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Abstract—This paper proposes a new metaphor for
constructing systems of systems: Autonomous Agents in
Organized Localities (AAOL). An agent-based approach is used
for modeling structure and behavior of complex systems that
consist of (semi-)autonomous systems, where goals, resources,
capabilities are described locally while a need for superordinated
”global” regulation exists. The notion of organized localities
is used to describe spatially or logically constrained spheres
of influence of regulation bodies. Agents inhabit – and can
move across – localities; regulation rules are modeled via
computational norms and enforced by electronic institutions. A
key objective of our work is to explore and advance applicability
of AAOL to constructing mechatronic systems with (at least soft)
real-time constraints. We describe requirements for modeling
systems of systems, and outline the key pillars of AAOL: a
conceptual architecture and a metamodel providing the basic
constructs for describing AAOL-type systems. A case study of
a decentrally organized airport transportation infrastructure
illustrates the concepts and the feasibility of AAOL-based
systems of systems design.

Meta model; Organized Locality; Regulations mechanisms (key
words)

I. INTRODUCTION

Recent advances in coupling heterogeneous computing devices
and software applications have stimulated several innovative
fields like autonomous robotics, ambient assisted living, or
enhanced civil infrastructure. Such systems of systems are char-
acterized by loosely coupled, software-controlled subsystems
that cooperate to achieve joint goals. Each subsystem operates
semi-autonomously in order to pursue individual tasks, but it
also obeys the current constraints within its local environment.
We assume subsystems are developed independently of the
purposes and unifying requirements of an entire system.

Digital Ecosystems [1] address similar issues in the areas
of enterprise application integration, social networks, and
virtual communities. Digital Ecosystems combine features
from Multi-Agent Systems (MAS), Autonomic Computing and
Service-Oriented Architectures to develop and evolve robust,
scalable systems with a high degree of self-management.

This work was funded by the NTH Focused School for IT Ecosystems
(www.it-ecosystems.org). NTH (Niedersächsische Technische Hochschule)
is a joint university of Technische Universität Braunschweig, Technische
Universität Clausthal, and Leibniz Universität Hannover.

However, with the integration of physically acting mechatronic
subsystems and the growing complexity of joint tasks, the
need for ”semantically rich abstract levels of description” [2]
increases. The computing entities shall temporarily co-operate
in a certain scenario; in addition, they shall be deployable in
another context with different environmental constraints and
tasks in a plug’n’play like manner. To meet these challenges,
social concepts like organizations, institutions and norms have
been proposed in the area of MAS [3], [4]. Social concepts
are a means of explicit representation of global objectives and
constraints and of their relation to the level of interacting
groups and even to individuals with their beliefs, desires,
and intentions (BDI). They build a basis for self-insight, self-
management, and finally self-adaptation of such systems of
systems. But until now, the different aspects of social interac-
tion and regulation have been mainly considered in isolation.
So, open questions are 1) Which are key concepts needed to
balance between the global objectives and the autonomy of
individual actors within a system of systems? 2) What are the
specific requirements induced by the mechatronic subsystems
that have to be incorporated to pave the way towards cyber-
physical systems? 3) What are adequate architectural means
to found the design of subsystems upon?

Here, we present a conceptual metamodel and architecture
for Autonomous Agents in Organized Localities (AAOL)
to facilitate the model-based development of cyber-physical
systems of systems. Localities capture the idea of a restricted
sphere of influence and environmental constraints in which
semi-autonomous agents cooperate under the control of cen-
tralized regulation bodies, called institutions. As a first proof of
concept, an airport transportation scenario has been designed
according to the AAOL concepts and realized on a simulation
platform. The paper is structured as follows: In Sec. II, key
viewpoints of systems of systems are discussed. Our approach
is introduced in Sec. III, the AAOL metamodel is presented
in Sec. IV. Sec. V describes the airport departure scenario.
Sec. VI concludes and discusses future research directions.

