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Abstract We present an approach for integrated decision making a€kehgents
in urban traffic systems. Planning process for a vehicle tageseparated into two
stages: strategic planning for selection of the optimale@und tactical planning for
passing the current street in the most optimal manner. \éehdating is considered
as a stochastic shortest path problem with imperfect krgdeabout network con-
ditions. Tactical planning is considered as a problem dabalrative learning with
neighbor vehicles. We present planning algorithms for Istelges and demonstrate
interconnections between them; as well, an example itesrhow the proposed
approach may reduce travel time of vehicle agents in urlzdfictr

1 Introduction

The application of multi-agent modeling and simulationraffic management and
control problems becomes more relevant as intelligens&sifunctions and car-to-
X communication pave the way to a new generation of intefligeetworked traffic
infrastructure. Typically traffic environments are redathin a centralized manner
using traffic lights, traffic signs and other control elenseMulti-agent traffic sys-
tems are modeled with autonomous participants (vehickesich intend to reach
their goals (destinations) and act individually accordimgheir own interests.

Previous research in this area has mostly concentrateaific tights regulation
methods, traffic lights agent architecture, coordinatiot decision making mecha-
nisms ([5]). Multi-agent reinforcement learning (MARL)rfooordination of traffic
lights was applied by Bazzan, Lauer and others ([3], [4]).
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In contrast, there is less research on individual driverlsiElt and architectures
of "intelligent vehicle” agents: existing research is nip$bcused on mesoscopic
models for travel demand planning [2] or adaptive cruiserdi6].

We consider a structure of decision making of a vehicle agpeamn urban traffic
environment. A vehicle environment is presented as a @idegtaphG = (V,E),
where nodes and edges represent intersections and sweetspondingly. Denote
N(g) C E a set of edges, which start from the node, where the edgads. We
consider the discrete linear model titne 0,1,2, .. ..

We suppose that each vehiglat any timet is located on some edg(t) € E.

A relative position of the vehiclg on the edgel (t) at timet is defined as a distance
to the end of the edge (t) €0,...,d(el (t)) — 1. Letli(t) € 1,...,I(el(t)) be a lane,
vi(t) be a speed of the vehicjeat timet.

The complete state of a vehicle is given by a tuple, congjstinredge, relative

position on the edge, lane, speed and traffic light time:

sl(t) =< el (t),x) (1), 10 (t), v (t),th(t) > . (1)

The goal of a vehicle is to reach its destination as quicklp@ssible.

Planning process for a vehicle agent is separated into @mgest strategic plan-
ning (SP) for selection of the optimal route and tacticahpiag (TP) for passing
the current street in the most optimal manner. _

During SP, vehicle agents plan the optimal strategic patigy(el (t),11(t)) €
N(ej(t)), which gives the next edge in the fastest path after the edge Vehicles
plan their routes individually, based on historical andiatinformation about edge
travel times, applying a modification of Stochastic Shdrg=gh Problem.

During TP, vehicle agents plan their operative decisiorgetiter with other
agents. Vehicles on one edge plan their actiaas< Avi,All >, whereAvl is a
speed changél € {—1,0,1} is a lane change, in order to minimize travel time of
the whole group by applying DEC-MARL to learn the optimaltieal policy 7§-.

The integrated policy of a vehiclg¢ consists of strategic and tactical policy
) =< TG, g >

The paper is organized as follows. In Section 2 we considdenying planning
algorithms: Section 2.1 describes SP, Section 2.2 TP. Itid®e8 we provide first
experimental results. Section 4 concludes the paper argestgfuture work.

