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Abstract. Adaptive and open platforms for cross-organizational collaborative 
product development (CPD) need flexible architectures and network solutions 
as well as novel data integration concepts supporting distributed, decentralized 
collaboration. Previous approaches to solving this problem have largely ignored 
the requirement of providing interoperable formats for product model data that 
enable the support of collaborative product development activities. This paper 
proposes the use of ontology technology to address this problem; it presents the 
integration of ontology technology into existing model-driven approaches to 
product development, and evaluates the applicability of the approach by 
describing a use case with limited CPD platform functionality. 
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1   Introduction 

Cross-organizational, collaborative Product Development (CPD) is the state-of-the-art 
approach to support knowledge sharing in multi-party cross-organizational 
engineering projects [1]. To support CPD processes, new collaboration platform 
technologies are required. They should provide an added value at product definition 
and execution stages by reducing collaboration complexity and obstacles.  

There are many CPD platform design recommendations that mainly focus on data 
sharing and mapping. These recommendations address one of the key problems of 
product development: the integration of heterogeneous product model definitions [2]. 
What still remains is the question on how to accelerate the product development 
processes, especially in the early phases of the product lifecycle where the major 
challenge is to efficiently share rapidly changing product design approaches among 
development teams [3]. 

These requirements result in new design strategies for CPD platforms. Existing 
client-/server-based approaches are too inflexible to support loosely coupled, ad-hoc 
collaboration situations. Therefore, our research focuses on developing decentral 
information technologies to support CPD processes [4,5]. One of the results is the 
Product Collaboration Platform (PCP), an experimental peer-to-peer (P2P) software 
platform to support decentral product development processes. As presented in [1], we 
follow a model driven development (MDD) approach to design information systems 



for decentral and collaborative product development (DeCPD). Based on 
Computation Independent Models (CIM) we employ an iterative process to develop 
different abstractions of IT models: starting from IT architecture models over 
platform specific models (PSM) to concrete software artifacts. We employ an agent-
based approach to model the distributed collaboration logics, as is explained in 
Section 2.1. 

When developing distributed systems for knowledge sharing there is a need to 
provide a common language. Product developers act in different languages and 
normally have unequal action courses and best-practices when doing their model 
design activities. A common global CIM process model constrains the user in his 
process sequence but it does not explain the objective of the collaboration. This 
results in a lack of interoperability.  To deal with model-centric processes, we have to 
introduce a common formal language that defines the intent of each collaboration 
step. Ontologies give us the possibility to enhance decentral information knowledge 
sharing with semantics. Collaborations based upon a semantic data model provide the 
possibility to understand a collaborations partner design requirements (specification) 
and to answer in an understandable format (proposal) without changing local product 
data management strategies. Thus, ontologies are an important building block to 
achieve interoperability between distributed model repositories and DeCPD 
processes. Last but not least we are able to underpin the suitability of the model-
driven approach [6]. 

The structure of this paper is the following: After introducing DeCPD and ontology 
concepts in Section 2, we will discuss some related work experiences in Section 3. 
Section 4 deals with DeCPD CIM level models to provide a technology independent 
need for concepts like ontologies. Section 5 with corresponding PSM models and 
introduces in our ontology concepts. In the last section we evaluate our approach by 
providing a reference scenario that we implemented in our Product Collaboration 
Platform (PCP). The scenario depicts on a simple LEGOTM building example. 

2   Background 

2.1   Model-driven decentral and collaborative product development  

Each DeCPD process describes a distributed solution of a given product engineering 
problem (specification). Our approach is based on the Distributed Problem Solving 
developed for multi-agent systems [7, 8]. The DeCPD process provides a synthesis of 
the distributed partial solutions of the participants (proposals) to an overall solution 
satisfying the initial requirements set up by the initiator. 

The engineering problem in our work can be represented as the search of a set of 
product model (PM) components matching the specification. Product engineers are 
normally confronted with this problem in the design phase of the product lifecycle. 
This view enables us to conceptualize a PM Specification by a query that describes 
features, which the target component has to fulfill; a corresponding PM Proposal 
represents one possible design solution. 