II. DIMENSIONS OF SYSTEMS OF SYSTEMS

In this section, we discuss four distinct aspects of systems
of systems, resulting requirements, and related work.
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A. Representation of the Environment

As we are interested in the application of our approach
to technical systems featuring physical components, below
the requirements and structure of a typical environment for
embodied participants (e.g., robots) are described. In order
to perceive the environment, the participants require sensors
(e.g., cameras). In general, the scanned data underlies some
uncertainties, which have to be considered in the preprocessing
(data reduction, filtering) of the raw data. Moreover, reactive
behavior (e.g., obstacle avoidance) is a very important require-
ment for accomplishing tasks in the environment. Complex
behaviors (e.g., navigation) require an internal representation
of the environment. It is possible either to provide predesigned
maps or to create maps from sensor data at runtime (e.g.,
SLAM) [5]. Different kinds of maps are e.g. grid-based,
feature-based, and topological maps. To perform navigation
tasks (e.g., path planning), a participant needs to know its
relative position in the environment. Since the uncertainty of
sensor data adds up over time, proper localization algorithms
(e.g., Monte-Carlo localization [6]) become necessary. All
processing steps underlie real time requirements, the steps
need to be finished during a fixed time interval, as they finally
lead to the control of motors, which result in a movement of
driving wheels, manipulators, sensor rotation, etc.

As participants can manipulate the environment and every
change may have significant effects on the whole system, these
issues cannot be handled by predefined, constant mechanisms
[3]. Since these difficulties transfer to digital ecosystems, and
a centralized regulation and control is not applicable, our
approach aims at regulation mechanisms, which are centrally
triggered but accomplished in a decentralized fashion.

B. Autonomous Systems and Agents

The environment surrounds all moving participants and
static objects (e.g., roads) in a system. Participants can be
modeled by the concept of agents. Agents are capable of
carrying out actions autonomously to achieve goals [7]. In
[8], [9] architectures to model agents have been proposed.

An agent perceives selective parts of the its environment
to gather significant information and to interpret this as ac-
tual world state. Based on its world state the agent draws
conclusions about a situation and makes decisions to select
appropriate actions for achieving its goals. The execution
of actions by the agent’s actuators will change the environ-
ment; these changes have to be re-perceived. This continu-
ous process of perceiving, analyzing, selecting and executing
can be realized by self-management. Hence, autonomy and
self-management capabilities enable agents to act solely in
unknown environments. However, the autonomy of agents
counteracts the controllability of groups of agents. To meet
this challenge, we have to consider adequate decentralized
coordination mechanisms.

C. Coordination Mechanisms

In order to solve complex tasks in a shared environment,
agents need to coordinate their activities, form groups and

cooperate within organizations through appropriate interaction
mechanisms. Due to decentralized system design and possible
different roles of each agent, conflicts between agents or
organizations can arise. MAS [7] are a promising paradigm
for the construction of systems of systems. A MAS is a
system consisting of multiple agents having a large number
of structural variations (heterogeneous) or multiple identical
agents (homogeneous) that interact with each other. Interaction
often uses communication and implies that agents coordinate
their activities to solve a problem or to reach common goals.
A common model of communication is speech-act based:
(1) Agents are able to make a decision for action selection,
(2) communication is a type of action, and (3) it carries a
semantic meaning that has to be understood by agents (e.g.,
KQML or FIPA ACL). Therefore agents have a relationship
with each other and form an organization [10]. Roles are
the main focus that agents take within the organization and
those associate agents with one another. A role comprises
the constraints (requirements, skills) that an agent has to
satisfy when adopting a role behavior, the benefits (abilities,
authorization, profits) that an agent receives in playing that
role, and the responsibilities associated with it [10].

External agents can see an organization as a single entity.
An organization can therefore be part of another organiza-
tion, resulting in a hierarchical structure of organizations and
agents [11]. Coordination entails temporal ”harmonization” of
activities. It takes place independent of individual goals of
the agents and comprises control mechanisms for working
together. Coordination mechanisms avoid ineffective behavior
by reducing competition for resources [7] and by dealing with
different types of conflicts.

