
Agent-Based Integrated Decision Making for
Autonomous Vehicles in Urban Traffic

Maksims Fiosins, Jelena Fiosina, Jörg P. Müller and Jana G̈ormer

Abstract We present an approach for integrated decision making of vehicle agents
in urban traffic systems. Planning process for a vehicle agent is separated into two
stages: strategic planning for selection of the optimal route and tactical planning for
passing the current street in the most optimal manner. Vehicle routing is considered
as a stochastic shortest path problem with imperfect knowledge about network con-
ditions. Tactical planning is considered as a problem of collaborative learning with
neighbor vehicles. We present planning algorithms for bothstages and demonstrate
interconnections between them; as well, an example illustrates how the proposed
approach may reduce travel time of vehicle agents in urban traffic.

1 Introduction

The application of multi-agent modeling and simulation to traffic management and
control problems becomes more relevant as intelligent assistant functions and car-to-
X communication pave the way to a new generation of intelligent networked traffic
infrastructure. Typically traffic environments are regulated in a centralized manner
using traffic lights, traffic signs and other control elements. Multi-agent traffic sys-
tems are modeled with autonomous participants (vehicles),which intend to reach
their goals (destinations) and act individually accordingto their own interests.

Previous research in this area has mostly concentrated on traffic lights regulation
methods, traffic lights agent architecture, coordination and decision making mecha-
nisms ([5]). Multi-agent reinforcement learning (MARL) for coordination of traffic
lights was applied by Bazzan, Lauer and others ([3], [4]).
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In contrast, there is less research on individual driver behavior and architectures
of ”intelligent vehicle” agents: existing research is mostly focused on mesoscopic
models for travel demand planning [2] or adaptive cruise control [6].

We consider a structure of decision making of a vehicle agentin an urban traffic
environment. A vehicle environment is presented as a directed graphG = (V,E),
where nodes and edges represent intersections and streets correspondingly. Denote
N(ei) ⊂ E a set of edges, which start from the node, where the edgeei ends. We
consider the discrete linear model timet ∈ 0,1,2, . . ..

We suppose that each vehiclej at any timet is located on some edgee j(t) ∈ E.
A relative position of the vehiclej on the edgee j(t) at timet is defined as a distance
to the end of the edgex j(t)∈ 0, . . . ,d(e j(t))−1. Let l j(t)∈ 1, . . . , l(e j(t)) be a lane,
v j(t) be a speed of the vehiclej at timet.

The complete state of a vehicle is given by a tuple, consisting of edge, relative
position on the edge, lane, speed and traffic light time:

s j(t) =< e j(t),x j(t), l j(t),v j(t), tl j(t)> . (1)

The goal of a vehicle is to reach its destination as quickly aspossible.
Planning process for a vehicle agent is separated into two stages: strategic plan-

ning (SP) for selection of the optimal route and tactical planning (TP) for passing
the current street in the most optimal manner.

During SP, vehicle agents plan the optimal strategic policyπ∗ j
str(e

j(t), I j(t)) ∈
N(e j(t)), which gives the next edge in the fastest path after the edgee j(t). Vehicles
plan their routes individually, based on historical and actual information about edge
travel times, applying a modification of Stochastic Shortest Path Problem.

During TP, vehicle agents plan their operative decisions together with other
agents. Vehicles on one edge plan their actionsa =< ∆v j,∆ l j >, where∆v j is a
speed change,∆ l j ∈ {−1,0,1} is a lane change, in order to minimize travel time of
the whole group by applying DEC-MARL to learn the optimal tactical policy π∗ j

tact .
The integrated policy of a vehiclej consists of strategic and tactical policy

π∗ j =< π∗ j
str,π

∗ j
tact >.

The paper is organized as follows. In Section 2 we consider underlying planning
algorithms: Section 2.1 describes SP, Section 2.2 TP. In Section 3 we provide first
experimental results. Section 4 concludes the paper and suggests future work.