As described in the introduction modern approaches to collaboration platforms are 
needed to support the engineering problem described above. In designing a DeCPD 
collaboration platform, we follow a model-driven top-down approach. To model the 
underlying collaboration process we start with Computation Independent Models 
(CIM) that describe the functionalities of the platform on the functional level. We use 
the Business Process Modeling Notation (BPMN) to express CIM models in a 
language suitable for the audience (i.e. engineers). 

The result of performing this process are decentral architectures at Platform 
Specific Model (PSM) level. We design Business Process Execution Language 
(BPEL) workflows with especial architecture elements to cover the requirements 
given by decentral information systems subject to our work. Our BPEL workflows are 
model-centric; they cover event-driven trigger patterns (such as publish-subscribe) 
from the P2P overlay network. 

The focus of this paper is not on the development of MDD models but on their 
application combined with the use of ontologies that provide the flexible and scalable 
approach required for collaborative product engineering platforms. In doing so, we 
aim at  
• supporting ad-hoc interconnections between world-wide distributed partners that 

often did not collaborate in the past and 
• effectively distributing product models among participating engineers for load 

balancing reasons, and a more efficient execution of product development 
processes for the reasons of task sharing. 

2.1   Ontologies 

We propose using ontologies to represent product model data and metadata. We will 
give a short introduction into the core concepts of ontologies and related technologies. 

We use the web ontology language (OWL1) which is standardized by the W3C. 
OWL is based upon the resource description framework (RDF2), which is also a W3C 
standard. RDF enables the linking between objects, so called RDF Resources. This 
linking can be described by a directed graph, where nodes represent resources and the 
edges represent named links. This graph structure is also called triple. OWL itself 
defines some important concepts upon RDF: 
• classes are similar to sets as they group together individuals having the same 

properties. For example, a class represents “Lego building bricks” or “plates”. 
• properties describe the connection between individuals or the assignment of 

data values to them. For example, an individual of the class brick could have a 
property hasWidth which holds a value of “24”. 

• individuals are instances of classes like in class-based programming languages 
(Java, C++, C# e.g.). 

 
OWL provides a wealth of additional constructs, but these are the most important 
ones and sufficient for understanding this paper. Fig. 1 shows a simple example: Two 

                                                           
1 http://www.w3.org/TR/owl-features/ [19th February 2010] 
2 http://www.w3.org/RDF/ [19th February 2010] 



individuals (Tuc01 and Tuc02) belong to the class Brick. Tuc01 has a property 
isConnectedWith, which uses Tuc02 as endpoint. Furthermore it has another property 
hasWidth, which assigns the data value “24” to it. 
 

 

Fig. 1. OWL example  

Real world ontologies are much more complex and much harder to understand and 
validate. For that reason, techniques are required to query triples. One query language 
to provide this functionality is SparQL3, which is also a recommendation by the W3C. 
SparQL has much similarity with SQL. SparQL enables to select arbitrary subsets 
(subgraphs) from a given RDF graph that fulfill the users constraints (= graph 
pattern). Furthermore, a SparQL query specifies which elements from the result 
should be returned. A SparQL query has the general form: 
 

SELECT ?subject ?predicate ?object 
WHERE { 
    ?subject ?predicate ?object. 
}  

 
After the SELECT statement, elements that should be returned by the query are 
defined, no matter if these are individuals, classes, or properties. Within the WHERE 
clause, we define the graph pattern that the query engine has to match. 
 

SELECT ?item 
WHERE { 
    ?item   rdf:type            Brick. 
    ?item   isConnectedWith     ?other_item. 
}  

 
The following example (see Fig. 1) shows the selection of an individual (from the 
given ontology), the type of which is Brick and that has a relationship to another item, 
specified by the property isConnectedWith. The following SparQL query will return 
the name “Tuc01”. 

