
Emmanuel Udoh
Indiana Institute of Technology, USA

Cloud, Grid and High 
Performance Computing:
Emerging Applications



Cloud, grid and high performance computing: emerging applications / Emmanuel Udoh, editor.
       p. cm. 
  Includes bibliographical references and index. 
  Summary: “This book offers new and established perspectives on architectures, services and the resulting impact of 
emerging computing technologies, including investigation of practical and theoretical issues in the related fields of grid, 
cloud, and high performance computing”--Provided by publisher. 
  ISBN 978-1-60960-603-9 (hardcover) -- ISBN 978-1-60960-604-6 (ebook)  1.  Cloud computing. 2.  Computational grids 
(Computer systems) 3.  Software architecture. 4.  Computer software--Development.  I. Udoh, Emmanuel, 1960- 
  QA76.585.C586 2011 
  004.67’8--dc22 
                                                            2011013282

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the 
authors, but not necessarily of the publisher.

Senior Editorial Director:  Kristin Klinger
Editorial Director:   Lindsay Johnston
Director of Book Publications:   Julia Mosemann
Acquisitions Editor:  Erika Carter
Development Editor:  Hannah Abelbeck
Production Editor:   Sean Woznicki
Typesetters:    Michael Brehm, Keith Glazewski, Milan Vracarich, Jr.
Print Coordinator:   Jamie Snavely
Cover Design:   Nick Newcomer

Published in the United States of America by 
in (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax:  717-533-8661 
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2011 by IGI Global.  All rights reserved. No part of this publication may be reproduced, stored or distributed in 
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or 
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

   Library of Congress Cataloging-in-Publication Data



330

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter  21

Fabian Stäber
Siemens Corporate Technology, Germany

Gerald Kunzmann
Technische Universität München, Germany1

Jörg P. Müller
Clausthal University of Technology, Germany

A Decentralized Directory 
Service for Peer-to-Peer-

Based Telephony

ABSTRACT

IP telephony has long been one of the most widely used applications of the peer-to-peer paradigm. 
Hardware phones with built-in peer-to-peer stacks are used to enable IP telephony in closed networks 
at large company sites, while the wide adoption of smart phones provides the infrastructure for software 
applications enabling ubiquitous Internet-scale IP-telephony.

Decentralized peer-to-peer systems fit well as the underlying infrastructure for IP-telephony, as they 
provide the scalability for a large number of participants, and are able to handle the limited storage 
and bandwidth capabilities on the clients. We studied a commercial peer-to-peer-based decentralized 
communication platform supporting video communication, voice communication, instant messaging, et 
cetera. One of the requirements of the communication platform is the implementation of a user directory, 
allowing users to search for other participants. In this chapter, we present the Extended Prefix Hash Tree 
algorithm that enables the implementation of a user directory on top of the peer-to-peer communication 
platform in a fully decentralized way. We evaluate the performance of the algorithm with a real-world 
phone book. The results can be transferred to other scenarios where support for range queries is needed 
in combination with the decentralization, self-organization, and resilience of an underlying peer-to-peer 
infrastructure.

DOI: 10.4018/978-1-60960-603-9.ch021



331

A Decentralized Directory Service for Peer-to-Peer-Based Telephony

INTRODUCTION

Structured peer-to-peer overlay protocols such 
as Chord (Stoica et al 2001) are increasingly 
used as part of robust and scalable decentralized 
infrastructures for communication platforms. For 
instance, users connect to an overlay network to 
publish their current IP address and port number 
using a unique user identifier as the keyword. 
In order to establish a communication channel 
to a user, the user’s identifier must be looked 
up in order to learn the TCP/IP connection data. 
Registration and lookup of addresses are realized 
using Distributed Hashtables (DHT).

However, users in such applications do not 
always know the unique identifier of the person 
to be contacted. Therefore, it must be possible to 
look up the identifier in a phone-book-like user 
directory. When looking up an identifier, the user 
might not know all data necessary to start an exact 
query. For example, the user might know the last 
name of the person to be searched, but not its first 
name or address. Moreover, people often are not 
willing to fill out all data fields, e.g. the address 
of the person to be called. Therefore, the phone 
book is required to support range queries, like 
queries for all people with a certain last name.

A challenge arises from the non-uniform dis-
tribution of people’s names. Figure 1 shows the 
frequency of last names in the city of Munich, 
Germany. Last names are Pareto-distributed, or 
Zipf-distributed, i.e., there are a few last names 
that are very common, while most last names are 
very rare.

In this article, we propose the use of Extended 
Prefix Hash Trees (EPHTs) as a scalable indexing 
infrastructure to support range queries on top of 
Distributed Hash Tables. The EPHT is evaluated 
by using real-world phone book data; experiments 
show that our approach enables efficient distrib-
uted phone book applications in a reliable way, 
without the need for centralized index servers. A 
comparison with related work shows that this has 

not been possible using techniques introduced 
before.

In the following section, we review related 
work and highlight the problems with current 
approaches. Then, we present the EPHT algo-
rithm, and compare it with the original Prefix 
Hash Tree (PHT) algorithm. Then, we evaluate its 
performance by running a series of experiments. 
Finally, we summarize our results and show our 
conclusions.

RELATED WORK

When entries are stored in a Distributed Hash 
Table, the location of an entry is defined by the hash 
value of its identifier. A common way to achieve 
a uniform distribution of the entries among the 
peers in the DHT is to require the hash function 
used to calculate the hash value to operate in the 
Random Oracle Model (Bellare et al, 1993), i.e. 
even if two identifiers differ only in a single Bit, 
the hash values of these identifiers are two inde-
pendent uniformly distributed random variables.