D. Regulation Mechanisms

Even with autonomous or loosely coupled adaptive sys-
tems, the purposes, guarantees, and restrictions are usually
considered from a global or regional perspective. Central
questions are: 1) How are the global objectives achieved via
the participating systems? 2) How are agents designed (a
priori), or selected or adapted (at runtime) that are compliant
to the system-level rules valid in a restricted situation in their
structure and behavior? 3) How can adaptations on global or
regional objectives be achieved? These issues are answered
differently in distinct areas:

In Organic Computing [12] and swarm intelligence, individ-
ual subsystems cooperate locally to solve global optimization
problems without central control. Self-optimizing mechatronic
systems [13] propose a layered architecture called Operator
Controller Module with a central cognitive controller that is
able to react on changes in the environment or the system ob-
jectives by reconfiguring the subsystem controllers. Distributed
constraint satisfaction [14] and game theory express the global
objectives via consistency predicates or equilibria.

Organizational MAS [4], [15] aim at handling compound
tasks like search and rescue scenarios. As the subtasks and
situations differ significantly, an organization adopts the struc-
tural and behavioral interaction patterns for agent coopera-
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tion. The organization possesses the capability and workflow
models that allow to reason on how global constraints and
objectives can be met in particular locally, time-based or
resource-restricted situations. They assign roles to agents and
monitor them.

Normative or institutional MAS [16] is a new direction that
transfers social and judicial concepts to open communities of
software agents. Trusted institutions administer norms, which
specify the rules the agents shall obey to, and impose them by
enforcement or incentives. Norms are a powerful and flexible
means to achieve guarantees on both, the global level in terms
of preferred equilibria status, as well as on the individual level
like safety, fairness or progress assertions.

III. AUTONOMOUS AGENTS IN ORGANIZED LOCALITIES

Based on the requirements from Sec. II, in the following
we elaborate an approach to organize complex systems.

A. Representation of the Environment

In this work, we consider our approach in a simulated
environment. Therefore, the complexity of the data provided
by the sensors as well as the control of the actuators is
considerably reduced as compared to a real world scenario
(see Sec. II). Here, the sensor perception corresponds to the
knowledge of a small part of agents’ proximity (e.g. content
of adjacent cells in a grid map) and we are able to choose the
proper abstraction level of the actuators, such as ”move one
cell north”. Additionally, communication can be implemented
with a guaranteed exchange of messages, which avoids various
difficulties compared to a real hardware implementation.

Either way, due to the complexity of the system, the environ-
ment in which the agents are situated is not uniform in terms
of its functional structure and its requirements. Different areas
of the environment may require different agent behavior. This
division could be spatial (due to e.g. different environmental
configurations) but also semantic (e.g., different communica-
tion protocols for the interaction between the agents or with
the objects). For this purpose we decompose the locality in
to several scenes. Each scene is characterized by constraints
which may take effect on different levels of the system. These
requirements lead to our approach of AAOL.

An organized locality can be understood as a physical or
virtual place offering a number of opportunities. It has a
scope defining a boundary, so systems may enter, leave, and
return later to the locality. Further a locality may provide
organizations to foster coordination. It is associated with
institutions to regulate the interaction of autonomous, het-
erogeneous agents beyond physical and technical constraints.
Institutions regulate the agent behavior in order to balance
between different interests and to establish and sustain certain
notions of stability. Organizations structure the grouping and
collaboration of agents within the locality. Both are introduced
in Sec. III.C and III.D.

Examples of localities are an airport (see Sec. V), a fair,
or a social network. The infrastructure is part of a local
ontology representing domain knowledge. A locality sets the

stage for a possibly hierarchically structured collection of
scenes describing pre-defined interaction templates for specific
coordinated activities or to achieve certain subgoals.

B. Autonomous Systems and Agents

AAOL defines the locality as a virtual infrastructure to be
used by the agents to achieve goals related to the subject of
the locality.

We propose an agent architecture with four layers: Social
Context Layer (SCL), Individual Context Layer (ICL), Execu-
tion Layer (EL), and Mechatronic Layer (ML) (see Fig. 1).
Agents perform predefined atomic or sequenced (plans) ac-
tions related to their goals. Goals and plans are potentially
spread among multiple agents (joint goals/plans). Each layer

Fig. 1. AAOL Agent Architecture

has an authority. If this authority cannot handle a case, a
request to an upper layer is performed. In case the EL detects
an unresolvable problem, a request to the ICL is issued.
For multi-agent problems the ICL has to activate the SCL
to preform communication for negotiation. The upper layers
solve the problem and reactivate the lower layers again, e.g.,
the EL will be re-activated to perform the actions. Hence,
information flow for planning in bottom-up and for execution
in top-down direction. The ICL is in focus of the decision-
making process. Decisions are based on the information from
the EL reflected to the individual world state and the goals of
an agent. Such feedback control problems can be implemented,
e.g., by the MAPE cycle approach [17].

