
JREP: Extending Repast Simphony for JADE Agent Behavior Components

Jana Görmer, Gianina Homoceanu, Christopher Mumme, Michaela Huhn and Jörg P. Müller∗

Niedersächsische Technische Hochschule
Braunschweig, Clausthal-Zellerfeld, Hannover, Germany

Email: {Jana.Goermer|Christopher.Mumme|Michaela.Huhn|Joerg.Mueller}@tu-clausthal.de, G.Homoceanu@iti.cs.tu-bs.de

Abstract—When modeling and simulating agent commu-
nities, one is usually interested in the macro effects that
result at the system level from the interaction of individu-
als. However, when developing a scenario, designers need to
specify the individual agents’ behavior, their communication
and organizational structure at the micro-level. Existing agent
frameworks focus on either the macro or the micro perspective:
Repast Simphony is an example of the former, JADE of the
latter. We propose JREP, a novel integration of JADE and
Repast Simphony that efficiently combines the macro and
micro perspective with an interaction layer. It allows to see
not only the overall system behavior, but also the individual
together with its interests, goals and the communication to
others for local coordination and cooperation. Scheduling of
the agents, (time) synchronization and the registration of new
agents with the environment has been solved. An agent-based
airport scenario is introduced a proof of concept for modeling
and simulating in the JREP platform; for validating scalability
and performance properties, a simple coin flip scenario is
described.

Keywords-agent-based simulation, agent applications,
Repast, JADE

I. INTRODUCTION

Multi-agent systems (MAS) [10] are a promising
paradigm for constructing complex software-intensive sys-
tems providing multiple methods for modeling and sim-
ulating. However, when developing a multi-agent system,
designers need to specify the organizational structure, the
individual agents’ behavior, and their communication. Ex-
isting agent frameworks focus on either the macro for
manipulating the environment or for instance on simulating
swarms [6] or on the micro perspective to show agent’s
behavior. Defining the different perspectives 1) on the
macro level we understand the overall system level as a
global view or ”aggregated bottom-up view” evolved from
a complex system which typically exhibits hierarchical self-
organization under selective pressures, 2) for the micro level
its agent behaviors, and 3) the linking component to join
both is the interaction level which mainly is done through
communication. Thus, our goal is to provide an efficient and

This work was funded by the NTH Focused School for IT Ecosystems
(www.it-ecosystems.org). NTH (Niedersächsische Technische Hochschule)
is a joint university of Technische Universität Braunschweig, Technische
Universität Clausthal, and Leibniz Universität Hannover.

We also thank Aret Duraslan for fruitful discussions regarding JRep.

usable simulation platform for complex systems supporting
the macro and micro perspective linked by interaction. We
aim at analysing the overall system behavior, as well as the
individual with its goals and communication to others for
local coordination and cooperation. Technically, we combine
Repast Simphony (Repast S) [9] and JADE [2]. A close
approach was proposed in [15] for enterprise value-adding
networks, but their solution has some shortcomings: it only
supports an older version of Repast, the generality is limited
by the focus on Supply Chain Performance Analysis, and
performance is restricted due to an inefficient polling strat-
egy. In contrast to [15], we have chosen to use references for
solving the polling problems. Repast S gives the information
about the new Tick to each connected agent by establishing
bidirectional communication. Agents are informed through
a scheduler about the new system time. Therefore, JADE
agents can act directly on the Repast S platform which could
be generalized to an open platform (any agents) through a
wrapper class.

The paper is structured as follows: in Section II we
outline the requirements for simulating a smart airport as
one example of a complex MAS; in Section III we give
an argumentation for using the platforms Repast S for
macro level and JADE the micro level. Section IV describes
our JREP solution including architecture, scheduling and
registering. Section V we present our JRep tool on a
coin flip for evaluating the performance and on the smart
airport showing details on the macro/micro/interaction level
integration. Finally, Section VI summarizes and concludes
the paper with future work.

II. REQUIREMENTS FOR SIMULATING A SMART AIRPORT

We focus on complex MAS consisting of numerous
heterogeneous agents and their interaction, an environment
with different subsystems and control structures to handle
the complexity of the system [5]. A joint demonstrator,
currently built on the JREP platform, will demonstrate
the results of our research, in a scenario on autonomous
transportation services at an airport’s departure area [4].
Different requirements of the environment are considered
and the agents with their spheres of influence, in respect to
the macro perspective, i.e. the global system level, the micro

(objects’ behavior) view and the interaction (the intermediate
layer between the micro-macro view) are relevant.