While this hash function allows for good bal-
ancing of the data load in a DHT, it makes range 
queries very costly. Iterating among a range of 
identifiers that are lexicographically next to each 
other means addressing nodes in a random order 

Figure 1. Frequency of last names in Munich, 
Germany



332

A Decentralized Directory Service for Peer-to-Peer-Based Telephony

in the peer-to-peer network. A way to accelerate 
range queries is to abandon the Random Oracle 
Model, and to store the entries in lexicographical 
order. In this section, we discuss three approaches 
relying on this idea: Skip Graphs (Aspnes et al, 
2003), Squid (Schmidt et al, 2004), and Mercury 
(Bharambe et al, 2004). We point out the difficul-
ties arising with these approaches in scenarios like 
a distributed phone book.

A comparison between EPHTs and the origi-
nal PHT algorithm (Rambhadran et al, 2004) is 
presented after we introduced the EPHT.

Skip Graphs

Figure 2 shows a linear three-Bit identifier space. 
The peers, as indicated by diamonds, are randomly 
distributed among the identifiers. Each peer is re-
sponsible for the identifiers in the range between 
itself and its predecessor or successor.

As shown in Figure 2, Skip Graphs introduce 
several levels of linked lists for traversing the 
peers. The higher the level of the list, the more 
peers are skipped, accelerating routing to spe-
cific ranges. By maintaining several independent 
lists on each level in parallel, Skip Graphs provide 
balancing of the traffic load and resilience to node 
failure.

However, the problem with Skip Graphs is 
that the entries’ identifiers are not distributed 
uniformly among the linked list, while the peers 
are randomly distributed. Entries for a last name 
starting with ‘S’ are very common in the German 
phone book, while last names starting with ‘Y’ 
are very uncommon. Therefore, the peer being 
responsible for a common entry becomes a hot 
spot in terms of network traffic and data load.

Squid

Squid (Schmidt et al, 2004) is an approach for 
combining several keywords when determining 
the position of an entry in the Distributed Hash 
Table. Squid is based on Locality-Preserving Hash-
ing (Indyk et al, 1997), in which adjacent points 
in a multi-dimensional domain are mapped to 
nearly-adjacent points in a one-dimensional range.

For example, in a distributed phone book appli-
cation, one could use a two-dimensional keyword 
domain, where one dimension is the entries’ last 
name, and the other dimension is the entries’ first 
name. Figure 3 shows how two dimensions can 
be mapped on a one-dimensional range using a 
Space Filling Curve (SFC). The SFC passes each 
combination of the two identifiers exactly once. If 
the user wants to search for all entries with a last 
name starting with ‘ST’ and a first name starting 
with ‘F’, then the user simply needs to query the 
parts of the SFC that lie on the intersection of 
these two prefixes in the two-dimensional space.

However, as with Skip Graphs, it turns out that 
the distribution of names in a phone book results 
in combinations that are very common, while 
other combinations are very rare. Again, the peers 
being responsible for common combinations 
become hot spots in terms of data storage and 

Figure 2. Skip graph Figure 3. Squid



333

A Decentralized Directory Service for Peer-to-Peer-Based Telephony

traffic load. This could be avoided with Squid by 
introducing many dimensions in order to distrib-
ute the entries among many different peers. But 
introducing many dimensions results in a tangled-
up SFC. As a result, many short fragments of the 
curve need to be processed for each keyword that 
is not specified in a query. We evaluated Squid 
and found that this results in a very high number 
of peers to be queried in order to find an entry.

Mercury

Like Squid, the Mercury approach (Bharambe et 
al, 2004) supports multi-dimensional keywords. 
Each dimension is handled within a separate hub, 
which is a ring-shaped formation of peers. An ex-
ample of a Mercury hub is illustrated in Figure 4.

The ID range within a hub is ordered linearly, 
which results in the same load balancing problems 
as with the other approaches. However, Mercury 
suggests that peers are moved around dynami-
cally to balance the load. Although this might be 
a reasonable approach in other scenarios, this 
raises difficulties in the distributed phone book 
scenario. First, there are a few very popular last 
names. A peer being responsible for one of these 
popular last names cannot be relieved by moving 
around other peers, and it will stay a hot spot in 
terms of data load. Second, if peers may choose 
their position in the overlay deliberately, this 
raises certain security issues, because an attacker 
who wants to make a person unreachable can 
position its peer in a way that it becomes respon-
sible for routing queries to the victim’s entry.

Fusion Dictionary

Fusion Dictionaries (Liu et al, 2004) are not a 
distributed search index, but a load balancing tech-
nique that can be combined with search indexes. 
The idea is to maintain a blacklist of names that 
are very common, and to cache blacklist entries 
in large parts of the DHT. If a user queries a last 
name that is in the blacklist, the query is inter-

rupted and the user is asked to specify the query 
more precisely, e.g. by including the first name 
in the query.

That way, peers being responsible for fre-
quent names are relieved. As the last names are 
Zipf-distributed, there are only a few names to 
be included in the blacklist in order to achieve 
significant load balancing.

However, in spite of the load balancing 
achieved with fusion dictionaries, the approaches 
introduced above still do not fulfill the scalability 
and performance requirements of large scale com-
munication platforms. In this article, we present the 
EPHT, which is a search index that does not result 
in overloaded peers. That way it is unnecessary to 
introduce additional load balancing techniques.

Summary

The brief survey of related work showed that 
there are several difficulties with previous range 
query solutions when applied in the distributed 
phone book scenario. A more detailed overview 
of search methods in peer-to-peer systems can 
be found in (Risson et al, 2006). An analysis of 
arbitrary search in structured peer-to-peer systems 
was published in (Hautakorpi et al, 2010).