2 Planning for the vehicle agent

2.1 Strategic Planning

In this section we present the method for SP of a vehicle agent. We modify the al-
gorithm R-SSPPR [7] for calculation of the Stochastic Shortest Path with imperfect
information. Agents make their SP individually, without cooperation.
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Let T j
i be dependent random travel times of the agentj through the edgesei ∈

E, T j = {T j
1 ,T

j
2 , . . . ,T

j
ne}. We assume that the distribution ofT j is unknown, only

a sample of travel time realizationsX = {X1,X2, . . . ,Xk} is available, whereXi =
{Xi, j}, j = 1, . . . ,ne is a set of travel time values for all edges for thei-th historical
realization,p j

i is a probability thati-th realization takes place for the agentj.
Let I j(t) be the information, available to the vehiclej at timet, which consists

of known travel times; it is a set of eventsI j(t) =
⋃

ei∈E j
kn(t)
{T j

i = t j
i }, whereE j

kn(t)

is a set of edges, which travel times are known.
The informationI j(t) is regularly supplemented. Suppose that the travel time at

the edgeeu ∈ E becomes known to the vehiclej at timeτ. It can calculate the pos-
terior conditional probabilitiesP{T j = Xv}, v = 1, . . . ,k by using Bayes’ formula:

P{T j = Xv|I
j(τ), I j(τ ′)}=

1
Z

P{T j = Xv|I
j(τ ′)}P{I j(τ)|T j = Xv, I

j(τ ′)}. (2)

whereZ is a normalizing constant, ensuring that the sum of all posterior probabilities
is equal to 1,I j(τ) = I j(τ ′)∪{T j

u = t j
u}.

Let us denoteπ j
str(e

j(t), I j(t)) ∈ N(e j(t)) a decision rule about the edge after
e j(t) for the agentj in its path. For its calculation, we use dynamic programming
in this stochastic case with imperfect information. DenoteV j

π (ei, I j(t)) an expected
travel time of the vehiclej from the beginning of the edgeei to the destination edge
ed

i under the decision ruleπ. The following recurrent equation is true:

V j
π (ei, I

j(t)) =

{

t j
i , if ei = ed

j ,

t j
i +EĨ j [V (π j(ei, I j(t)), Ĩ j)] otherwise.

(3)

where the expectation is taken over all possible future information sets̃I j.
Then we need to minimize (3) over all possible next edges for calculation of the

optimalV ∗ j(ei, I j(t)). and the optimal policyπ∗ j
str(ei, I j(t)).

However, there is some difficulty in calculation of the expectation EĨ j over all
possible future information setsĨ j. For this purpose, we need to consider all possible
travel times of the edgesei /∈ E j

kn(t). In order to avoid this difficulty, we use the
resampling of future values of travel times ([1]). We go withthe probability 2−ζ

to ζ steps forward and extract according to the probabilitiesP{T j = Xi|I j(t)} one
valueXw,u for the travel timeT j

u , which is added to the setĨ j. Then the probabilities
P{T j =Xi|I j(t), Ĩ j} are updated according to (2). This procedure is repeatedr times,
and an average is accepted as the expectationEĨ jV ∗ j(ek, Ĩ j).

SP consists of two stages: pre-planning and routing. Duringpre-planning, values
V ∗ j(ei, I j(t)) andπ∗ j

str(ei, I j(t)) are calculated for all edges and all possible informa-
tion sets. During routing, the policyπ∗ j

str(ei, I j(t)) is used for the optimal routing.
We summarize all above mentioned in the Algorithm 1.
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Algorithm 1 Pre-planning stage of the strategic planning

1: ei← e j
d

2: while prev(ei) 6= /0 do
3: I′←

⋃

u∈N(ei)
I(eu)

4: for all ζ ∈ 1, . . . ,k do
5: I′′← I′∪{T j

i = Xζ ,i}
6: for all ν ∈ 1, . . . ,k do
7: P{T j = Xν |I′′}← P{T j = Xν |I′}P{I′′|T j = Xν , I′}
8: end for
9: for all eu ∈ N(ei) do

10: for all η ∈ 1, . . . ,r do
11: V (η)(eu, I′′)← RESAMPLE(I′′)
12: end for
13: end for
14: V ∗(ei, I′′)← Xζ ,i +mineu∈N(ei) avgη∈1,...,rV

(η)(eu, I′′)

15: π∗(ei, I′′)← argmineu∈N(ei)
avgη∈1,...,rV

(η)(eu, I′′)
16: end for
17: ei← prev(ei)
18: end while

2.2 Tactical Planning

According to SP, a vehicle enters some edge together with other vehicles. Its TP
allows sharing an edge with other vehicles by selecting appropriate speed and lane
changes to pass through the edge as quickly as possible.

A state of the vehicles j(t) is described by its edge, relative position at the edge,
lane, speed and traffic light time,S a set of all possible states. Vehicle actions consist
of pairsa =< ∆v,∆ l >∈ A, which correspond to speed and lane change. So

s j(t +1) =















< e j(t),x j(t)− v j(t), l j(t)+∆ l,v j(t)+∆v, tl j(t +1)>,
if x j(t)− v j(t)> 0,

< π∗ j
str(e

j(t)),x j(t)− v j(t)+d(e j(t)), l j(t)+∆ l,v j(t)+∆v,
tl j(t +1)> otherwise.