In the following we describe our example scenario and
the resulting requirements for a simulation infrastructure:

We consider a smart airport where autonomous agents
transport passengers between stations (entrances, check-in
counters, gates, and plane parking positions), referred in the
rest of the paper as transport agents (TAs). The TAs are
equipped with batteries, which have to be recharged after
some time at a charging station. The charging stations are
designed as agents with the assignment to handle traffic jams
that may occur, i.e. when a high amount of TAs want to
recharge simultaneously. The stations are connected by two-
lane roads which we define to be a subsystem. Thus, in these
subsystems agents have different rights and influences.

In order to model and simulate the airport we propose
three levels and further we will describe the requirements
for the development frameworks on each level:

Macro level technologies and techniques are related to
the system as a whole (i.e. structure). At the macro level,
the airport is viewed as a whole, to see the agents move
within different regions. Analysis tools, good performance
in terms of execution speed and support for the global deci-
sion making processes should be available. For combining
different sub-views a step-by-step simulation with predefined
function is desired. Monitoring functions to see the simula-
tion progress, displaying functions to show different data on
predefined performance criteria are desired for the designer
or manager of the system add-ons for the global system view.
The macro level represents the complex system with many
interdependent individual actors working like a ”state of
insects”. Agents have only a partial view of the system and
no central controlling agent [10], the macro level (complex
behavior of the entire system) is built based on the individual
strategies and the interaction (i.e. cooperation) with other
individual agents. We consider a bottom-up/ decentralized
approach to form the complex airport system.

Micro level (agent level) technologies and techniques are
concerned only with individual agents (i.e. procedures for
agent reasoning, learning). Due to the diversity of agents
in an airport, it should be possible to implement different
agents from simple reactive robots to intelligent ones, which
are able to make their own decisions based on their view
on the environment and goals. The agents need to perceive
the environment, to act accordingly and autonomous. Since
agents can be heterogeneous, one can implement its own
agent architecture in the micro level, like we did in [5].

Interaction level technologies and techniques concern the
communication between agents (i.e. communication lan-
guages, interaction protocols and resource allocation mech-
anism). Macroscopic behavior of the total system is con-
structed through local interactions or microscopic behavior
of the agents. Therefore, a major role is played by the
interaction between agents, because the global system state

emerges as a side effect of the interactions of subsystems.
This is primarily accomplished through communication, the
essential functionality underlying an agent’s social ability
[7]. Through different competences and abilities, agents need
to coordinate themselves for achieving their goals, also in
an airport. Communication (i.e. exchange information) is
necessary, but due to the agents’ heterogeneity they need
to understand a common language.

III. RATIONALE FOR CHOOSING A PLATFORM

There are several toolkits available for modeling and
simulating complex systems as JADE, Swarm, NetLogo,
Mason, Repast etc. and different surveys over these toolkits
were given in the past few years as [8]. Considering the
requirements of our approach stated in the previous section,
we have chosen Repast Simphony and JADE:

Repast Simphony is pure Java extended by the Repast
(open-source set of tools, originally based on Swarm [6])
portfolio for developing agent-based models. One main
feature of Repast S is the run-time GUI that allows the
user to control the simulation during run-time by pausing,
resetting and restarting different models. For example, the
user can easily compare start configuration of different mod-
els with their behavior during run-time. Repast S provides
also statistical functions such as graphs which are helpful
for simulation monitoring and for real-time monitoring.
Through defined variables for monitoring, graphs can be
designed during development time. During run-time these
graphs are displayed with actual variable’s values and its
history can be recorded. Repast S supports the usage of
external statistical programs, like R1, for monitoring the
simulation at run-time. Thus, these features apply the model
in the loop idea [11], so that the construction of a complex
system, such as our airport, can be supported.

One primary purpose of Repast S is to control which
specific actions are executed when, in simulated time. For
this, Repast S provides explicit methods for scheduling
actions.

Furthermore, in [13] a comparison of Repast S with other
software platforms (Swarm, NetLego, MASON) is provided
based on several criteria as model structure, scheduling or
execution speed. The authors concluded that Repast S is a
good Java simulation platform which can guarantee good
performance on execution speed, but it has received poor
feedback for modeling agents and their structure.

