˆ

| LESSTHANˆ)

a r i t hm e t i c E x p r e s s i o n)∗
;

a r i t hm e t i c E x p r e s s i o n

:

a d d i t i v e E x p r e s s i o n

(b i tw i s eOp e r a t o r ˆ a d d i t i v e E x p r e s s i o n)∗
;

a d d i t i v e E x p r e s s i o n

:

mu l tD i vExp r e s s i o n ((’+ ’ ˆ | ’− ’ ˆ) mu l tD i vExp r e s s i on)∗
;

mu l tD i vExp r e s s i o n

:

expre s s i onAtom ((STARˆ | DIVIDEˆ | MODˆ) expre s s i onAtom)∗
;

224

expre s s i onAtom

:

Number

| I d e n t i f i e r

| LPAREN! c o n d i t i o n a l E x p r e s s i o n RPAREN!

;

s e l e c t S t a t emen t

:

(a s s i gnment)?

s e l e c t C l a u s e

f romClause

(whereC lause)?

−> ˆ(SELECT STATEMENT (as s i gnment)? s e l e c t C l a u s e f romClause (whereC lause)?)

;

a s s i gnment

:

I d e n t i f i e r

ASSIGN

−> ˆ(ASSIGNMENT I d e n t i f i e r)

;

s e l e c t C l a u s e

: SELECT s e l e c t L i s t −> s e l e c t L i s t

;

s e l e c t L i s t o p t i o n s { k=2; }
:

s e l e c t I t em (COMMA s e l e c t I t em)∗
−> ˆ(WHAT CLAUSE (s e l e c t I t em)+)

;

s e l e c t I t em op t i o n s {k=2;}
:

s e l e c t E x p r e s s i o n (AS I d e n t i f i e r)?

−> ˆ(SELECT ITEM s e l e c t E x p r e s s i o n (ˆ (AS I d e n t i f i e r)) ?)

;

s e l e c t E x p r e s s i o n op t i o n s {k=2;}
:

tab leCo lumn −> ˆ(TABLE COLUMN tableCo lumn)

| f u n c t i o nR e f e r e n c e

;

ca tch [NoV i ab l eA l tExc ep t i on e]

{
e . g r ammarDec i s i onDe s c r i p t i on = ” E r r o r p a r s i n g s e l e c t i tem : ” ;

throw e ;

}

B SCSQL Grammar 225

tab leCo lumn op t i o n s {k = 2 ;}
:

I d e n t i f i e r

| I d e n t i f i e r DOT I d e n t i f i e r −> ˆ(I d e n t i f i e r I d e n t i f i e r)

;

f u n c t i o nR e f e r e n c e

:

I d e n t i f i e r

(LPAREN

(

tab leCo lumn

(COMMA tableCo lumn)∗
)

RPAREN)

−> ˆ(FUNCTION ˆ(FUNCTION NAME I d e n t i f i e r)

ˆ(FUNCTION PARAMETERS (tab leCo lumn)+)

)

;

f romClause

:

FROM t a b l e S ou r c e

(COMMA tab l e Sou r c e)∗
(WINDOW LPAREN w i ndowSp e c i f i c a t i o n RPAREN)?

(RECEIVER EQUAL r e c e i v e r S p e c i f i c a t i o n)?

−>ˆ(FROM CLAUSE t ab l e Sou r c e (t a b l e S ou r c e)∗
(w i n d owSpe c i f i c a t i o n)?

(r e c e i v e r S p e c i f i c a t i o n)?

)

;

t a b l e S ou r c e

:

I d e n t i f i e r

;

ca tch [NoV i ab l eA l tExc ep t i on e]

{
e . g r ammarDec i s i onDe s c r i p t i on = ” E r r o r p a r s i n g t a b l e s ou r c e : ” ;

throw e ;

}

w i ndowSp e c i f i c a t i o n

:

Number SEMI Number SEMI Number −> ˆ(WINDOW SPECIFICATION Number Number Number)

;

r e c e i v e r S p e c i f i c a t i o n

:

I d e n t i f i e r −> ˆ(RECEIVER SPECIFICATION I d e n t i f i e r)

;

226

whereC lause

:

WHERE whe r eCond i t i o n a l −> ˆ(WHERE CLAUSE whe r eCond i t i o n a l)

;

whe r eCond i t i o n a l

:

whereAndCondi t ion

(ORˆ whereAndCondi t ion)∗
;

whereAndCondi t ion

:

whereSubCond i t ion

(ANDˆ whereSubCond i t ion)∗
;

whereSubCond i t ion

:

(NOT)?