Approaches supporting real multi-dimensional 
keywords like Mercury and Squid have the prob-
lem of hot spots with very popular last names. Ad-
ditionally, approaches relying on linear keywords 
instead of real hashing suffer from overloaded 
peers being responsible for popular prefixes. In 

Figure 4. Mercury hub



334

A Decentralized Directory Service for Peer-to-Peer-Based Telephony

Squid, the hot spots in terms of data load could be 
avoided, but as a trade-off this results in a large 
number of peers to be queried to find an entry.

In the following section, we introduce the 
Extended Prefix Hash Tree as a way of enabling 
efficient range queries, while preserving the ad-
vantages of the Random Oracle Model for hashing, 
which results in a balanced distribution of the 
entries among the peers in the DHT.

EXTENDED PREFIX HASH 
TREE ALGORITHM

Each entry in the distributed phone book is 
associated with an identifier. The identifier is 
a fixed-length string, consisting of the capital 
characters [A-Z]. Identifiers are built by concat-
enating keywords from the entry. In the example 
in Figure 5, we used the keywords last name, first 
name, and city.

The order of the keywords determines the 
relevance of these keywords for range queries. If 
identifiers are built as in Figure 5, it is possible 
to search for the last name without knowing the 
city, but it is not possible to search for the city 
without knowing the last name. This corresponds 
to the hierarchical structure of printed phone 
books, where entries are ordered by city, last name, 
first name, etc. In order to allow alternative key-
word orders, the application must maintain sev-
eral trees in parallel.

Special characters like whitespaces or the Ger-
man ä, ö, ü, ß are omitted. That way, both German 
names “Müller” and “Möller” map into the same 
string “MLLER”. It is up to the application layer 

to filter out the right results when a user searched 
for “Müller”.

The identifier length must be sufficient to en-
sure that a unique identifier can be built for each 
entry with high probability. In our evaluation, the 
identifiers were 32 characters long. Identifiers that 
are longer than that are truncated; identifiers that 
are shorter are padded with random characters.

Growing the Tree

The structure of an EPHT is shown in Figure 
6. There are two parameters that determine the 
shape of the tree:

1.  n is the number of children per node. Each 
edge is labeled with a character set, like 
[S-Z]. The partitioning of the alphabet into 
character sets is fixed and globally known, 
and cannot be changed dynamically during 
runtime. n is the number of character sets, 
which can be any number between 2 and 26. 
In the section on evaluation, we show that 
the best performance is achieved with n=26.

2.  m is the maximum load of the root node, 
i.e. the maximum number of entries that 
can be stored on the root node. If the root 
node exceeds its maximum load, it splits up 
into n child nodes and distributes all entries 
among the children. The maximum load of 
each child equals the maximum load of the 
parent node plus one. The reason for incre-
menting the maximum load is to prevent 
recursive splits, if all entries happen to be 
stored on the same child. If a child node’s 
prefix length (see below for the definition 

Figure 5. Generating a 32 char identifier for an entry



335

A Decentralized Directory Service for Peer-to-Peer-Based Telephony

of prefix) equals the identifier length for 
the entries, then that node cannot split any 
further, and its maximum load becomes in-
finite. In the section on evaluation we show 
that m=100 is a good value.

Each node of the tree is stored as a resource 
in a DHT, using a hash function operating in the 
Random Oracle Model. The keyword to be hashed 
is the prefix of that node in the EPHT, i.e. the 
sequence of character sets on the path from the 
root node to the node to be stored. For example, 
the keyword of the leaf node holding the entry 
‘Gerd Völksen’ in Figure 6 would be ‘[S-Z][I-
R]’. New entries are stored on the leaf node that 
has the closest matching prefix for the identifier 
of that entry.

Once a node is split, it becomes an inner node. 
Inner nodes are kept in the system to indicate the 
existence of child nodes, but they do not store 
any data. In particular, inner nodes do not need 
to store links to their children.

Maintaining the Linked Lists

In addition to the tree structure itself, two doubly 
linked lists are maintained: one for traversing the 
non-empty leaf nodes, and the other connecting 

all leaf nodes, including the empty ones. Each 
element in a list stores the prefix of its predeces-
sor and successor. The linked list is updated upon 
the following events:

1.  A leaf node splits up into child nodes. In that 
case, the old leaf node must leave the linked 
lists, the non-empty new child nodes must 
join the linked list for non-empty nodes, and 
all new leaf nodes must join the linked list 
connecting all leaf nodes. The new nodes 
learn about their initial successors and pre-
decessors from their parent node.

2.  An entry is added to a previously empty 
leaf node. In that case, that node must join 
the list for non-empty leaf nodes. The node 
finds its predecessor and successor using 
the list connecting all leaf nodes.

Performing Range Queries

Usually, tree algorithms imply that nodes are 
searched starting at the root node and traversing 
down the tree to a leaf node. This would mean that 
the peer holding the root node becomes a bottle-
neck and single point of failure in a distributed 
tree structure. EPHTs allow lookups to address 

Figure 6. Example of an extended prefix hash tree with n=3 and m=2



336

A Decentralized Directory Service for Peer-to-Peer-Based Telephony

arbitrary nodes directly, using the prefix of the 
node as the keyword in the DHT.

Range queries are implemented as follows: 
First, the issuer of a query finds a random, non-
empty leaf node lying somewhere in the queried 
range. Second, the issuer traverses the linked list 
of non-empty leaf nodes to the left and to the right, 
subsequently querying the predecessors and suc-
cessors, until all matching entries are retrieved.

