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Abstract. Change point (CP) detection is an important problem in
data mining (DM) applications. We consider this problem solving in
multi-agent systems (MAS) domains. Change point testing allows agents
to recognize changes in the environment, to detect more accurately cur-
rent state information and provide more appropriate information for
decision-making. Standard statistical procedures for change point detec-
tion, based on maximum likelihood estimators, are complex and require
construction of parametrical models of data. In methods of computa-
tional statistics, such as bootstraping or resampling, complex statistical
inference is replaced by a large computation volumes. However, these
methods require accurate analysis of their precision. In this paper, we
apply and analyze a bootstrap-based CUSUM test for change point de-
tection, as well as propose a pairwise resampling test. We derive some
useful properties of the tests and demonstrate their application in the
decentralized decision-making of vehicle agents in city traffic.

Keywords: Multiagent decision-making, data mining, change point de-
tection, resampling, variance, bootstrapping CUSUM test, traffic control

1 Introduction

Change point (CP) analysis is an important problem in data mining (DM), the
purpose of which is to determine if and when a change in a data set has occurred.
In multiagent systems (MAS) research, methods of CP analysis are applied,
but not widely. One of the most popular agent-related areas of CP analysis
application is web mining. Here, agents deal with automatic knowledge discovery
from web documents and services, including social networks. CP detection in
values of different parameters, such as number of messages, frequency of certain
actions, or number of active users in some blogs are relevant for a wide number
of applications, such as marketing, production, security. For example, Lu et. al.
[10] applied the CUSUM algorithm in combination with shared beliefs for agent-
oriented detection of network attacks, McCulloh [9] for detection of changes in
social networks.

⋆ Maksims Fiosins is supported by the Lower Saxony Technical University (NTH)
project ”Planning and Decision Making for Autonomous Actors in Traffic”



A traditional statistical approach to the problem of CP detection is maximum
likelihood estimation (MLE) [5],[8]. In this approach, an appropriate data model
is constructed, which includes a model of CP. Then a likelihood function for
model parameters (including CP) is designed and an estimator of for CP is
obtained as a result of the likelihood function minimization. Such an approach
requires assumptions about the data model and underlying distributions as well
as complex analytical or numerical manipulations with a likelihood function.

As an alternative to the classical approach, methods of computational statis-
tics, like bootstrap or resampling, are widely used [7]. In such methods, complex
analytical procedures are replaced by intensive computation, which is effective
with modern computers. However, these methods only provide approximate so-
lutions, and the analysis of their accuracy and convergence rate is very important
for their correct application.

One of the most popular methods of computational statistics, used for CP
analysis, is a cumulative sum bootstrapping test (CUSUM bootstrapping test)
[4]. This method does not require assumptions about data models and corre-
sponding distributions; the idea of the test is to construct so-called CUSUM
plots: one on the initial sample and one on each of a large number on per-
muted (bootstrapped) samples. The difference between the initial plot and boot-
strapped plots aids to spread regarding the CP existence. This test relies on a
visual assessment of whether there is a change in the slope of the CUSUM plot
(see Figure 3).

In previous publications, we applied the resampling method for analysis and
DM in different kinds of systems, including information, reliability, transporta-
tion logistics, software systems, including MAS [1],[3].

The purpose of this paper is twofold. First, we explain how non-parametrical
CP detection methods may be integrated into agent decision support by illustrat-
ing it on detecentralized traffic routing scenario. Second, we demonstrate how
to analyze a precision of the considered tests, taking expectation and variance
of resulting estimators as an efficiency criteria.

We discuss two CP tests based on methods of computational statistics: a
bootstrap-based CUSUM test, and a novel test, called pairwise resampling test.
We analyze the efficiency of both tests as well as show how these tests are applied
in MAS systems, focusing on the traffic applications. Case studies are presented
to demonstrate how CP analysis is incorporated into agents decision-making
processes to verify the potential effect of the proposed approach.

The paper is organized as follows. In Section 2, we describe how CP analysis is
incorporated in the decision module of agents. In Section 3, we formulate the CP
problem and explain a standard CUSUM bootstrapping approach. In Section 4,
we present proposed CP detection algorithms. In Section 5, we provide the most
important aspects of the tests efficiency analysis. Section 6 demonstrates a case
study, where the proposed methods are used in decentralized traffic scenario.
Section 6 contains final remarks, conclusions and outlook.