The ICL and SCL are partitioned into three segments
according to a BDI architecture (cf. [8]). Belief is perceived
as the world state. In the SCL, this state is restricted by norms
and in the ICL it is derived from the behavior of other agents
in the environment. Goals of agent groups (social context) or
of single agents (individual context) are classified as Desires.
Intention includes specific plans for realizing individual/joint
goals, respecting the environmental restrictions.

If multiple agents act in the same locality, joint tasks have
to be coordinated and resource conflicts need to be solved.

C. Organizations in Multi-Agent Systems

In the agent architecture described in Fig. 1 organizations
are located in the SCL and can be seen as computational
methods inspired by concepts from economy and sociology
that appear as one entity in the locality based upon social

5th IEEE International Conference on Digital Ecosystems and Technologies (IEEE DEST 2011), 31 May -3 June 2011, Daejeon, Korea 

ISBN: 978-1-4577-0872-5 (c) 2011 IEEE 56



and functional distinctions and roles amongst individuals.
Organizations can also be structured hierarchically e.g. by
providing certain agents with more authority than others
through role definitions. A peer-to-peer architecture is any
distributed network composed of agents that make a portion
of their resources directly available to other agents, without
the need for central coordination instances. Peers are both
suppliers and consumers of resources, in contrast to the tra-
ditional client-server model. The fully connected architecture
has a general form of a chief director usually forming the
single well-informed element, the so-called ”voice” of an
organization to the outside, to sub-division managers and to
the workers. A group can be seen as a specialized entity (or
subsystem) of an organization, usually consisting only of one
leader and workers to reach a common goal or achieve a
joint plan. For this, communication, negotiation and conflict
resolution is connecting the individual with the social context
layer. The connections between the agents with different roles
imply interaction guaranteeing the service of the localities,
but this may lead to conflicts between agents which need to
be handled. In conflict cases, agents should be able to detect,
analyze and solve conflicts. In addition, they should be able
to learn how a conflict occurred to avoid future conflicts.

D. Regulation Mechanisms

As stated in Sec. III.A an institution is associated with
a locality. It provides normative regulations (norms) and
mechanisms to establish or to ensure their compliance. It acts
through an organization that executes institutional tasks. The
tasks contributing to norm compliance are: 1) An information
service administers the identities of agents currently present
in the locality and provides them with knowledge about the
current norms, 2) Norm monitors monitor whether the agents
behave according to the norms based on the information
gathered from observers, 3) A norm enforcement guarantees
that control is imposed on the agents participating in the
locality in such a way that they will behave norm-compliant
to assure vital global objectives and the safety of individuals.

Norms are an explicit description of the regulations that
govern the agents’ behavior in the locality for the benefit of
the community and itself as a member of it. Norms are defined
in a top-down manner by the institution. Our approach assumes
that agents are able to understand them.

IV. AAOL METAMODEL

In this section, we describe a metamodel which provides
the constructs (and their relationships) for modeling systems
based on the AAOL concept.

A. Representation of the Environment

In order to provide the structure of the localities, we need
a representation of the environment, which enables a proper
association between the specific regulation mechanisms and
the localities. As stated in Sec. 3A, our approach is to
divide a locality into several scenes (e.g. different areas in
an airport, see Sec. V). The institutions which are associated

with a locality, provide regulation mechanisms within the
scope of a specific scene (see Fig. 2). The division into

Fig. 2. Metamodel of a Locality

scenes can be motivated by various tasks rules, processes,
requirements, properties, constraints or resources (e.g. sensor
properties, movement constrains or energy resources). Within
these scenes, associated sets of norms are used to regulate the
behavior and interaction of the agents. According to this, the
agents need an internal representation of the context which is
relevant in the specific scope.

B. Autonomous Systems and Agents

For behavioral specifications for agents we introduce a
metamodel regarding to our architecture (see Fig. 3). The

Fig. 3. Metamodel of the Agent Architecture

metamodel breaks down the concepts of layers and BDI to
classes. Classes are responsible for specific parts of the agents’
behavioral specifications. The reasoner is the central decision
instance in the ICL, responsible for decision making based on
agent capabilities, (joint) goals, (joint) plans, norms, and the
individual/social world states.