Figure 7 shows how an initial non-empty leaf 
node is found that can be used as a starting point 
for traversing the linked list. We exemplify this 
using a search for all people with the last name 
‘Olpp’.

Make Prefix Length 5. The first step is to pad 
the search string with random characters, and to 
take the first five characters as an initial prefix to 
start with. In the example, the initial prefix would 
be OLPPD. In the section on evaluation we will 
show why 5 is a good initial prefix length.

Lookup. When this prefix is looked up in the 
DHT, there are four possible results:

1.  A node with that prefix exists and is a non-
empty leaf node. In that case, the initial node 
for traversing the linked list is found.

2.  A node with that prefix exists and is an 
empty leaf node. In that case, the issuer of 
the query starts traversing the linked list 
until a non-empty member is found. If all 
prefixes in the range queried are empty, then 
the search was unsuccessful.

3.  A node with that prefix exists but is an inner 
node. In that case, the prefix was underspeci-
fied, and it must be enlarged by one character. 
In the example, the next search string might 
be OLPPDH.

4.  There is no node with that prefix. This means 
the prefix was over-specified, and it must be 
shortened by one character. In the example, 
the shortened prefix would be OLPP.

In order to decrease latency, the search can 
be initialized with several different random pad-
dings in parallel. That way, the linked list can be 
traversed starting from different positions at the 
same time.

Removing Entries

Entries do not need to be deleted explicitly. Each 
entry is associated with a lease time. If it is not 
renewed within that time, it is deleted. That way, 
users who are no longer part of the system will 
be removed after some time.

In EPHTs, once a node has split and become 
an inner node, this node stays an inner node for 
ever, even if all entries in its sub-tree have timed-
out. That means that the EPHT can only grow, but 
never shrink. This property is in accordance with 
our use case, as shrinking the tree would only 
make sense if the service provider operating the 
distributed phone book application would perma-
nently loose a significant number of customers, or 
if the distribution of the name’s prefixes changes 
significantly. Both scenarios happen very slowly, 
and it is feasible to roll out a software update in 
that case that will built a new tree from scratch. 
The persistence of inner nodes enables us to 
implement extensive caching.

Figure 7. Addressing nodes



337

A Decentralized Directory Service for Peer-to-Peer-Based Telephony

Caching

As the EPHT never shrinks, inner nodes are im-
mutable. They will never be deleted or altered. 
That means that inner nodes can be cached infi-
nitely in the DHT. Whenever a peer learns about 
the existence of an inner node, it can cache that 
information and respond when that prefix is que-
ried the next time. Without caching, prefixes that 
are accessed very frequently would cause a lot of 
network traffic for the peer being responsible for 
that prefix. Using caching, this network traffic can 
be balanced in the DHT.

COMPARISON WITH THE 
ORIGINAL PREFIX HASH TREES

The Extended Prefix Hash Tree algorithm pre-
sented here derives from the Prefix Hash Tree 
(PHT) algorithm proposed in (Rambhadran et al, 
2004). However, the original PHT could not have 
been used to implement a distributed phone book 
without the changes presented in this article. The 
novelty of our work is twofold:

1.  The original PHT is a binary tree enabling 
Bit-wise processing of keywords. Its design 
does not support caching, and it handles 
multiple keywords using a Squid-like ap-
proach. This does not match the requirements 
found in the distributed phone book scenario. 
Therefore, we extended the PHT in several 
respects, as described below.

2.  The EPHT algorithm has several configu-
ration parameters, like the number of child 
nodes, and the maximum load of a node. We 
evaluated the Extended PHT with real-world 
phone book data, and showed how to gain 
the best performance.

In the rest of this section, we will show the 
major differences between the EPHT and the 
PHT algorithm.

• The original PHT is a binary tree. As shown 
in the evaluation, binary trees do not scale 
well in a distributed phone book scenario. 
Therefore, the EPHT is an n-ary tree, and 
we recommend to use n=26, i.e. the size of 
the applied alphabet.

• In the original PHT, if the number of entries 
in a subtree falls below a certain threshold, 
that subtree collapses into a single leaf 
node. The EPHT can only grow, but never 
shrink, which enables us to introduce ex-
tensive caching of inner nodes.

• Empty nodes are not handled specially in 
the PHT algorithm. In the Extended PHT, 
we introduced an additional linked list 
skipping the empty nodes to improve per-
formance. This is because we observed that 
a significant number of prefixes do never 
appear in user’s names, which results in 
empty leaf nodes for these prefixes.

• The original PHT proposes to handle mul-
tiple keywords using Locality-Preserving 
Hashing, as in Squid. In our application, 
we simply concatenate the keywords ac-
cording to their priority, and pad the result 
with random data.

EVALUATION

In this section, we present the simulation results. 
The evaluation data is taken from a German 
phone book CDROM from 1997, because newer 
electronic phone books restrict data export due to 
privacy regulations. We used the entries for the 
city of Munich, which has 620,853 entries. As each 
peer is supposed to provide only its own entry, the 
number of peers is equal to the number of entries.

Data Load

The number of entries per peer is one of our key 
performance indicators, as well-balanced data are 
the prerequisite for good balancing of the network 



338

A Decentralized Directory Service for Peer-to-Peer-Based Telephony

load. Figure 8 shows the number of entries per peer 
for m in 25, 50, 75, and 100, without replication.

Note that the y-scale showing the number of 
peers is logarithmic. Nearly all of the 620,853 
peers store less than 3 entries. No peer stores more 
than 150 entries. Assuming an average size of an 
entry of 128 Bytes, a peer holding 150 entries 
would store less then 19 kBytes. This is feasible 
even on embedded devices with a built-in peer-
to-peer stack, and it is easily possible to replicate 
19 kBytes through current Internet connections.