2 CP Based Decision Making for Agents in Traffic

Appropriate DM tools are very important for a class of MAS where the individual
agents use DM technologies to construct and improve a basis for local decision-
making and use communication, coordination and cooperation mechanisms in
order to improve local decision-making models and to provide a basis for joint
decision-making [11]. In order to make appropriate decisions, agents analyze
incoming data flows, construct relevant models and estimate their parameters.

The environment and behavior of other agents are subject to changes. Sup-
pose, some other agent decides to change its plans and start acting in a new
manner, some part of the environment may become unavailable for agents, new
agents may appear etc. So, the old behavior of the agent becomes inappropriate.

Let us consider a simple example from a traffic domain. Let a vehicle agent
plans its route through a street network of a city. The agent is equipped with
a receiver device, which allows obtaining an information about times needed to
travel through the streets. Based on this information, the vehicle agent makes
strategic decisions regarding its route. The vehicle does not use only messages
from TMC: rather it builds some model based on historical information (such a
model is considered by Fiosins et. al. [6]). In the simplest case, the vehicle agent
just calculates an average of some set of historical observations.

Now suppose that some change occurs (traffic accident, overloading of some
street etc.). The purpose of the agent is to detect this change and make appro-
priate re-routing decisions.

Let us describe an architecture of an intelligent agent from this point of view.
It receives observations (percepts) from the environment as well as communica-
tion from other agents (Fig. 1). Communication subsystem is responsible for
receiving input data, which then is pre-processed by an initial data processing
module. The information, necessary for decision-making, is obtained from initial
data by constructing corresponding data models (regression, time series, rule-
based etc.). A data models estimation/learning module is responsible for the
estimation of the model parameters or iterative estimation (”learning”), which
provides an information base for an agent. Mentioned blocks represent a DM
module of the agent. The information then is transformed to an internal state
of the agent, which is agent’s model of the real world. It represents the agent
knowledge about the environment/other agents. Based on the internal state, the
agent performs its decision-making. The efficiency (utility) functions measure an
accordance of the internal state as a model of the external (environment state)
with goals of the agent. Based on it, the agent produces (updates) its plan to
reach its goal; this process may include the internal state change. As well, the
efficiency function itself (or their parameters) can change under learning process.

The decision-making process includes strategic decisions of the agents [6],
which define plans of general resource distribution as well as tactical decisions,
including operative decisions regarding resource usage. For example, strategic
decisions of a vehicle agent may include the route choice, but tactical decisions
may include include speed/lane selection. As well, the agent plans its social
behavior, i.e. its interactions with other agents. The result of this process is a



construction of a plan (policy). The plan is given to an action module for the
actual action selection and execution.
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Fig. 1. An agent architecture including DM and decision making modules

Consider an example of DM module of an autonomous vehicle agent.
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Fig. 2. DM module for strategic (routing) information processing

The vehicle receives travel time data, which are pre-processed by the initial
data processing module. Then data is tested on the existence of CP. If it is
detected, only data after the last CP are used in future analysis, where the
current state (travel time) trough a given street is estimated. In the simplest
case an average of travel times after the last CP is used.

In the next Section we present a CP detection problem as well as describe a
standard bootstrap-based CUSUM test for CP detection.



3 CP Problem and CUSUM Test

Let us formulate a CP detection problem. Let X = {x1, x2, . . . , xn} be a random
sample. Let us divide this sample as X = {XB ,XA}, where
XB = {xB

1 , x
B
2 , . . . , x

B
k }, X

A = {xA
1 , x

A
2 , . . . , x

A
n−k}. We say that there is a CP

at position k in this sample, if elements XB are distributed according to a distri-
bution function (cdf) FB(x), but elements XA according to cdf FA(x) 6= FB(x).
The aim of a CP detection test is to estimate the value of k (clear that in the
case of k = n there is no CP). We are interested in a case when FB(x) and FA(x)
differ by a mean value.

Note that a CP is not always visually detectable. Figure 3 represents two
samples: left has exponential distribution, right has normal. Both have a CP
at k = 10: for the exponential distribution its parameter λ changes from 1/10
to 1/20; for the normal distribution its parameter µ changes from 5 to 7. One
should have an experience to see these CP visually.
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Fig. 3. A sample of 20 observations from exponential (left) and normal (right) distri-
butions with CP at k = 10

A popular non-parametric approach for CP analysis is bootstrapping CUSUM
test. CUSUM presents the cumulative sum of the differences between individual
data values and the mean. If there is no shift in the mean of the data, the chart
will be relatively flat with no pronounced changes in slope. Also, the range (the
difference between the highest and lowest data points) will be small. A data set
with a shift in the mean will have a slope change at the data point where the
change occurred, and the range will be relatively large.