From this point on, the ML is neglected, since the behavioral
specification is seen in context of a virtual environment in a
simulation. Instead, the ECL is directly linked to the locality.
Raw sensor data and control commands for actuators are
preprocessed in an appropriate way.

We extend our metamodel to describe further details of sim-
ulation platforms. An agent consists of an agent architecture,
capabilities and behaviors (see Fig. 4).

Further relations of an agent in the metamodel are described
according to [18]: an agent has accesses to a set of resources
(information, knowledge, ontologies, etc.) from its environ-
ment, i.e., the locality. Furthermore, an agent has goals and
is able to take on locality roles (to act in accordance to a
plan) and behaviors, which are represented by the agents’
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Fig. 4. Metamodel of an Agent

capabilities. The coordination of agents in organizations is also
reflected in our metamodel.

C. Metamodel of Organizations

Fig. 5 is an extension of [18] and shows the metamodel of
organizations. It includes the concept of an Organization and
its Structure, Group and its Context, Institution and Norm,
Binding, InteractionUse, ActorBinding, Interaction and its
Protocols for Communication and Coordination, LocalityRole,
Actor and Agent as well as Capability and Resource (from
the agent aspect). An organization is derived from the agent
perspective and it inherits characteristics of an agent [18], i.e.
capabilities which can be performed by its members. A Group
is a special kind of an organization that is bound by a Group
context. The Structure defines the pattern of the organization. It
can bind agents or organizations to the LocalityRole. Interac-
tion in an organization has internal protocols that specify how
its members communicate with each other and coordinate their
activities. For interaction, LocalityRoles are bound to Actors
(by ActorBinding) that can be considered as representative
entities within the corresponding interaction protocols. Thus,
an actor can be seen as an agent (or organization) with a
Role and a task. A role defines the behavior of an agent in

Fig. 5. Metamodel of Organizations and Roles

a given context (e.g., an organization). Therefore it provides
an agent with capabilities and a set of resources it has
access to. An actor can be considered as a generic concept
and either binds instances directly or through the concepts
LocalityRole and Binding. The set of bound entities could be
further specialized through the subactor (specialization of the
superactor) reference that refers again to an actor.

D. Regulation Mechanisms

The conceptual metamodel for the normative aspect of
an institution is illustrated in Fig. 6. A norm consists of
a normative statement expressing the regulation imposed, a
set of subjects to which the normative statement applies,
and the scope that may restrict its area of applicability to

particular scenes or situations. The norm also has a speci-
fication of fulfillment/violation for monitoring norm compli-
ance, and the consequences of norm compliance in terms
of positive/negative rewards. A set of norms is structured
in a normative structure based on which the classification
scheme is realized. It classifies the norms with respect to
abstraction levels, a priority scheme or context information.
We distinguish different types of norms, namely obligations,
prohibitions, and permissions. Permissions specify the allowed
actions to be performed by the agent while obligations and
prohibitions restrict its behavior. The agent interprets prohibi-
tions (restrictions) as guidelines which it may decide to violate.
Obligations are used in case norm-compliant behavior is con-
sidered mandatory, due to its high criticality either with respect
to the system-level objectives or to the dependability issues of
individuals. Thus, obligations must never be violated and they
are enforced on the agent. The norm enforcement in MAS is

Fig. 6. Conceptual Model of Norms

done under one of two assumptions: the designer can control
the actions agents realize in the system and can stop forbidden
actions before they take place by implementing a trusted
component mediating all interactions [19] or only the agent
controls its actions and the regulation is done after the action
has been performed by using sanctions/rewards [16]. The main
disadvantage of the first assumption is the compelling amount
of communication overhead for the trusted component (agent
governor) for mediating all agent’s interactions. The second
assumption allows agents to act selfishly and to violate norms.
Thus, obligations cannot be enforced strictly. For our approach
we have combined elements from both assumptions. We use
institutional agents (IAs), which act preemptively on agents
only in case of obligations. At each step, the IAs compute a
list of candidates of agents, for which an obligation applies.
For each candidate, the IAs then identify forbidden actions,
from the list of possible actions defined at design time. Only
at this moment the IA acts and restricts the candidates from
performing the forbidden actions. The other types of norms
are handled by means of rewards and sanctions due to the
second assumption.