((LPAREN whe r eCond i t i o n a l RPAREN) => LPAREN! whe r eCond i t i o n a l RPAREN!

| whe r eP r ed i c a t e

)

;

whe r eP r ed i c a t e

:

whe r eExp r e s s i on (

compar i sonOpera to r ˆ whe r eExp r e s s i on

| ’ l i k e ’ S t r i n g L i t e r a l

| ’ i n ’ LPAREN (cons tantSequence) RPAREN

)

;

whe r eExp r e s s i on

:

whe r eMu l tExp r e s s i on

((PLUSˆ | MINUSˆ) whe r eMu l tExp r e s s i on)∗
;

whe r eMu l tExp r e s s i on

:

wh e r eB i tw i s eE xp r e s s i o n

((STARˆ | DIVIDEˆ | MODˆ) whe r eB i tw i s eE xp r e s s i o n)∗
;

wh e r eB i tw i s eE xp r e s s i o n

:

whereAtomExpress ion

(b i tw i s eOp e r a t o r ˆ whereAtomExpress ion)∗
;

B SCSQL Grammar 227

whereAtomExpress ion

:

(una ryOpe ra to r)?

(

con s t an t

| LPAREN! whe r eExp r e s s i on RPAREN!

| tab leCo lumn

)

;

cons tan tSequence

:

c on s t an t

(COMMA cons t an t)∗
;

c on s t an t

:

Number

| S t r i n g L i t e r a l

| boo l eanVa lue

;

una ryOpera to r

:

MINUS | TILDE

;

b i n a r yOpe r a t o r

:

a r i t hme t i cOp e r a t o r | b i tw i s eOp e r a t o r

;

a r i t hme t i cOp e r a t o r

:

PLUS | MINUS | STAR | DIVIDE | MOD

;

b i tw i s eOp e r a t o r

:

AMPERSAND | TILDE | BITWISEOR | BITWISEXOR

;

compar i sonOpera to r

:

EQUAL | NOTEQUAL | LESSTHANOREQUALTO

| LESSTHAN | GREATERTHANOREQUALTO | GREATERTHAN

;

l o g i c a l O p e r a t o r

:

’ a l l ’ | ’ and ’ | ’ any ’ | ’ e x i s t s ’ | ’ i n ’ | ’ l i k e ’ | ’ not ’ | ’ o r ’ | ’ some ’

;

228

boo l eanVa lue

:

’ t r u e ’ | ’ f a l s e ’

;

DOT : ’ . ’ ;

COLON : ’ : ’ ;

COMMA : ’ , ’ ;

SEMI : ’ ; ’ ;

LPAREN : ’ (’ ;

RPAREN : ’) ’ ;

LSQUARE : ’ [’ ;

RSQUARE : ’] ’ ;

LCURLY : ’ { ’ ;

RCURLY : ’ } ’ ;

EQUAL : ’=’ ;

EQUALTO : ’==’ ;

NOTEQUAL : ’<> ’ ;

NOTEQUALTO : ’ != ’ ;

LESSTHANOREQUALTO : ’<=’ ;

LESSTHAN : ’< ’ ;

GREATERTHANOREQUALTO : ’>=’ ;

GREATERTHAN : ’> ’ ;

f ragment

L e t t e r

: ’ a ’ . . ’ z ’ | ’ ’ | ’A ’ . . ’Z ’

;

f ragment

D i g i t

:

’ 0 ’ . . ’ 9 ’

;

S t r i n g L i t e r a l

:

’ \ ’ ’ (˜ ’ \ ’ ’)∗ ’ \ ’ ’ (’ \ ’ ’ (˜ ’ \ ’ ’)∗ ’ \ ’ ’)∗
;

Number

:

(D i g i t)+ (DOT (D i g i t)∗) ?

;

I d e n t i f i e r

:

L e t t e r (L e t t e r | D i g i t)∗
;

B SCSQL Grammar 229

WS

:

(’ ’ | ’ \ r ’ | ’ \ t ’ | ’ \n ’ | ’ \ r \n ’) { s k i p () ; }
;

ASSIGN

:

’−> ’

;

Appendix C

Value Networks

Two-sided networks also referred to as two-sided markets are economic networks that link

two distinct user groups in order to engage in some form of transaction. Two-sided markets

can be found in various industries. The most well known example is the credit card which

connects consumers with merchants. Other examples include Web 2.0 platforms, search

engines and newspapers which link, e.g. advertises and readers or users. In general two-

sided networks can be found in both product and service industries. The concept that

implements a two-sided network is called a platform. It provides an infrastructure and

basic services to facilitate transactions between the user groups. The platform aims to

attract each user group and charges for its core services.

In contrast to traditional value chains where value is generated from left to right, in

two-sided networks cost and revenue flows in both directions (Figure C.1). Hence value

is generated from the interaction of the two user groups. The platform, acts as mediator

and often takes a share off each transaction. Both user groups may be charged equally

or the usage of one user group may be subsidised, e.g. the merchant pays a fee for each

Platform

User Group A User Group B

Attraction

cost

revenue revenue

cost

Figure C.1: Two-sided markets. Flow of revenue and cost. Value creation.

C Value Networks 231

transaction, while for the buyer the transaction is free of charge. Platforms may also raise

a membership fee which is neither trade nor usage based.