For our purpose Repast S covers the macro level. It is used
for simulating the environment of our airport and for visual-
izing and monitoring the emergence of the macro behavior
from collective behavior of different agents composing it.

JADE has a distributed system topology with peer-to-
peer networking, and software component architecture with
agent paradigm. The network topology affects how various

1http://www.r-project.org/

components are linked together, whereas the component
architecture specifies the component’s expectations from one
another. JADE provides an agent programming framework,
while in Repast S any Java class without an agent-based
structure, can be defined as agent [13]. All tasks of agents
are modeled as behavior objects. The behavior implements
either the entire task or sub-tasks for implementing more
complex ones. Thus JADE has no specific agent architecture.
One can argue that Jadex [12] could be also a solution,
but it limits us to use its BDI agent architecture. Another
advantage of JADE, it includes FIPA(-ACL) and interaction
protocols where FIPA agent communication specifications
deal with Agent Communication Language (ACL) messages.

Considering the previous stated advantages and the con-
clusion drawn from several evaluation reports that JADE
is highly efficient in terms of performance on the agent
message transport layer [14], the internal database access
and message exchange capabilities [3], made us choose
JADE as a modeling platform. Mainly, JADE considers the
micro level, used for defining and implementing our own
agent architectures (TA, charging station, etc.).

The Interaction level plays a major role in our approach
because it represents the intermediate layer that makes the
connection between the macro and the micro level. As
stated in Sec. II this is realized through interaction between
agents. Here one of the JADE advantages is the support
for FIPA ACL protocols. In ACL messages interaction
protocols are exchanged, which are based on the speech
act theory. This includes communicative acts and content
language representations. JADE agents communicate remote
and work decentralized with each other. The combination
of the both platforms makes use of complement features
provided by each platform: while Repast S lacks in support
for providing the agent structure, the Jade framework pro-
vides for the complete modeling of the agent behaviour[15].
At the same time Repast S offers step-by-step simulation,
planning schedules, visualization and monitoring of the
global systems (the macro view) which are not supported
by JADE.

IV. COMBINING JADE AND REPAST S: JREP

In this section we cover the JREP architecture by the
following key issues:

Macro level: For the overall system we present the
technical implementation of our JREP architecture and the
scheduling process of the agents during runtime.

Micro level: For a single agent we created our architecture
in JADE and we explain the registration of an agent to the
Repast S environment.

Interaction level: The interaction between agents is pro-
vided by FIPA ACL.

A. JREP Architecture
As stated in Section III we use JADE and Repast S for

a common JREP platform. One goal is that JADE agents

can act in Repast S. Thus, we assume three minimum
requirements needed by agents for acting in a simulation
environment (cf. black box agent model by [7]):

1) Perception (Input): Agents must be able to sense the
environment. Thus, they must perform “Perception”
and thereby receive information regarding the envi-
ronment.

2) Agents must be able to make plans and execute them,
in order to achieve goals (e.g. path finding algorithms
in the airport).

3) Action (Output): Agents must perform actions and
they also have to be informed about the success or
failure by performing that action.

In consequence, agents have to access the simulation en-
vironment. In addition, the simulation environment must
inform the agents about the current simulation time.

Considering the previous statements, we developed an
architecture of the platform (see Fig. 1) with the following
components:

Figure 1. Class diagram of the JRep approach

The main idea to integrate JADEAgents into Repast S is
to use an agent wrapper class that is implemented in Repast
S:

RepastAgentRepresentation: Each agent has exactly one
representation within Repast S, which is responsible for the
execution of Perception and Action. Therefore, the class
RepastAgentRepresentation possesses the methods percep-
tion() and action() (cf. Fig. 1). Furthermore the agents are
informed of each new Tick by the RepastAgentRepresenta-
tion.

JADEAgent: The JADE agents can be connected to Repast
S (and/or the appropriate RepastAgentRepresentation) di-
rectly by references. In order to avoid the problem of
Polling occuring in [15], the communication between agents
and the Repast S simulation environment must be possible
in both directions. First agents are informed about the
new system time of Repast S through the scheduleAgent()
method of the RepastAgentRepresentation class and then

they can act directly on the Repast S platform (cf. Fig.
1). For this, it is necessary that the agents implement the
Interface AgentRepresentationInterface with the schedule()
method. Thus, a RepastAgentRepresentation object receives
the reference from the agent (that is of the type AgentRepre-
sentationInterface at the same time). The agents instantiate a
RepastAgentRepresentation object independently when they
connect to the environment and also have the reference to
the RepastAgentRepresentation object (cf. Section IV-C). In
a similar way, one can connect also Repast S agents to the
simulation environment by using references.