E. Process (Integration of the Four Dimensions)

The integration of the four dimensions is illustrated in Fig.
7. 1) The Environment is represented as the Locality which
is scanned by the agent and he performs action inside. 2)
The Agent has an architecture with an Execution Layer where
the agent is connected to the Locality and LocalityRole is
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allocated to the agent. (3) The Organization is the connection
between the Agent and the MAS where it is embedded together
with Institution. Both refer to 4) our Regulation mechanisms
where Conflict handling and Norm handling are listed as first
implementations.

Fig. 7. Overview of the four Dimensions

V. THE AIRPORT SCENARIO: AN AAOL CASE STUDY

Next we show how the AAOL approach is used to model
and implement a prototypical simulation of a transport infras-
tructure at an airport.

A. Scenario Description

We consider autonomous transport vehicles (ATVs) in the
departure area of an airport. The ATVs transport passen-
gers between stopovers/stations (passenger entrances, check-in
counters, gates, and plane parking positions). ATVs consume
energy while driving on roads, which have different capacities
(one/two lanes) and speed limits, so they have to recharge
their batteries at a charging station (CS). (see Fig. 8). All ATVs

Fig. 8. Road Grid of the Airport

know the airport map and stopovers/stations. Furthermore they
can perceive other ATVs that are within their horizon and have
to make decisions based on gathered information. According
to our agent architecture, ATVs perform (joint) tasks/plans
(e.g., transport passengers) and have (joint) goals (e.g., save
energy). On successful/failed transport task executions, ATVs
are getting positive or negative rewards.

Vehicles are signed in a service that collects passenger
orders and offers tickets (pickup/drop positions, times) to the
ATVs. This leads to competition on tickets, roads and CSs, so
ATVs have to negotiate. A communication grid and conflict

solving mechanisms address these problems. To prevent the
occurrence of unsafe situations caused by a selfishly acting
ATV we need to implement a mechanism to balance agent
autonomy and system controllability according to our meta-
model (see Sec. V.E).

B. Simulation Platform

The airport scenario is implemented on a scalable simulation
platform integrating JADE and Repast Simphony called JRep.
Repast targets agent-based simulation and an efficient visual-
ization of effects on the system of system-level, whereas JADE
is meant for building complex interacting agent communities.
JADE supports FIPA(-ACL) and interaction protocols.

The airports objects (roads, entrances, check-ins, gates,
plane parking positions) are implemented in REPAST, whereas
the agents (ATV, CSs) are realized in JADE using behavior
components to build an agent architecture according to Fig. 3.

C. Representation of the Environment

The virtual infrastructure is called context in Repast and
is defined by a set of environment elements (e.g., roads).
These elements are arranged at design time. In contrast to
a real world scenario, a registry is necessary where active
agents (ATVs) have to sign in/off while entering/leaving
the scenario at runtime. Additionally, some static elements
(stations, stopovers) register as static agents at initiation of
the simulation to enable interactions.

The registry stores references of agents to access their
properties (e.g., positions). With a request to the registry this
replaces the process of environmental scanning. Thus, an agent
can recognize close by agents. If there is another agent, the
registry provides its reference to enable a connection estab-
lishment between the agents. The registry does not coordinate
the agents centrally, but coordination and conflict handling are
done by direct communication between agents. Manipulations
of the environment are based on interactions among agents.
Complex interactions between agents (e.g., for negotiations)
presuppose communication. Based on the JADE framework,
we implemented an ontology for the airport scenario to support
ACL-based communication.

In the registry, localities and scenes are represented as
predefined or spontaneous mappings of agents to sets of norms
and infrastructural restrictions. The locality role of an agent
restricts some behavioral aspects of it. Organization can be
formed by subsets of agents (grouping).

Institutions are also realized as static agents, but not visible
in the infrastructure. An institutional agent defines norms for
its scene in a locality. It got unrestricted access to the agent
references in the registry to observe behavior, enforce norms,
and give rewards.