                                                           
3 http://www.w3.org/TR/rdf-sparql-query/ [19th February 2010] 



3   Related Work 

There are existing research approaches related to the topic of CPD that use semantic 
descriptions. We observe that there are mainly two ways how ontologies are used in 
CPD: (1) as a formal description for product model content, or (2) as a structural base 
that enable a mapping between several product data formats. 

3.1   Ontologies as formal product model description 

Kim [9] proposes the usage of ontologies for adding a semantic description to product 
model representations so that it possible to specify the meaning of design challenges. 
The author introduces an ontology-based specification of an assembly design, so 
called AsD. Based on this AsD, a product engineer can describe the topology of 
assemblies and their joining relations, mainly focusing on spatial, geometric 
characteristics. With computational reasoners it is possible to infer the meaning of an 
assembly connection. This helps developers understand the meaning of design 
decisions within a CPD process. 

Similar to Kim’s approach, Liang [10] studies the description of connections 
between LEGO™ objects due their given geometric structure. He also implements an 
ontology using OWL, that describes these connections (he calls them “ports”) in order 
to use it as a tool to find possibilities for connecting assemblies or to prove their 
validity. 

In [11], Mostefai describes a generic and extensible product ontology especially 
designed to use in the area of mechanics. This is mainly used to facilitate a common 
understanding among different people such as engineers with their CAD/CAM 
experience, production planners, IT technicians, etc. If all these people accept a 
“common ontology”, they can contribute to a unified product model. 

3.2   Ontologies as a support for product model data exchange 

Another use case for ontologies in CPD is the need to develop a platform-independent 
interchange format for product data. In [2], Patil, Dutta and Sriram propose an 
ontology-based framework to handle this task, called “Product Semantic 
Representation Language” (PSRL). They claim that the traditional solutions based 
upon industry standards for product data exchange (e.g. STEP, Standard for the 
Exchange of Product Model Data) are limited by the fact, that the semantics are 
ignored, which may lead to loss of information at transformation processes. They 
further claim that a better mapping solution can be achieved with PSRL that expresses 
semantics of a product model and not just plain parameters and values. 
 
To conclude, what we did not find in existing ontology approaches yet is to use 
ontologies as semantic description in a decentrally organized product engineering 
process. That is what we need in our work: The cross-organizational process state has 
to be determined from the product model and that would be impossible when not 
using ontologies to define semantic information and process coherences upon flat 



product model data. As a result, in our approach; we can allocate IT modules the 
capability to interpret intermediate collaboration results and to make the right 
decisions until the final result is reached.  

4   DeCPD CIM level models 

In this section we give an overview of several model design aspects at CIM level. 
This should help to understand the main motivation when designing a DeCDP 
platform. 

4.1   CIM: Process aspect 

Using BPMN we build generic, cross-enterprise business processes (CBPs) to 
describe global DeCPD processes. Each CBP defines participating roles, public 
processes, and a collaboration protocol, carefully matched to the requirements given 
in a product modeling environment. 

To build CBPs that describe DeCPD processes we specified the following generic 
public processes: 
• GenerateSpecification is the process to specify a query that describes the 

searched component characteristics in a PM Specification, while 
GenerateProposal is the counterpart of the process mentioned before, which is 
used by participants to describe a target component in a PM Proposal. 

• PublishProposal makes a PM Proposal available to selected collaboration 
partners. At CIM layer, it is not specified how this is realized from a technical 
point of view; thus, e.g., on PSM layer the IT experts could provide a distributed 
database solution for storing PM Proposal information. 

• By contrast, PublishSpecification distributes a PM Specification among the 
developers involved in the collaboration. Suppose that the product model 
handling was realized using databases; in that case the PM Specification would 
be a SQL-type query that should deliver answers to the collaboration initiator 
when executing it after several participants have provided valid proposals.  

• The process Search describes the possibility to search for existing PM 
Specifications / Proposals in a distributed collaboration environment. The search 
mechanism has no bearing on the execution of a PM Specification query 
(perform a SQL query e.g.), but it means to find their physical location in the 
collaboration network. Beyond each search process, there is a complex request-
acknowledge and routing method to assure that only trustworthy partners get 
requested PM Specifications and/or -Proposals. These methods are part of our 
research and will not be discussed in this paper. 