(4)

Note that the second situation is only possible if the trafficlight signal for the desired
direction is green, sotl j(t) ∈ Gi(π∗ j

str(e
j(t))).

We assume that for each states j(t) ∈ S a corresponding rewardr(s j) is available.
We further assume that the reward structure is fully additive:

r(s j(t)) = rx(x j(t))+ rl(l j(t))+ rv(v j(t))+ rtl(tl(t)). (5)

The position partrx(·) has bigger values at the end of the edge; the lane partrl(·)
has bigger values for the lane, which has a turn to the next edge in the vehicle route;
the speed partrv(·) has bigger values for bigger speeds; the traffic light partrtl(·)
has a big negative value fortl /∈ G(L) and smallx j(t).
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Let us apply DEC-MARL algorithm [4] for solving the cooperative task of mul-
tiple agents. Letgri(t) be a set of agents indices, which are located at edgeei ∈ E at
time t. Let sgr ∈ S|gri(t)| be a joint state, which includes states of all such agents. A
local state-action value functioñQ j(sgr,a j) depends on the action of thej-th agent
and joint statesgr of the group.Q̃ j(sgr,a j) is updated to ensure a maximum of joint-
actionQ-functions [4]. A learning procedure is given in the Algorithm 2.

Algorithm 2 Multi-agent tactical learning algorithm at the edgeei ∈ E
1: while not end of the simulationdo
2: for all j ∈ gri(t) do
3: observe rewardr j(s′gr)

4: a′ j ← π̃∗ j
tact(s

′
gr), take actiona′ j, observe next states′′ j

5: end for
6: s′′gr ←{s

′′ j}, j ∈ gri(t)
7: for all j ∈ gri(t) do
8: Q̃′

j
(sgr,a j) = max{Q̃ j(sgr,a j),r(s′gr)+ γ maxa′ j Q̃ j(s′gr,a

′ j)}

9: π̃∗ j
tact(sgr) =

{

a′ j, if maxai Q̃′ j(sgr,a j)> maxa j Q j(sgr,a j)

π̃∗ j
tact(sgr) otherwise

10: Q(s,ai)← Q′(s,ai), a j ← a′ j

11: end for
12: sgr ← s′gr, s′gr ← s′′gr
13: end while

3 Experiments and Results

We simulate a traffic network in Hannover (Germany) in AimSun, specialized sim-
ulation software for traffic applications. The road networkis shown in the Fig. 1.

e

Fig. 1 Street network

1 2

3 4

5 6

7 8

9 10 11

Fig. 2 Considered graph

All intersections are regulated by traffic lights with fixed control plans, known to
vehicles. We use the realistic traffic flows, collected in given region of Hannover in
morning rush hours. There are traffic flows in all directions;we are interested in the
flow 9→ 1; these vehicles use the graph, shown on the Fig. 2, for theirdecisions.



6 Maksims Fiosins, Jelena Fiosina, Jörg P. Müller and Jana G̈ormer

In our model, we divide each street to cells of 4 m length. The possible speeds of
vehicles are:{0,5,. . . ,50}km/h. One simulation step corresponds to about 1/3 sec.

Experimental results are summarized in Table 1. We calculate travel times de-
pending on the ratio to the flows in Hannover in morning hours.

Table 1 Travel Times of the RouteA→ E depending on vehicle generation probability per time

Flows ratio 0.5 0.9 1 1.2 2
Without planning 93.4 102.0 112.7 138.9 168.4
With strategic planning 88.2 95.1 105.5 128.4 156.7
With tactical planning 90.1 96.5 110.6 132.0 162.9
With strategic and tactical planning 87.3 93.3 102.1 126.2 160.4

We conclude that the application of integrated planning allows reducing the travel
time of vehicles to about 10%; this is more than SP or TP separately.

4 Conclusions

We proposed an integrated planning process for vehicle agents, which includes both
SP and TP. For SP, we showed how to apply existing informationfor effective solv-
ing of a routing problem under imperfect information. For TPwe used a modifica-
tion of DEC-MARL, which allows vehicles to collaborate inside a road segment in
order to traverse it in the most quick way. First experimentsshow that the demon-
strated approach allows to reduce the travel time of vehicles.

The proposed approach is used to simulate a larger traffic network in Hannover.
In future we will work on an integration of the approach with centralized regulations
from TMC, as well as more dynamic agents group formation.
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