2 Planning for the vehicle agent

2.1 Strategic Planning

In this section we present the method for SP of a vehicle agémtmodify the al-
gorithm R-SSPPR [7] for calculation of the Stochastic SéstrPath with imperfect
information. Agents make their SP individually, withoutopration.
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Let 'I'iJ be dependent random travel times of the agethtrough the edges €
E, Tl ={T}.T),...,Ti}. We assume that the distribution f is unknown, only
a sample of travel time realization6 = {X1,X,..., X} is available, where§ =
{Xi.j},i =1,...,neis a set of travel time values for all edges for th# historical
reaIization,piJ is a probability that-th realization takes place for the aggnt

Let 1)(t) be the information, available to the vehiglat timet, which consists
of known travel times; it is a set of everitgt) = U ce in(t){-ﬁj =t/}, whereE] ()
is a set of edges, which travel times are known.

The informationl I (t) is regularly supplemented. Suppose that the travel time at
the edges, € E becomes known to the vehicjeat timeT. It can calculate the pos-
terior conditional probabilitie®{T! = X,}, v=1,...,k by using Bayes’ formula:

PLTT = XU (0) 1 ()} = ZP(T = XU (T PUID)TT =X H(T)). (2)

whereZ is a normalizing constant, ensuring that the sum of all pastprobabilities
is equal to 1)) (1) = (") U{T{ =t}

Let us denotert;, (el (t),1(t)) € N(el(t)) a decision rule about the edge after
el(t) for the agentj in its path. For its calculation, we use dynamic programming
in this stochastic case with imperfect information. Dengtég, | (t)) an expected
travel time of the vehiclg from the beginning of the edg® to the destination edge
e,d under the decision rulg. The following recurrent equation is true:

), if = ef,

t! +Ep V(i (e,11(t)), )] otherwise ®)

v,i<a,li<t>>={

where the expectation is taken over all possible futurerinégion setd].

Then we need to minimize (3) over all possible next edgesdtmutation of the
optimalV*I(g,11(t)). and the optimal policyzy! (g, 11 (t)).

However, there is some difficulty in calculation of the exjadion Ej; over all
possible future information selts. For this purpose, we need to consider all possible
travel times of the edges ¢ E/ (). In order to avoid this difficulty, we use the
resampling of future values of travel times ([1]). We go witte probability 2-¢
to { steps forward and extract according to the probabiléE! = X;[1!(t)} one
valueXy, for the travel timeT,/, which is added to the sét. Then the probabilities
P{Ti=X]li(t),I1} are updated according to (2). This procedure is repaatetes,
and an average is accepted as the expectEﬁpﬁi (8, 11).

SP consists of two stages: pre-planning and routing. Duynieeplanning, values
V*i(e,1(t)) andrii (e, 11(t)) are calculated for all edges and all possible informa-
tion sets. During routing, the policsy! (g,11(t)) is used for the optimal routing.
We summarize all above mentioned in the Algorithm 1.
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Algorithm 1 Pre-planning stage of the strategic planning

1 g+ €]

2: while prev(e) # 0 do

3: Iu—UueN(ei)I(e\J)

4 forall { €1,...,kdo

5: " 1"U{T =X}

6: forall vel,... .kdo

7: P{TI =X, 1"} « P{TI = X, |I"}P{1"|TI = X,,I"}
8: end for

9: for all e, € N(g) do

10: forall ne€1,...,rdo

11: V(1) (g, 1") < RESAMPLE(1")

12: end for

13: end for

14: V*(@,1") ¢ Xz i+ Ming ene) V81 VT (eu,1”)
15: 1 (@, 1") « argmin, cy(e) Va1, V" (eu,1")
16: end for
17: g < preve)
18: end while

2.2 Tactical Planning

According to SP, a vehicle enters some edge together witkr atbhicles. Its TP
allows sharing an edge with other vehicles by selecting@pyate speed and lane
changes to pass through the edge as quickly as possible.

A state of the vehiclel (t) is described by its edge, relative position at the edge,
lane, speed and traffic light tim8a set of all possible states. Vehicle actions consist
of pairsa=< Av,Al >€ A, which correspond to speed and lane change. So

<el(t),x(t) —vI(t),l(t) + Al VI(t) + Ayt (t+1) >,
i B . if x!(t) —v!(t) >0,
SO+ =3 C (el (1) () —vi) +d@ (1), () + AlLvi) +ay, @
tl!(t+1) > otherwise

Note that the second situation is only possible if the tréifjiat signal for the desired
direction is green, st} (t) € Gi(1g} (el (1))).