• In some environments, it is useful to have a Notify process. In technical terms, 
this corresponds to event-triggered messaging. Independent from any technical 
realization, it means the participant to register on a particular event, like  e.g. the 
event “newProposal”, whereby he gets informed about every public changes 
made in this collaboration instance. 



• Last but not least a process Analyze is needed, that encapsulates the user’s 
decision on how to proceed a collaboration based on the incoming proposals.  

 
Generic DeCPD processes differ in the following three characteristics. The PM 
distribution (specifies how physical PM Specification and/or -Proposal data 
resources are dedicated to collaboration participants), hierarchies (describes the 
maximum levels of sub-collaborations, in the case of a 0-level collaboration there is 
no subdivision) and iterations (allows the compilation of versions and variants).  

The DeCPD process sequences in CIM Business Process Diagrams (BPDs) depend 
on the exact values of these three parameters. To evaluate the necessity of ontologies 
in the field of DeCPD we reduce complexity by setting up a 0-level collaboration 
between one initiator und a set of participants. PM Specifications are distributed 
among all participants via broadcast and the PM Proposals are interchanged via 
point-to-point transfer between initiator and corresponding participant. To maintain 
relevance to real world scenarios at product development we do consider iterations. 
Fig. 2 shows an example BPD for only one participant. 
 

 

Fig. 2. BPD for o-level collaboration with iterations 

4.2   CIM: Data aspect 

As described in Section 3 we need a data model that fits on the process described 
above. We defined the meta-model as shown in Fig. 3. 
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Fig. 3. DeCPD data meta-model 

A concrete instantiation of the meta-model and its resulting complexity depends on 
the DeCPD characteristics (hierarchies and iterations) of a DeCPD project and 
therefore mainly on the amount of sub-collaborations (sub-projects, subP) and the 
maximum number of PM Specification- and PM Proposal variants (varS/varP), 
respectively versions (verS/verP). As a variant we describe all PM Specifications / 
Proposals that belong to one single component and that are published in parallel. Note 
that each variant has got only one valid version.   

To conclude, due to the process limitation that no sub-projects are allowed (cp. 
Section 4.1), we can concentrate on the collaboration process itself and not on the 
difficulties that affect us when putting together the sub-results from sub-projects. 

4.3   CIM: Service aspect 

In describing DeCPD services and their behavior at CIM level, we distinguish 
between two dimensions: Service Execution and Service Coordination. 

At execution dimensions we distinguish between local and distributed service 
execution. In local service execution, each collaboration partner hosts all needed 
DeCPD core services on its own; thus, the availability of needed services is ensured at 
any time (= local service execution). In the case that DeCPD core services are 
distributed between participants we have to provide additional service discovery 
methods at run time. Furthermore we distinguish between central and decentral 
service execution. In the central case, only selected partners provide a choice of core 
services, whereas in the decentralized case core services are distributed between 
participants. 

Considering the coordination dimension we distinguish between central and 
decentral coordination. Central coordination needs a coordinator that controls the 
cross-enterprise service workflow; decentral coordinated workflows do not need a 
coordinator, but decentral, model-centric mechanisms that make a control flow 
possible. 

To summarize, we decided to use a decentralized coordinated collaboration 
strategy with local DeCPD core service execution. Using local service execution we 
do not need to concentrate on strategies for a distributed service search that is as 
complex as decentral product model data exchange and provides nearly the same 
challenges. Rather we prefer not using a coordinator and control the workflows by 
querying the state of the distributed product model. 

5   Ontologies for a concrete PSM level data model 

The generic data model at CIM level has to be concretized at PSM level by specifying 
specific data elements needed to fulfill the requirements of a DeCPD. In this section 
we describe on how to use an ontology approach to specify the PSM data model. 



5.1   Ontologies to describe components and connections 

One of the core concepts of DeCPD is the decomposition of an overall product 
development problem (CIM: project) into several sub-problems (CIM: sub-projects). 
Central element of the CIM data meta-model is the sub-project related component.  