The phenomenon that the platform leverages, i.e. the attraction of both user groups to

each other is called network effect. The value of the platform for a user is a function

of the size of the user base on the other side of the network. Value increases when the

platform matches demand from both sides. For example, consider the Microsoft operating

system: the more people use the operating system, the more attractive it is for software

developers to offer their products on the Microsoft platform. On the other hand, a large

variety of software products increases the attractiveness for the platform user. Other

popular examples are game platforms such as Atari, Nintendo, Play Station, Microsoft

X-Box which try to attract both gamers and game developers.

Supported by the network effects, successful platforms achieve higher increases in returns

of scale. Due to the increased attractiveness, users will pay more for access to a bigger

network. In turn this yields higher margins with growing numbers of users. This behaviour

is in contrast to traditional businesses where growth of the user base leads to decreased

margins [39].

Cultural change and technological advancements such as the Internet have boosted the

importance of platforms drastically. Popular platforms such as the Google search engine,

link millions of advertisers and web searchers world wide and generate multi billion Euro

volumes. However, two-sided markets also appear in other industries such as manufac-

turing and utilities. With liberalised power infrastructures and the challenges inherent to

integration of renewable sources, electricity markets migrate towards platforms that link

electricity consumers and producers. Rochet and Tirole [122] provide further examples of

successful two-sided markets.

In recent years research on two-sided markets has been intense. An overview of the field

is given by Rochet et. al. [121]. A considerable body of research has been conducted on

corresponding strategies e.g. Eisenmann [39], Armstrong [6] and Rochet [122] as well as

Parker [104]. Platforms where more than two distinct user groups participate, implement

multi-sided markets. The theory for two-sided markets can be generalised to multi-sided

markets [6].

A prerequisite for successful implementation of a two-sided market is to leverage the

network effects. This can be achieved by choosing an appropriate incentive scheme, e.g.

pricing (embership fee or usage based). Moreover, the right balance between subsidisation

and charging must be tuned to the target user groups [39].

Appendix D

Acronyms

ACID Atomicity, Consistency, Integrity and Durability

AGC Automatic Generation Control

ALM Application Layer Multicast

CMB Chandry Misra Bryant (protocol)

DER Distributed Energy Resource

DHT Distributed Hash Table

DS Distributed Storage (energy)

DSL Domain Specific Language

DSMS Data Stream Management System

EBNF Enhanced Backus-Naur Form

EDF Earliest Deadline First

EEG Erneuerbare Energien Gesetz

EMS Energy Management System

ERP Enterprise Resource Planning

GFS Google File System

HMI Human Machine Interface

HV High Voltage

D Acronyms 233

IC Information and Communication

ICT Information and Communication Technology

IDE Integrated Development Environment

IP Internet Protocol

ISP Internet Service Provider

LFC Load Frequency Control

LV Low Voltage

MES Manufacturing Execution System

MST Minimum Spanning Tree

OSI Open System Interconnection Reference Model

OSM Open Source Model

P2P Peer-to-Peer

PLC Programmable Logic Controller

PQ Power Quality

RDBMS Relational Database Management System

RM Rate Monotonic

RTT Round Trip Time

RTU Remote Terminal Unit

SCADA Supervisory Control And Data Acquisition

SCSQL Service eCoSystem Query Language

SQL Structured Query Language

T&D Transmission and Distribution

TM Time Mutlitasking

ULS Ultra Large Scale Systems

WAC Wide Area Control

234

WAM Wide Area Monitoring

WCET Worst Case Execution Time

Curriculum Vitae
Christoph Gerdes Innere Wiener Str. 24 81667 München +49 179 9485406 c.gerdes@gmail.com

Ausbildung

08.1988–06.1997 Ludwig-Georgs-Gymnasium, Darmstadt (Humanistisches Gymnasium)

Juni 1997 Abitur

08.1997–09.1998 Zivildienst Deutsches Rotes Kreuz Rettungsdienst

10.1998–06.2004 Studium des Informatik-Ingenieurwesens, Technische Universität Hamburg Harburg.
Schwerpunkte im Hauptstudium: Software Systeme, Verteilte Systeme, Ubiquitous
Computing. Thema der Diplomarbeit: Aggregation in Interconnected Sensor Net-
works

8.2002–9.2003 Internationaler Master Studiengang Complex Adaptive Systems, Technische Univer-
sität Chalmers in Göteborg Schweden.
Schwerpunkte: Simulation von komplexen Systemen, Künstliche Intelligenz, evolutio-
näre Methoden.

10.2003 Master Of Science in Engineering mit Auszeichnung

06.2004 Dipl. -Ing., Informatik-Ingenieurwesen

04.2005 Beginn der Promotion

Siemens AG

10.2004–09.2006 Research Scientist, Siemens AG, Corporate Technology

10.2006–09.2008 Projektleiter, Siemens AG, Corporate Technology

10.2008–heute Program Manager, Siemens AG, Corporate Technology

Stipendien

Erasmus Auslandsstipendium

Ditze Stipendium

Adlerbertska Hospitiefonden Scholarship

Siemens Junior Top Talent

Besondere Kentnisse

Sprachen Englisch fließend in Schrift und Sprache (TOEFL-Score 270 im Sommer 2002)

Schwedischkenntnisse

Französisch Grundkenntnisse

München, 31. Mai 2010

1