Prefix Length

In the description of the algorithm above, we 
said that the initial prefix length to start with 

when searching in an EPHT is 5 in our dataset. 
As shown in Figure 9, this is the average prefix 
length for n in 5, 13, and 26. Only binary EPHTs 
with n=2 result in a significantly larger aver-
age prefix length. If the average prefix length 
changes over time, e.g. if the number of users or 
the distribution of names is other than expected, 
then the initial prefix length needs to be adapted 
in the search operation.

Network Traffic

The network traffic is evaluated in terms of the 
number of lookup operations in the DHT that is 
needed to process a range query2. As an example, 
we queried the prefixes SCHN* which results in 

Figure 8. Entries per Peer, using n=26 (left), and n=5 (right)

Figure 9. Prefix Length for m=25 (left), and m=100 (right)



339

A Decentralized Directory Service for Peer-to-Peer-Based Telephony

4683 entries, and OLPP* yielding only a single 
entry. Of course querying SCHN* is an artificial 
example, as real-world applications would prob-
ably abort that query after a certain number of 
results is retrieved, and ask the user to formulate 
the query more specifically. Table 1 shows the 
number of lookup operations. We did not use 
any caching.

An increasing maximum load of the root node 
m results in less nodes to be looked up. With 
regards to the number of children n we found that 
more children per node result in a lower number 
of lookup operations. For example, if the user 
searches for OLPP* in a tree with n=5, the ap-
plication searches all entries matching the prefix 
[K-O][K-O] [P-T] [P-T]. People with a last name 
starting with Lost would match the same prefix 
as Olpp. Altogether, the number of matching 
entries in our phone book is 1801, which explains 
the overhead of 99 lookups.

These results suggest that the number of chil-
dren per node n should be as large as possible to 
reduce the number of lookup operations.

Empty Nodes

The percentage of empty nodes is shown in Table 2.
As expected, the number of empty nodes 

raises with the number of children per node. 

However, even with n=26 we got only 60% 
empty nodes, which is still justifiable in the face 
of the great reduction of traffic overhead for n=26.

Churn

In peer-to-peer terminology, the continuous ar-
rival and disappearance of peers is called churn. 
The stability of DHTs in the face of churn and the 
probability of data loss was addressed many times 
before (Stutzbach 2006, Kunzmann 2009), and we 
refer the reader to these works for experimental 
and analytical results on the topic.

The tree nodes of the EPHT are stored as re-
sources on a DHT. DHTs use replication techniques 
and stabilization protocols to keep the probability 
of data loss very low, even in typical file-sharing 
scenarios where the participating peers arrive and 
disappear very frequently.

The reliability of the EPHT depends on the 
reliability of the underlying DHT. If the node 
resources are available on the DHT layer, then 
the EPHT remains stable. Assuming that VoIP 
telephones have much longer average online times 
than file sharing peers, we expect the DHT to be 
very stable in the distributed phone book scenario.

However, in order to handle the unlikely event 
of data loss, we propose that the peers look up their 
own entry on a periodical basis, and re-publish 
the entry in case it disappeared.

CONCLUSION

In this article, we presented the Extended Prefix 
Hash Tree as an infrastructure supporting range 

Table 1. Lookup operations 

SCHN* OLPP*

N=5 n=13 n=26 n=5 n=13 n=26

M=50 1068 958 495 99 3 4

M=100 590 670 279 39 3 4

Table 2. Empty nodes 

n=5 n=13 n=26

m=50 6% of 34,821 37% of 
94,297

60% of 
193,801

m=100 2% of 18,353 29% of 
48,757

53% of 
98,501



340

A Decentralized Directory Service for Peer-to-Peer-Based Telephony

queries on top of Distributed Hash Tables. The 
design of the algorithm is driven by the require-
ments found in a distributed user directory for a 
commercial VoIP communication platform devel-
oped by Siemens. We evaluated the algorithm and 
showed how to choose the parameters in order to 
achieve the best performance.

While this article is focused on a specific use 
case, the methodology and results can be trans-
ferred to other scenarios. The algorithm presented 
here fits specifically in situations where keywords 
are Zipf-distributed. In the phone book scenario, 
some last names are very common while other last 
names are very rare. The EPHT adapts perfectly 
to this kind of distribution.

The concatenation of keywords provides a 
simple but powerful approach to handle multiple 
keywords that are ordered in a hierarchical way.

FUTURE RESEARCH DIRECTIONS

The Extended Prefix Hash Tree algorithm pre-
sented in this paper enables the implementation 
of a distributed user directory for a peer-to-peer-
based telephony application. However, apart from 
user directories, there are more applications that 
might benefit from a distributed search index.

The evaluation in this article is based on 
the specific requirements that we derived from 
a commercial communication platform. When 
EPHTs are to be applied in other applications, it 
is a non-trivial task to tell the implications of the 
algorithm on the specific architecture.

Future research should address this issue and 
allow for the definition of generic, re-usable com-
ponents that can be applied on top of peer-to-peer 
networks. These components are the building 
blocks fulfilling the application-specific require-
ments on the distributed infrastructures. A first 
proposal for the definitions of these components 
can be found in (Stäber, 2009).