The cumulative sum Si at each point i is calculated by the sample X by
adding the difference between a current value and sample mean to the previous
sum as

Si =

i
∑

j=1

(xj − X̄), (1)



where X̄ is the mean of the sample X, i = 1, 2 . . . n.

A CUSUM chart starting at zero will always end with zero as well: Sn = 0.
If a CUSUM chart slopes down, it indicates that most of the data are below the
mean. A change in the direction of a CUSUM indicates a shift in the average.
At the CP, the slope changes direction and increases, indicating that most of the
data points are now greater than the average.

In order to make a CP detection procedure more formal, a measure of the ini-
tial CUSUM line divergence from ”normal” lines for given data is calculated. It
is calculated using a technique known as bootstrapping, whereby N random per-
mutations X∗j , j = 1, 2, . . . , N of X are generated and corresponding CUSUMS
S∗j
i are calculated by formula (1).

For a fixed point k the percentage of times where the cumulative sum for the
original data exceeds the cumulative sum for the randomized bootstrap data is
calculated as p∗k = #{j : S∗j

k ≤ Sk}/N .

For values of p∗k near 0 or near 1 we can say that the CP in k occurs. The

idea behind this is that values S∗j
k approximate the distribution of CUSUMs

constructed till k under assumption that data is mixed (values may be taken
both before the CP and after the CP).

An example of a CUSUM test is presented on Figure 4.

-100

-50

0

50

100

5 10 15 20

-20

-10

0

10

20

5 10 15 20

Fig. 4. CUSUM test examples with CP at k = 10

Here we can see a minimum of original CUSUM line at point k = 10; for
other bootstrapped lines there is no minimum.

However, is this test reliable? Will the original CUSUM line be always outside
of bootstrapped CUSUM line range? If not, then what is an expected value of
the percentage of bootstrapped CUSUMS, which the original CUSUM exceeds?
How this percentage differs from its expected value? All these questions should
be answered during the method analysis phase; without the accurate analysis
the method cannot be correctly applied.



4 Resampling Based CP Tests

4.1 CUSUM Based Test

Let us describe an algorithm for a CUSUM-based test for a CP at the point k.
On r-th resampling step, we extract, without replacement, k elements from a
sample X of size n, forming the resample X∗r

k = {x∗r
1 , x∗r

2 , . . . , x∗r
k }. Then we

construct r-th resampling CUSUM

S∗r =
k

∑

i=1

(x∗r
i − X̄) =

k
∑

i=1

x∗r
i − kX̄, (2)

where X̄ is an average over the initial sample X.
Each CUSUM is compared with a pre-defined value x, obtaining an indicator

value ζ∗r = 1S∗r≤x.
We make N such realizations, obtaining a sequence of indicators

ζ∗1, ζ∗2, . . . , ζ∗N . These values in fact approximate a cdf of CUSUMS. We esti-
mate it as

F ∗(x) = P{S∗r ≤ x} =
1

N

N
∑

r=1

ζ∗r. (3)

As a value of x we take a value of a CUSUM S, calculated by initial data.
So the probability of interest is F ∗(S).

Low or high value of this probability allows to spread about CP existence.
In principle, we can find maximal (close to 1) or minimal (close to 0) value of
this probability on all k and consider this point as a CP.

A corresponding calculation of the probability F ∗(S) is presented in Algo-
rithm 1.

Algorithm 1 Function CUSUM TEST

1: function CUSUM TEST(X, k,N)
2: S =

∑k
i=1(xi − X̄)

3: for r = 1 . . . N do

4: X∗r
k ← resample(X, k)

5: S∗r =
∑k

i=1(x
∗r
i − X̄)

6: if S∗r < S then ζ∗r = 1
7: else ζ∗r = 0
8: end for

9: return 1/N
∑N

r=1 ζ
∗r

10: end function

However, as the same elements can be used for calculation of ζ∗r on different
realizations r, it leads to a complex structure of dependency between ζ∗r. So we
should be accurate in results interpretation here. In Section 5 we provide the
most important aspects of this test analysis.



4.2 Pairwise Resampling CP Test

We propose an alternative resampling-based CP test; we call it pairwise resam-
pling test. It is based on calculation of the probability P{Y ≤ Z} that one
random variable (r.v.) Y is less than another r.v. Z [2]. Suppose that the sample
XB contains realizations of some r.v. Y , but the sample XA realizations of some
r.v. Z. Our characteristic of interest is the probability Θ = P{Y ≤ Z}.