The representation of the environment and allocation of
agents is possible in our simulation platform with the help
of the registry. Our concept of localities is implemented by
flexible assignments of agents to organizations. Further work
is necessary to support changes of static objects to restructure
the infrastructure at runtime.
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The abstract agent class is extended comprehensively with
the implementation for active agents in the system.

D. Autonomous Systems and Agents

The implementation of an agent is based on the metamodel
from Sec. IV.B. Layers are represented by packages, the BDI
structure is reflected to sub packages, and elements (e.g., the
reasoner) are classes.

Our scenario is limited to human-controlled and au-
tonomous agents. The implementation for human-controlled
agents allows for the direct control of an agent at runtime.

The reasoner is primarily responsible for the agent behavior.
For modeling and validation of the reasoner specification,
we apply a variant of UML 2 Activity Diagrams [20]. The
structure of the reasoner builds on the MAPE cycle [17]. We
provide tool support for simulation of the airport scenario that
allows us to monitor and validate the agent behavior (e.g.,
negotiation processes) in selective views upon the abstract
level of graphical models. Our implementation is expendable
by further functionality for automated testing and validation.

E. Conflict Model

In the airport scenario, many types of conflicts might occur.
At present, we only focus on resource conflicts, i.e., two or
more ATVs compete for a resource. The following conflicts
can happen in this scenario: 1) two ATVs are approaching a
road junction, 2) an ATV needs to be recharged while many
others are waiting to be served by the CS, and 3) ATVs have to
take passengers to unoccupied check-in counters. The resource
which an ATV will consume in these three examples is a road
junction, a CS, or a check-in counter. All of them have limited
capacity. To detect potential resource conflicts, the approach
followed in this paper makes use of agents’ belief information
about its world state (cf. Sec. 2B). That is, each ATV has a
Belief about the last, current, and next possible position of
other ATVs existing within its scope.

Let B be an ATV which exists in the scope of an ATV
A. The next possible position of B can be determined using
information about its current and last positions. The calculation
of the next position is based on the assumption that when
an ATV is moving, it is probable that this ATV will move
straight forward. Using X and Y coordinates to describe
the position of elements within an airport, the difference
between the last and the current X coordinate is determined
as follows: diff X(B)=|last X(B) − current X(B)|. As
a result, the next X coordinate of B will be next X(B) =
current X(B)+diff X(B), and similarly, the next Y coor-
dinate of B can be determined. The next possible position of
B is composed of next X(B) and next Y (B). To enable the
calculation of next possible positions for other ATVs within
the scope of ATV A, the belief of A about the current and
last position of these ATVs needs to be updated dynamically.
For this purpose, A keeps trace of all known ATVs, i.e., ATVs
which have been in the scope of A once, using a collection.
If an ATV B occurs in the scope of A at the first time, B will
be added to the collection and the last position will become

the current position. Other ATVs, which already exist in this
collection, will be updated with its last and current positions.

Let 〈X,Y 〉 be the position of the airport map element
which an agent A will move to, (i.e., consume). Based on
the Belief about next possible positions of other ATVs, A
is able to collect the number of other ATVs in its collection
which will leave/enter this map position. ATVEnv , ATVLeave,
and ATVEnter are the sets of ATVs which are occupying,
will leave, and will enter the map position required by A,
respectively. A has a potential conflict iff |ATV sEnv| −
|ATVLeave|+ |ATVEnter|+ 1 > C, where C is the capacity
of the airport map element 〈X,Y 〉. Since A also has to be
considered an ATV that will consume the map element being
observed, the condition for checking potential conflicts must
include the added value 1. In order to collect ATVs which are
occupying, will leave, and will enter the map position required
by A, we apply first-order unification. This mechanism allows
us to process the Belief of a huge amount of ATVs with less
computational resource than having to iterate through each of
them. Our conflict detection mechanism can be used to detect
the mentioned types of conflicts and is the base for conflict
handling (regional regulation mechanisms, cf. Fig. 7).