Also, while DHT-based structured overlay 
networks have many advantages, their string-

based approach for registration and lookup carries 
intrinsic limitations as regards the expressiveness 
of search. While the extension with range queries 
and wildcard search seems appropriate for a pure 
phone book lokup, even a straightforward business 
directory will require more semantically elabo-
rate queries (e.g., SQL-based or ontology-based 
queries). One option to achieve this is to combine 
structured distributed hash tables with super-peer 
architectures, preserving the robustness and scal-
ability of the overlay while enhancing it with 
declarative semantic search capability. In (Gerdes 
et al., 2009), we propose a declarative decentral-
ized query processor and evaluate it in the energy 
domain. (Stiefel and Müller, 2010) propose the use 
of an ontology-based query language on top of a 
DHT architecture for semantic search of digital 
product models. These approaches will need to be 
validated and further developed in future work.

REFERENCES

Aspnes, J., & Shah, G. (2003). Skip graphs. In 
SODA ‘03: Proceedings of the Fourteenth Annual 
ACM SIAM Symposium on Discrete Algorithms, 
(pp. 384–393). Philadelphia, PA, USA.

Barsanti, L., & Sodan, A. (2007). Adaptive job 
scheduling via predictive job resource allocation. 
In Proceedings of Job Scheduling Strategies for 
Parallel Processing (pp. 115-140).

Bellare, M., & Rogaway, P. (1993). Random 
oracles are practical: A paradigm for designing 
efficient protocols. In CCS ‘93 1st ACM Confer-
ence on Computer and Communications Security, 
(pp. 62–73). New York, NY: ACM Press.

Bharambe, A. R., Agrawal, S., & Seshan, S. (2004). 
Mercury: Supporting scalable multi-attribute 
range queries. In SIGCOMM Symposium on 
Communications Architectures and Protocols, 
(pp 353–366). Portland, OR, USA.



341

A Decentralized Directory Service for Peer-to-Peer-Based Telephony

Buyya, R., Giddy, J., & Abramson, D. (2000). An 
evaluation of economy-based resource trading 
and scheduling on computational power Grids for 
parameter sweep applications. Paper presented 
at the Second Workshop on Active Middleware 
Services (AMS2000), Pittsburgh, USA.

Gerdes, C., Eger, K., & Müller, J. P. (2009). Data-
centric peer-to-peer communication in power 
grids. Electronic Communications of the EASST 
17: Kommunikation in Verteilten Systemen 2009, 
2009. Proceedings of KiVS Global Sensor Net-
works Workshop (GSN09).

Hautakorpi, J., & Schultz, G. (2010). A feasibility 
study of an arbitrary search in structured peer-
to-peer networks. In ICCCN’10: Proceedings of 
the 19th International Conference on Computer 
Communications and Networks. Zurich.

Indyk, P., Motwani, R., Raghavan, P., & Vem-
pala, S. (1997). Locality-preserving hashing in 
multidimensional spaces. In STOC ‘97: Proc. of 
the Twenty-Ninth Annual ACM Symposium on 
Theory of Computing, (pp. 618–625). New York, 
NY: ACM Press.

Liu, L., & Lee, K.-W. (2004). Supporting efficient 
keyword-based file search in peer-to-peer file 
sharing systems. In GLOBECOM’04: Proc. of 
the IEEE Global Telecommunications Conference.

Ramabhadran, S., Ratnasamy, S., Hellerstein, J. 
M., & Shenker, S. (2004). Prefix hash tree – an 
indexing data structure over distributed hash 
tables. In PODC’04: 23rd Annual ACM Sym-
posium on Principles of Distributed Computing.

Risson, J., & Moors, T. (2006). Survey and 
research towards robust peer-to-peer networks: 
Search methods. Computer Networks, 50(17), 
3485–3521. doi:10.1016/j.comnet.2006.02.001

Schmidt, C., & Parashar, M. (2004). Enabling flex-
ible queries with guarantees in P2P systems. IEEE 
Internet Computing, 8(3), 19–26. doi:10.1109/
MIC.2004.1297269

Stäber, F. (2009). Service layer components for 
decentralized applications. Doctoral Dissertation 
at the Clausthal University of Technology

Stiefel, P. D., & Müller, J. P. (2010). A model-
based software architecture to support decentral 
product development processes. In: Exploring the 
grand challenges for next generation e-business. 
Proceedings of the 8th Workshop on eBusiness 
(Web 2009). Volume 52 of Lecture Notes in Busi-
ness Information Processing. Springer-Verlag, 
2010. To appear.

Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., 
& Balakrishnan, H. (2001). Chord: A scalable peer-
to-peer lookup service for internet applications. 
In SIGCOMM’01: Proc. of the 2001 Conference 
on Applications, Technologies, Architectures, and 
Protocols for Computer Communications, (pp. 
149–160). San Diego, CA: ACM Press.

Stutzbach, D., & Rejaie, R. (2006). Understanding 
churn in peer-to-peer networks. In IMC’06: Proc. 
of the 6th ACM SIGCOMM on Internet Measure-
ment, (pp. 189–202). New York, NY: ACM Press.

ADDITIONAL READING

Aberer, K., & Hauswirth, M. (2004). Peer-to-Peer 
Systems, Practical Handbook of Internet Comput-
ing. Baton Rouge: Chapman Hall & CRC Press.

Baset, S. A., & Schulzrinne, H. (2004). An analy-
sis of the Skype Peer-to-Peer Internet telephony 
protocol. Tech. report. New York, USA: Columbia 
University.

Binzenhöfer, A., Staehle, D., & Henjes, R. (2005): 
On the stability of Chord-based P2P systems. 
In GLOBECOM ‘05: Proc. of the IEEE Global 
Telecommunications Conference.



342

A Decentralized Directory Service for Peer-to-Peer-Based Telephony

Binzenhöfer, A., & Tran-Gia, P. (2004): Delay 
analysis of a Chord-based peer-to-peer file-sharing 
system. In ATNAC ‘04: Proc. of the Australian 
Telecommunication Networks and Applications 
Conference.