On r-th resampling step we extract one value y∗r and z∗r from the samples
XB and XA correspondingly and calculate an indicator value ζ∗r = 1y∗r≤z∗r .

We make N such realizations, obtaining a sequence of indicators
ζ∗1, ζ∗2, . . . , ζ∗N . The resampling estimator of Θ is

Θ∗ =
1

N

N
∑

r=1

ζ∗r. (4)

In order to check if there is a CP, we construct a confidence interval for Θ.
We produce v such estimators, denote them Θ∗

1 , Θ
∗
2 , . . . , Θ

∗
v . Let us order them,

producing an ordered sequence Θ∗
(1) ≤ Θ∗

(2) ≤ . . . ≤ Θ∗
(v).

Let us select a confidence probability γ for this interval (γ is usually selected
0.95 or 0.99). We accept [Θ∗

(⌊ 1−γ

2
v⌋)

;Θ∗
(⌊ γ

2
v⌋)

] as a γ confidence interval for Θ.

Note that in the case of CP absence the probability Θ will be equal to 0.5,
and the estimators Θ∗ will be close, but different from 0.5. However, is this
difference significant? In order to answer we check if value 0.5 traps into the
constructed confidence interval (Algorithm 2).

Algorithm 2 Function PAIRWISE CONFIDENCE

1: function PAIRWISE CONFIDENCE(X, k,N, v, γ)
2: XB = subsample(X, 1, k), XA = subsample(X, k + 1, n)
3: for j = 1 . . . v do

4: for r = 1 . . . N do

5: y∗r ← resample(XB , 1), z∗r ← resample(XA, 1)
6: if y∗r < z∗r then ζ∗r = 1
7: else ζ∗r = 0
8: end for

9: Θ∗

j =
∑N

r=1 ζ
∗r

10: end for

11: sortΘ∗

12: return [Θ∗

(⌊ 1−γ

2
v⌋)

;Θ∗

(⌊ γ
2
v⌋)]

13: end function

There is again a complex dependence structure between ζ∗r, and so between
Θ∗, because the same elements may be used in comparisons on different real-
izations. So true coverage probability of constructed interval will differ from γ.
The goal of the algorithm analysis is to calculate the true coverage probability
of this interval; then we can correctly apply the method.



5 Analysis of the CP tests accuracy

In this Section, we shortly highlight the most important aspects of the methods
efficiency analysis. The complete analysis can be found in our articles [1],[2],[3].

5.1 CUSUM Based Test

We are going to calculate an expectation and variance of the estimator (3). This
means that we calculate theoretically an average of the estimator and spread
of the percentage of cases, when the CUSUM constructed on the original data
exceeds CUSUMS constructed on the bootstrapped data.

Let yr be a number of elements, extracted fromXB ; then fromXA we extract
k − yr elements. Then the expectation of (3) can be expressed as

E[F ∗(x)] = P{S∗r ≤ x} =
k−1
∑

yr=2

∫ ∞

−∞

F
(yr)
B (x− u)dF

(k−yr)
A (u) · pyr

(p), (5)

where F (k)(x) is a convolution of the cdf F (x) with itself.
Variance of (3) can be expressed as

V ar[F ∗(x)] =
1

N
V ar

[

1{S∗r≤x}

]

+
(N − 1)

N
Cov

[

1{S∗r≤x}, 1{S∗p≤x}

]

, (6)

for r 6= p.
Only the covariance term depends on the resampling procedure, which can

be expressed using the mixed moment µ11 =
[

1{S∗r≤x} · 1{S∗p≤x}

]

.
In order to calculate µ11, we use the notation of α-pair [1],[3]. Let α =

(αB , αA), where αB and αA are the number of common elements extracted from
XB and XA correspondingly on two different resampling realizations.

Than µ11 can be expressed by fixing all possible values of α:

µ11 =
∑

α

µ11(α)P (α). (7)

For the case of exponential and normal distributions we can obtain explicit
formulas for the previous expressions.