We assume that for each statét) € Sa corresponding rewards!) is available.
We further assume that the reward structure is fully adetitiv

r(s(t) =) +r' (10 () + (v ©) + ' @ 1), ()

The position part*(-) has bigger values at the end of the edge; the lanegart
has bigger values for the lane, which has a turn to the nex &didpe vehicle route;
the speed pant'(-) has bigger values for bigger speeds; the traffic light paft)
has a big negative value ftr¢ G(L) and smalki (t).
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Let us apply DEC-MARL algorithm [4] for solving the coopee task of mul-
tiple agents. Legri(t) be a set of agents indices, which are located at edgé at
timet. Let sy € S%V/ be a joint state, which includes states of all such agents. A
local state-action value functio’ (sgr,aj) depends on the action of theth agent
and joint statesy of the group®) (sghaj) is updated to ensure a maximum of joint-
actionQ-functions [4]. A learning procedure is given in the Algbrit 2.

Algorithm 2 Multi-agent tactical learning algorithm at the edges E
while not end of the simulatiodo
forall j egri(t) do
observe reward! (sy )

1:
2
3
4: all « Tz (S ), take actiore!), observe next stat)
5: end for
6-
7
8

Sy {1}, jegni(t)
forall j€gri(t) do

Q~/J (ngvaj) = max{@ (ngraj):r(%r) + ymaxa’i Qj (%r’a/])}

. ~x a/]a if m iQ,J( r7al)>ma jQJ( na])
o k()= { i) omens A
10: Q(sa)«+ Q(sa), al &’
11: end for
120 sy Sy & Sy
13: end while

3 Experiments and Results

We simulate a traffic network in Hannover (Germany) in AimSgpecialized sim-
ulation software for traffic applications. The road netwizrkhown in the Fig. 1.

» ¢ 1 O > .
KN e pensBockerAl
20 RN
i g \
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Fig. 1 Street network Fig. 2 Considered graph

All intersections are regulated by traffic lights with fixeahtrol plans, known to
vehicles. We use the realistic traffic flows, collected iregivegion of Hannover in
morning rush hours. There are traffic flows in all directions;are interested in the
flow 9 — 1; these vehicles use the graph, shown on the Fig. 2, fordeeisions.
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In our model, we divide each street to cells of 4 m length. Téesjble speeds of
vehicles are{0,5,...,5¢km/h. One simulation step corresponds to about 1/3 sec.
Experimental results are summarized in Table 1. We caleufatel times de-

pending on the ratio to the flows in Hannover in morning hours.

Table 1 Travel Times of the Rout& — E depending on vehicle generation probability per time

Flows ratio 0.5 0.9 1 1.2 2

Without planning 934 102.0 112.7 138.9 168.4
With strategic planning 88.2 95.1 1055 1284 156.7
With tactical planning 90.1 96.5 110.6 132.0 1629

With strategic and tactical planning 87.3 93.3 1021 126.2 160.4

We conclude that the application of integrated planningvadlreducing the travel
time of vehicles to about 10%; this is more than SP or TP séglgra

4 Conclusions

We proposed an integrated planning process for vehicletagghich includes both
SP and TP. For SP, we showed how to apply existing informdtipaffective solv-
ing of a routing problem under imperfect information. For We used a modifica-
tion of DEC-MARL, which allows vehicles to collaborate idsia road segment in
order to traverse it in the most quick way. First experimesisw that the demon-
strated approach allows to reduce the travel time of vehicle

The proposed approach is used to simulate a larger trafficonkein Hannover.
In future we will work on an integration of the approach witintralized regulations
from TMC, as well as more dynamic agents group formation.
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