Biondi, P. and Desclaux F. (2006): Silver needle in 
the Skype. Black Hat Europe 2006.

Dabek, F., Zhao, B., Druschel, P., & Kuiatowicz, 
J. (2003): Towards a common API for structured 
peer-to-peer overlays. In IPTPS’03: Peer-t-Peer 
Systems II, Second International Workshop, volume 
2734 of Lecture Notes in Computer Science, pages 
33—34, Berlin, Heidelberg: Germany, Springer

Eberspaecher, J., & Schollmeier, R. (2005): Peer-
to-Peer systems and applications. chapter First and 
Second Generation of Peer-to-Peer Systems, pages 
35—56, Springer.

Eyers, T., & Schulzrinne, H. (2000): Predicting 
Internet telephony call setup delay. In IPTel 2000: 
Proc. of the 1st IP-Telephony Workshop.

Friese, T., Freisleben, B., Rusitschka, S., & Southall, 
A. (2002): A framework for resource management 
in peer-to-peer networks. Revised Papers from 
the International Conference NetObjectDays on 
Objects, Components, Architectures, Services, 
and Applications for a Networked World, Lecture 
Notes In Computer Science, volume 2591, Springer, 
2002, pages 4—21.

Friese, T., Müller, J. P., & Freisleben, B. (2005). Self-
Healing Execution of Business Processes Based 
on a Peer-to-Peer Service Architecture. In: Proc. 
18th Int. Conference on Architecture of Computing 
Systems [Springer.]. Lecture Notes in Computer 
Science, 3432, 108–123. doi:10.1007/978-3-540-
31967-2_8

Ganesan, P., Yang, B., & Garcia-Molina, H. (2004): 
One torus to rule them all: multi-dimensional que-
ries in P2P systems. In WebDB ‘04: Proc. of the 7th 
International Workshop on the Web and Databases, 
ACM Press, pages 19—24.

Garcés-Erice, L., Felber, P. A., Biersack, E. W., 
Urvoy-Keller, G., & Ross, K. W. (2004): Data 
indexing in peer-to-peer DHT networks. In ICDCS 
‘04: Proc. of the 24th International Conference on 
Distributed Computing Systems, IEEE Computer 
Society, pages 200—208.

Guha, S., Daswani, N., & Jain, R. (2006): An ex-
perimental study of the Skype peer-to-peer VoIP 
system. In IPTPS ‘06: Proc. of the 5th International 
Workshop on Peer-to-Peer Systems.

Gummadi, K., Gummadi, R., Gribble, S., Ratna-
samy, S., Shenker, S., & Stoica, I. (2003). The impact 
of DHT routing geometry on resilience and proxim-
ity. In SIGCOMM ‘03: Proc. of the conference on 
Applications, technologies, architectures, and pro-
tocols for computer communications (pp. 381–394). 
ACM Press. doi:10.1145/863955.863998

Kellerer, W., Kunzmann, G., Schollmeier, R., & 
Zoels, S. (2006). Structured peer-to-peer systems 
for telecommunications and mobile environments. 
AEÜ. International Journal of Electronics and 
Communications, 60(1), 25–29. doi:10.1016/j.
aeue.2005.10.005

Kunzmann, G. (2009): Performance Analysis and 
Optimized Operation of Structured Overlay Net-
works. Doctoral thesis, Technische Universitaet 
Muenchen.

Kunzmann, G. and Binzenhoefer A. and Stäber, F. 
(2008): Structured overlaynetworks as an enabler 
for future internet services. it - Information Technol-
ogy volume 50, no. 6, pages 376—382.

Lennox, J., & Schulzrinne, H. (2000). Feature 
interaction in Internet telephony. Feature Interac-
tions in Telecommunications and Software Systems 
VI (pp. 38–50). IOS Press.

Leslie M. and Davies J. and Huffman. (2006): 
Replication strategies for reliable decentralized 
storage. In ARES’06: Proc. of the First Interna-
tional Conference on Availability, Reliability and 
Security. pages 740—747.



343

A Decentralized Directory Service for Peer-to-Peer-Based Telephony

Li, J., Stribling, J., Morris, R., Kaashoek, M. 
F., & Gil, T. M. (2005): A performance vs. cost 
framework for evaluating DHT design tradeoffs 
under churn, In INFOCOM ‘05: Proc. of the 24th 
Joint Conference of the IEEE Computer and Com-
munications Societies, pages 225—236.

Liu, L., & Lee, K.-W. (2004): Keyword fusion to 
support efficient keyword-based search in peer-
to-peer file sharing. In CCGRID’04: Proc. of the 
2004 IEEE International Symposium on Cluster 
Computing and the Grid, IEEE Computer Society, 
pages 269—276.

Lua, E. K., Crowcroft, J., Pias, M., Sharma, R., 
& Lim, S. (2005). A survey and comparison of 
peer-to-peer overlay network schemes. IEEE Com-
munications Surveys and Tutorials, 7(2), 72–93. 
doi:10.1109/COMST.2005.1610546

Maymounkov, P., & Mazières, D. (2006): Kadem-
lia: A peer-to-peer information system based 
on the xor metric. In IPTPS’02: Proc of the 1st 
International Workshop on Peer-to-Peer Systems, 
pages 53—65, London: UK, Springer

Milojicic, D. S., Kalogeraki, V., Lukose, R., Na-
garaja, K., Pruyne, J., Richard, B., et al. (2002): 
Peer-to-peer computing. Technical Report HPL-
2002-57, HP Labs, Palo Alto, CA, USA.