5.2 Pairwise Resampling CP Test

In order to analyze properties of (4), we introduce a protocol notation [2]. Let
us order a sample XB , obtaining an ordered sequence {xB

(1), x
B
(2), . . . , x

B
(k)}. Let

ci = #{xA
j ∈ XA : xB

(i−1) ≤ xA
j ≤ xB

(i)}, x
B
(0) = −∞, xB

(k+1) = ∞. We call

k + 1-dimensional vector C = {c1, c2, . . . , ck+1} as a protocol.
For a fixed protocol C the conditional probability of the event {Y ≤ Z} is

qC = P{Y ≤ Z|C} =
1

k(n− k)

k
∑

i=1

k
∑

j=i

cj . (8)



The probability that one resampling estimator Θ∗
j will be less than Θ is given

by the binomial distribution with a probability of success (8):

ρC = P{Θ∗
j ≤ Θ|C} =

Θr−1
∑

ζ=0

(

r

ζ

)

qζC(1− qC)
r−ζ . (9)

Finally the unconditional probability of coverage is calculated as
∑

C PC ·RC .

6 Case Study

We consider a vehicle routing problem in a street network, where vehicles receive
data about travel times and are applying the shortest path algorithm looking for
a fastest path to their destination. As travel times are subject to change, that’s
why CP analysis is performed. If CP is detected, only the data part after the
last CP is taken into account.

We suppose, that travel times trough the streets are normally distributed
and are subject to changes in the mean. An example of input data is shown in
Figure 5 (left). The vehicle analyses CPs in such data for all streets and selects
an appropriate fastest route; the route selection process is presented in Figure 5
(right).

Now consider the behavior of CP estimators. In Figure 6 (left) the CUSUM
test presented in the case of CP absence. In this case, we can see a big variance
of the probability F ∗(x) of interest (standard deviation = 0.29). This means,
that there exist a big risk of considering some point as a CP, if it is not one.
Figure 6 (right) demonstrates the CUSUM test in the case of CP existence. Here
we see very good CP detection with practically zero variance at the CP.

Now let us consider the pairwise test. In Figure 7 (left) we see this test in
the case of CP absence. Here we see smaller variance of the probability Θ∗ of
interest (standard deviation = 0.14 on the most of the interval). This means,
that a risk of considering some point as a CP, if it is not one, is lower than for
the CUSUM test. Figure 7 (right) demonstrates this test in the case of CP. Here
detection is not so bad as well, however the variance of the estimator is bigger,
so there is a risk to miss this CP.

We can conclude that the CUSUM test detects CP very well; however, it
may consider as CP some point, which is not one. In opposite, the pairwise test
is more reliable in the case of a CP absence; however, it can miss some CPs.

So for streets where CPs are rare, it is better to use the pairwise test; the
CUSUM test is better for streets with often occurred CPs in travel times.

7 Conclusions

CP detection is very important task of DM for MAS, because it allows agents to
estimate more accurate the environment state and prepare more relevant infor-
mation for decentralized planning and decision-making. As classical statistical



methods for CP estimation are relatively complex, it is better to apply methods
of computational statistics for this problem.

In this paper, we considered an application of CP detection as a part of
DM module of an intelligent agent. We considered two resampling-based CP
detection tests: CUSUM-based bootstrapping test and pairwise resampling test.
We described algorithms of their application as well as highlighted the most
important aspects of their efficiency analysis, taking expectation and variance
of the estimators as the efficiency criteria.

We demonstrated an application of CP detection for vehicle agents in city
traffic. This allows vehicles to detect CPs in street travel times and select more
appropriate path in a street network.

The first test demonstrated good detection of CPs, however has a big variance
in the case of CPs absence. The second test has smaller variance in this case,
however worse detects existing CPs.

First experiments show that the demonstrated approach allows reducing the
travel time of vehicles. In the future we will work on an application of computa-
tional statistics methods for different DM procedures in MAS. Another impor-
tant direction is an application of our approach for different domains.
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Fig. 5. Travel times on one street with 60 observations (left) and resulting route selec-
tion from 5 routes (right)
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Fig. 6. Results of the CUSUM test without CP (left) and with CP at k = 10 (right)
for a fragment of 20 observations. Straight line shows the expected value E[F ∗(x)] of
the estimator F ∗(x), dashed lines show the difference between the expected value and
standard deviation E[F ∗(x)]−V ar[F ∗(x)]1/2 of the estimator F ∗(x), dotted lines show
several realizations of F ∗(x)
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Fig. 7. Results of the pairwise test without CP (left) and with CP at k = 10 (right)
for a fragment of 20 observations. Straight line shows the expected value E[Θ∗] of
the estimator Θ∗, dashed lines show the difference between the expected value and
standard deviation E[Θ∗]− V ar[Θ∗]1/2 of the estimator Θ∗, dotted lines show several
realizations of Θ∗