F. Norms for ATVs

We implemented one institution so far that provides traffic
norms and mechanisms for regulating the ATV’s behavior.
The norms are stored in a database and checked a priori for
consistency. The institution provides the following services: 1)
Information service is a JADE agent that provides methods to
send norms established at the systems’ design time and uses a
protocol class to play the initiator role (JADE behavior) while
the ATVs use a responder class which has (as a parameter in
the constructor) a MessageTemplate used to select the protocol
initiation message from the initiator. For each registered agent,
its AgentRepresentation (belief of how the agent behaves)
is updated regularly with the actions the agent performs, as
observed by an IA, as well as the next possible actions, 2)
Norm monitor checks the compliance of the agent’s actions
according to the applied norms. At the moment, the scope of
norms can only be restricted by sets of agent’s IDs, 3) Norm
enforcement directs agents to comply with norms.

We illustrate the norm monitoring on a small example:
Whenever a CS is busy charging an ATV, it broadcasts its busy
state. The obligation is stop FOLLOW receiveBusy. It states
that within the neighborhood of a CS, an ATV that wants to
recharge, receiving the busy message has to perform stop next.
Thus, receiveBusy is added to its AgentRepresentation. The
NormMonitor verifies that all but the stop action are forbidden
and directs the agent to comply (using FIPA-Request protocol).
We extended the formal norm definition from [21] by a new
operator called FOLLOW . We assume that a mapping of the
concrete actions present in our locality to the abstract ones
described by the norms is provided (see [21]). For now, the
set of concrete actions Act an agent can perform is assigned
at design time. Thus, an abstract norm like β FOLLOW α, is
understood as b FOLLOW a which means that b is performed
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immediately after a, where a and b are concrete instances of
the abstract actions β and α. This is translated in the form of
forbidden actions, i.e. the agent must not do any action but b.

Applying this to an ATV approaching a busy charging
station, the institution eliminates all but the stop action from
its set of enabled actions, thereby enforcing the norm.

The current approach provides a good basis which can be
easily extended to define other types of contexts or norms.

VI. CONCLUSION AND OUTLOOK

We proposed AAOL, a new metaphor for constructing
systems of systems. We used an agent-based approach for
modeling structure and behavior of complex systems that
consist of (semi-)autonomous systems, where goals, resources,
capabilities are described locally while a need for superor-
dinated ”global” regulation exists. The notion of organized
localities was introduced to describe spatially or logically
defined and restricted spheres of influence of regulation bodies.
Agents inhabit – and can move across – localities; regulation
rules are modeled via computational norms and enforced by
electronic institutions. A major objective is to explore and
advance the applicability of AAOL to constructing technical
systems with (at least soft) real-time constraints. This focus
sets our work apart from existing work on normative MAS.

The main contributions of this paper are threefold. First,
we described a conceptual architecture for AAOL; second, a
metamodel was defined that provides designers with constructs
to describe AAOL-type systems, and that, together with the
architecture, lays the foundation for an AAOL runtime infras-
tructure. Third, we illustrated the use of the AAOL metaphor
and concepts to model a decentrally organized airport trans-
portation infrastructure.

A main benefit of our approach is that its concepts (lo-
calities, institutions, and norms) provide designers with in-
struments for flexible modeling of different control topologies
of systems of systems, ranging from centralized and homoge-
neous to decentralized and heterogeneous settings. Further, the
multi-agent based approach in conjunction with the localities
concept supports well decentralized systems design scenarios,
where the different parts evolve independently while having
to obey certain invariants or rules constraining the overall
structural or behavioral development of the system of systems.

The AAOL approach aims at mechatronic agents acting in
physical environments, but our current prototype has been im-
plemented on a simulation platform only. Thus, the challenges
of a mechatronic layer controlling sensors and actuators, its
interplay with the execution layer, and whether the layered
architecture is feasible to meet the real-time constraints need
further investigation in future. Within the airport scenario
implementation, the AAOL concepts are still not fully ex-
plored: In particular, major structuring constructs like locality,
institution, and organizations are implemented statically.

Based on the proof-of-concept described in this paper, future
work will provide more elaborate design-time and runtime
models of the core concepts, as well as a more powerful
and flexible execution/simulation environment; we will also

develop AAOL engineering methodologies and corresponding
tools, providing semi-automatic mapping of higher-level mod-
els to technical platforms. Finally, models and algorithms for
analyzing formal properties of AAOLs, including functional
properties but also non-functional aspects, such as safety and
performance, are of high interest.
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