Oram, A. (Ed.). (2001). Peer-to-Peer, Harnessing 
the Power of Disruptive Technologies. Sebastopol, 
CA, USA: O’Reilly.

Ratnasamz, S., Francis, P., Handley, M., Karp, 
R., & Schenker, S. (2001): A scalable content-
addressable network. In SIGCOMM’01: Proc. of 
the 2001 Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer 
Communications, pages 161—172, New York, 
NY: USA, ACM Press.

Reynolds, P., & Vahdat, A. (2003): Efficient 
peer-to-peer keyword searching, Proceedings of 
International Middleware Conference, Lecture 
Notes in Computer Science, vol. 2672, Springer, 
pages 21—40.

Rhea, S., Geels, D., Roscoe, T., & Kubiatowicz, J. 
(2003): Handling churn in a DHT. Tech. Report 
UCB/CSD-03-1299, EECS Department, Univer-
sity of California, Berkeley.

Rowstron, A., & Druschel, P. (2001): Pastry: Scal-
able, decentralized object location and routing 
for large-scale peer-to-peer systems. In Middle-
ware’01: Proc. of the IFIP/ACM International 
Conference on Distributed Systems, volume 2218 
of Lecture Notes in Computer Science, pages 
329—350.

Rusitschka, S., & Southall, A. (2003). The resource 
management framework: A system for managing 
metadata in decentralized networks using peer-
to-peer technology. In Agents and Peer-to-Peer 
Computing. In Lecture Notes in Computer Science 
(Vol. 2530, pp. 144–149). Springer.

Sarma, A., Bettstetter, C., Dixit, S., Kunzmann, 
G., Schollmeier, R., & Nielsen, J. (2006). Self-
organization in communication networks (pp. 
423–451). Wiley.

Seedorf, J. (2006). Security challenges for Peer-to-
Peer SIP. IEEE Network, 20, 38–45. doi:10.1109/
MNET.2006.1705882

Shu, Y., Ooi, B. C., Tan, K.-L., & Zhou, A. (2005): 
Supporting multi-dimensional range queries in 
peer-to-peer systems, In P2P ‘05: Proc. of the 
5th IEEE International Conference on Peer-to-
Peer Computing, IEEE Computer Society, pages 
173—180.



344

A Decentralized Directory Service for Peer-to-Peer-Based Telephony

Sit, E., & Morris, R. (2002): Security consider-
ations for peer-to-peer distributed hash tables. In 
IPTPS ‘02: Proc. of the 1st International Workshop 
on Peer-to-Peer Systems.

Spleiss, C., & Kunzmann, G. (2007). Decentral-
ized supplementary services for Voice-over-IP 
telephony. Proceedings of EUNICE 2007. Lecture 
Notes in Computer Science, 4606(Jul), 62–69. 
doi:10.1007/978-3-540-73530-4_8

Steinmetz, R., & Wehrle, K. (2005): What is 
peer-to-peer about? In volume 3485 of Lecture 
Notes in Computer Science, pages 9—16. Berlin, 
Heidelberg: Germany, Springer.

Stutzbach, D., & Rejaie, R. (2006): Understand-
ing churn in peer-to-peer networks. In IMC’06: 
Proc. of the 6th ACM SIGCOMM on Internet 
Measurement, pages 189—202, New York, NY, 
USA: ACM Press.

Tanenbaum, A. (2003). Computer Networks. 
Upper Saddle River, NJ, USA: Prentice Hall 
International.

Tutschku, K., & Tran-Gia, P. (2005). Peer-to-
peer-systems and applications. chapter Traffic 
Characteristics and Performance Evaluation of 
Peer-to-Peer Systems (pp. 383–397). Springer.

Zhao, B., Huang, L., Stribling, J., Rhea, S., Joseph, 
A., & Kubiatovicz, J. (2004). Tapestry: A resilient 
global-scale overlay for service deployment. IEEE 
Journal on Selected Areas in Communications, 
22(1), 41–53. doi:10.1109/JSAC.2003.818784

Zoels, S., Schubert, S., & Kellerer, W. (2006): 
Hybrid dht design for mobile environments. In 
AP2PC’06: Proc of 5th International Workshop 
on Agents and Peer-to-Peer Computing, LNCS, 
Springer.

Zuo, C., Li, R., Shen, H., & Lu, Z. (2009): High 
Coverage Search in Multi-Tree Based P2P Overlay 
Network. In ICCCN’09: Proc of the 18th Interna-
tional Conference on Computer Communications 
and Networks. San Francisco, CA: USA.

KEY TERMS AND DEFINITIONS

Decentralization: Attempt to avoid central 
services, thus preventing single points of failure.

Directory: A service organizing users
Distributed Hash Table (DHT): Type of de-

centralized infrastructure providing a hash-table 
like addressing scheme

Extended Prefix Hash Tree (EPHT): Modi-
fied PHT to be used when implementing distrib-
uted user directories.

Infrastructure: Underlying algorithm in a 
distributed application, allowing the nodes to 
address each other.

IP-Telephony: Telephony over IP networks, 
mostly using the Voice over IP protocol

Peer-to-Peer: A paradigm in distributed 
systems, where all nodes may act as both, client 
and server.

Prefix Hash Tree (PHT): Search algorithm 
based on DHTs, as proposed by Ramabhadran 
et al (2004)

ENDNOTES

1  Dr. G. Kunzmann is now working for 
DOCOMO Communications Laboratories 
Europe GmbH, Munich, Germany

2  Each lookup operation requires logbn mes-
sages in the DHT protocol, where n is the 
number of peers, and b is a parameter de-
pending on the design of the DHT’s routing 
table.