Repast S already possesses an internal clock, where each
Tick represents a simulation step. However, in JADE there
is no given internal clock. If a JADE agent acts in a Repast
S environment, it must be synchronized with Repast S’s
internal clock. Thus, our JREP architecture provides the
concepts of Clock and Scheduler: The Repast S Clock
gives the cycle of the simulation time and informs the
Scheduler component. The Scheduler conducts the execution
of actions by Repast S connected agents. In each Tick
the RepastAgentRepresentation is informed about executed
actions.

Further we will describe the scheduling process, providing
first the necessary steps for this (see Fig. 2). The Tick
is triggered by the system clock (1.) and the scheduler
successively contacts all connected agents in a loop. Then
the scheduleAgent() method (2.) of the RepastAgentRepre-
sentation class is called. At the same time a flag is set in
this class (3.), to denote that the agent was informed about
the new Tick. The flag is released after the agent takes
an action (a movement to the north, south, east, or west,
or a delay) (16.). This is necessary to guarantee that the
scheduler allows only one agent to perform an action (in
order to keep the agents synchronous to simulation). After
the scheduler informs the agent (2.) it asks repeatedly to
sets its flag (4.) and informs the next agent only if the flag
is approved. The JADE agent performs perception (6.) only
after receiving the information about the new Tick (5.) from
its RepastAgentRepresentation object. This is achieved in
the environment by the RepastAgentRepresentation object
(7.) and it gives the information about the environment to
the agent (8. and 9.). Now the agent can react and can make
an action in the environment (11.). Note that we also define
“waiting” as an action. Then the RepastAgentRepresentation
object tries to execute the movement (11.) by activating the
agent positioner (12). The agent receives the outcome, i.e.
whether the movement was successful (13. - 15.).

B. Open platform

In our platform we implemented the agents as
JADEAgents, but it is also possible to integrate other agent
programming (AP) platforms (i.e. Jason, Jack) to JRep. A
first approach to realize this is to enable Repast S to have a
reference to the JADEAgent and vice versa. This is achieved

Figure 2. Scheduling agents in JRep

by representing an agent in JRep by a RepastAgentRepresen-
tation wrapper class and by the fact that the JADEAgents im-
plement the AgentRepresentationInterface Interface. A more
general view of the approach reveals that any Java agent
can implement the AgentRepresentationInterface Interface.
Then, both Repast S and the Java agents can call methods
using references to each other, because both are Java-based.

Another approach for integrating other AP platforms with
Repast S is to use Remote Procedure Calls (RPCs). In this
case the RepastAgentRepresentation class must allow an
agent to call appropriate RPC methods from remote (i.e. the
methods must be available). RPCs connect any AP platform
independent from its programming languages to Repast S.
For instance one can implement XML RPCs for information
exchange (i.e. perception and action) between Repast S and
an agent. However, this approach can slow down the overall
system performance, because the communication between an
agent and the simulation environment can take more time
than a simple call by reference. For our purpose we have
implemented JRep with JADEAgents that are connected to
Repast S by references.

C. Agent perspective

While in Section IV-A we presented how to combine a
JADEAgent with Repast S from an overall perspective, now
we focus on the single agent perspective. First we describe
the connecting process to the simulation platform:

A JADEAgent can be added to the simulation environment
at the simulation run-time as illustrated in Fig. 3. The class
RegisterAgentToEnvironment is implemented in Repast S
which makes the connection between Repast S and JADE.
It ensures that new agents are positioned initially. After
instantiation of an agent, it must receive a reference to
the appropriate RegisterAgentToEnvironment object (e.g., by
delivery in the constructor or by web services). Now, the
method registerAgent(Position pos) in the RegisterAgent-
ToEnvironment class (1.) is called. The agent gives the
preferred coordinates to start in the environment. Then the
RegisterAgentToEnvironment generates a RepastAgentRepre-

sentation object for that agent (2.). This places the agent
in the desired position if that space is available (e.g. not
occupied by another agent) (3.). If the agent is placed, the
reference of the RepastAgentRepresentation object will be
handed over (4., 5. and 6.).

Figure 3. Register a new agent to the simulation platform

We have implemented our own agent architecture uni-
formly used in our airport scenario [5], but the JRep platform
obviously allows for the implementation of different kinds of
agents: i.e. simple reactive agents and agents with complex
architectures. This is because JADE is used, which comes
without agent architecture specification, but provides some
features that simplify the implementation of agents.

D. Agent interaction

In MAS, agents interact with each other either through
the communication or by reacting to the behavior of the
other agents. We have chosen the first approach. However,
in order to communicate agents must be able to understand
each other using a common language. In our approach we
have used the first approach, making use of the FIPA ACL
standard, which provides a common language for the agents
to understand each other.

V. CASE STUDIES

Further, we present two case studies to demonstrate the
capabilities of the JREP platform.

A. Coin Flip Scenario

In the coin flip scenario, autonomous agents work in two
teams which can communicate with each other. Each team is
allocated one side of a coin. The task of the teams becomes
flipping the coins such that their allocated side of the coin
shows on top. On the macro level the aim of this scenario is
to show that for certain parameters the count of both sides
of the coins is in equilibrium.

In the implementation of the scenario the agents are
located in a grid based environment. The teams are of equal
size. The coins are represented by blocks (colored red or
blue) which can be flipped by the agents. The scenario has
been first tested for 100 agents working on an 30 by 30 grid
and 200 blocks, illustrated in Figure 4. The micro behavior
of an agent is to look for the nearest block not being of its
team color and move (by A* search algorithm) to the block
to flip it. The diagram at the bottom of Fig. 4 is a feature
of Repast S and shows the distribution of the red and blue

Table I
SCALABILITY AND PERFORMANCE OF JREP

Configuration
(#Grid;#Agents;#Blocks)

Ticks in 10 sec. Memory
Footprint

500x500;100;100 725 2 MB
500x500;500;500 553 14 MB
500x500;1000;1000 335 37 MB
500x500;5000;5000 261 169 MB
500x500;10000;10000 148 332 MB

blocks’s count. On the right side of the figure the JADE
Remote Management GUI is displayed. It shows the agents
that are implemented in JADE and connected to Repast S.

Figure 4. Equilibria Scenario

Scalability is evaluated by testing the coin flip scenario
with different starting configurations (see Table I). We com-
pared the memory footprints of several start configurations.
The performance is measured by counting the simulation
steps (ticks) within the first 10 seconds of simulation. Table
I shows the results. It can be seen that the ticks decrease
linear, whereas the memory footprints increase super linear.
We interpret these results positively, because JRep still scales
and performs well for 10000 acting agents.

B. Airport Scenario

Further ongoing work is presented in [5], where we show
an airport scenario with autonomous transportation services
including the macro/micro and interaction level. The airport
departure area and the behavior of the autonomous trans-
portation services is illustrated in Repast which provides
an efficient visualization of the macro level. The airport
infrastructure is represented by a grid in Repast and it
is defined by a set of environment elements (e.g., roads,
stopovers) that are arranged at design time. In order to sign
in the environment the agents (e.g. TAs, charging stations)
have to connect to a registry (cf. Fig. 3). This registry

stores references to agents for accessing their properties
(e.g., positions). On the micro level, considering the agent
architecture presented in [5], an TA has its own plan, goals
but it can also perform joint plans. Also, each TA can
perceive other TAs that are in his horizon and has to take
decisions based on gathered information. For example, TA
are signed in a service that collects passenger orders and
offers tickets (pickup/drop positions, times) to the TAs. This
leads to competition on tickets, roads and charging station,
so TAs have to negotiate. For this, the registry provides its
reference to enable a connection establishment between the
agents. The registry does not coordinate the agents centrally,
but coordination, negotiation and conflict handling are done
by direct communication between agents. Manipulations of
the environment are based on interactions among agents,
where complex interactions (e.g., for negotiations) presup-
pose communication.

VI. CONCLUSION AND FUTURE WORK

In this paper, we describe the JRep platform, integrating
Repast Simphony and JADE, and its application to modeling
and agent-based simulation of complex MAS applications
(the smart airport). JRep provides the machinery to comfort-
ably model the behavior and interactions on the agent level
(micro level), as well as the instruments to investigate the
emerging effects on the overall system (macro level). JRep
uses the strengths of both platforms, by efficiently combin-
ing their complementary features. Previous work [15] also
addressed the combination of JADE and Repast, but their
approach has some drawbacks. JRep is an open platform
that enables the connection with other agent programming
platforms. It is sufficiently generic that it can be used for
different application fields. Importantly, we have developed
generic concepts and an architecture which provides a novel
contribution in itself. We showed how our platform handles
(time) synchronization with the environment, scheduling
of agents, and registering of new agents. The case study
demonstrated the flexibility, scalability and functions of
JRep. JRep provides the machinery to comfortably model
the behavior and interactions on the agent level (micro-
perspective) as well as the instruments to investigate the
emerging effects on the overall system (macro-perspective).

In future we plan to enhance JRep by a standardized
interface between the agents’ behavior and the environment
as proposed in [1]. Such an interface will not only ease the
integration to alternative simulation and execution backends,
but also improve separation of concerns as the environment
is decoupled from system level issues like agents’ registry
and scheduling.

REFERENCES

[1] T. Behrens, K. Hindriks, and J. Dix. Towards an environment
interface standard for agent platforms. Annals of Mathematics
and Artificial Intelligence, pages 1–35, 2010.

[2] F. L. Bellifemine, G. Caire, and D. Greenwood. Develop-
ing Multi-Agent Systems with JADE (Wiley Series in Agent
Technology). Wiley, April 2007.

[3] K. Chmiel, D. Tomiak, M. Gawinecki, P. Karczmarek,
M. Szymczak, and M. Paprzycki. Testing the efficiency of
jade agent platform. In Proc. of the 3rd Intern. Symposium
on Parallel and Distributed Computing, ISPDC ’04, pages
49–56. IEEE Computer Society, 2004.

[4] C. Deiters, M. Köster, S. Lange, S. Lützel, B. Mokbel,
C. Mumme, and D. N. (eds.). Demsy - a scenario for an
integrated demonstrator in a smartcity. Technical Report
2010/01, NTH Research School for IT Ecosystems, Clausthal
University of Technology, 2010.

[5] M. Huhn, J. P. Müller, J. Görmer, G. Homoceanu, N.-T.
Le, L. Märtin, C. Mumme, C. Schulz, N. Pinkwart, and
C. Müller-Schloer. Autonomous agents in organized localities
regulated by institutions. In Proc.of IEEE DEST 2011: 5th
IEEE International Conference on Digital Ecosystems and
Technologies, 2011.

[6] N. Minar, R. Burkhart, C. Langton, and M. Askenazi. The
swarm simulation system: A toolkit for building multi-agent
simulations, 1996.

[7] J. P. Müller. The Design of Intelligent Agents - A Layered
Approach, volume 1177 of LNCS. Springer, 1996.

[8] C. Nikolai and G. Madey. Tools of the trade: A survey of
various agent based modeling platforms. Journal of Artificial
Societies and Social Simulation, 12, 2009.

[9] M. J. North, T. R. Howe, N. T. Collier, and J. R. Vos. The
Repast Simphony Runtime System. In Proc. of the Agent
2005 Conf. on Generative Social Processes, Models, and
Mechanisms, 2005.

[10] L. Panait and S. Luke. Cooperative multi-agent learning: The
state of the art. Autonomous Agents and Multi-Agent Systems,
11(3):387–434, 2005.

[11] A. R. Plummer. Model-in-the-loop testing. In Proc.of
the Institution of Mechanical Engineers, Part I: Journal of
Systems and Control Engineering, pages 183–199, 2006.

[12] A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: A
BDI Reasoning Engine. In R. B. et. al., editor, Multi-Agent
Programming, pages 149–174. Springer Inc., USA, 9 2005.

[13] S. F. Railsback, S. L. Lytinen, and S. K. Jackson. Agent-based
Simulation Platforms: Review and Development Recommen-
dations. SIMULATION, 82(9):609–623, September 2006.

[14] E. Shakshuki and Y. Jun. Multi-agent development toolkits:
An evaluation. In Proc. of the 17th Intern. Conf. on Innova-
tions in Applied Artificial Intelligence, IEA/AIE’2004, pages
209–218. Springer Verlag, 2004.

[15] M.-J. Yoo and R. Glardon. Combining JADE and Repast
for the Complex Simulation of Enterprise Value-Adding Net-
works. In AOSE, pages 243–256, 2008.