The challenge at PSM level is to specify components in an interoperable way, that 
means to cover aspects of different business domains like design, functional 
requirements, economic or of course geometric and topological parameters. To 
generate such a component description, all relevant parameters must be representable 
in a meaningful and feasible way. This is where we apply ontologies due to their 
flexibility and power of expression. 

As known from many programming languages we provide a common domain 
specific base for the fundamental expressions. This ontology, that we call 
BaseOntology (BaseOnt), depends on the domain of the collaboration and must define 
appropriate classes, properties and even individuals if needed. For sure the scope of 
our BaseOnt is limited to the field of product development, although it contains 
essential concepts that could be use in other application domains. The BaseOnt must 
be available for all participants in a DeCPD process. 

As we chose the LEGO™ system as domain for our example scenarios (cp. Section 
6), our BaseOnt provides a special vocabulary for a collaboration in this product 
development area and we define the following five superclasses: 
• Component. Holds the subclasses Project, Assembly and Part that are 

constructional superclasses themselves. Derived from Part, we define LEGO™ 
elements such as Brick, Plate, Lego Technic Part, and others. In the example, 
these special Part classes represent all the different kind of LEGO™ building 
bricks that can be purchased on the market. 

• Connection. Within the Connection classes it is possible to describe the type 
and the implementation of connections between parts, assemblies and perhaps 
other important stuff. This is especially needed to ensure, that the different PM 
Proposals connects well during the synthesis phase of the collaboration. 

• Requirement. This class helps to specify the various kinds of requirements 
concerning a component. We distinguish between functional (movability or 
flexibility) and non-functional requirements (price, weight, or material). 

• Resource. Using this class, ontology elements can be linked to external data 
storages such as files or database tuples. Generally, an external data source 
contains more detailed information than provided by the ontology. 

• ValuePartitions. This is a helper superclass to construct enumeration classes 
that are needed to restrict the ontology user when defining values. 

 
Using these predefined elements, a participant can describe a component by 
generating needed individuals derived from the given classes. By using properties 
individuals can be tied together or atomic values can be assigned to them. Sometimes 
the problem may occur that the BaseOnt’s classes are not adequate to build up an 
individual. In this case the missing elements can easily be added to a custom project 
ontology (PrOnt), cp. Section 5.3. 

Next to the simple description of components, connections between them have to 
be represented. We provide a solution for this requirement by defining special 



connection classes in our BaseOnt. So the connection modality (from physical point 
of view), the involved components and additional semantic information (why the 
connection is modeled the way it is) can be described in the same way as shown 
above. 

5.3   Project and component queries 

For describing the project and its components that should be developed during 
collaboration we use so called project queries (PrQ) that work upon a special project 
ontology (PrOnt) which extend the BaseOnt with project specific stuff. 

In a PrOnt we define the main component that represents our project subject as a 
new class by deriving from the Project class using the subClassOf built-in property of 
OWL. Additionally components are defined by deriving from the Assembly class. In 
order to represent the topological structure, we create an individual for each new type 
we defined before and link them together via the isChildOf property of the BaseOnt 
like building up a bill of material (BOM). To declare which components should really 
be developed in collaboration we mark each individual with a boolean value using the 
BaseOnt’s isExposed property. In summary this results in an ontology structure that 
holds all the information about types and  topological structure of the collaboration. 

To extract these information from the PrOnt we use a project independent PrQ, 
which is of course defined in the W3C standardized SparQL query language. The PrQ 
basically searches for types of those individuals, which are children of another 
individual that represents a type being a subclass of the Project class. The query 
returns the name of the component, if it should be developed in the collaboration and 
the associated project type as shown below: 

 
PREFIX lego: <http://tuc.de/ontologies/lego_base.owl#>  
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>  
 
SELECT ?components ?value ?root_type 
WHERE { 
    ?root       lego:hasChild   ?x; 
                rdf:type        ?root_type. 
    ?root_type  rdfs:subClassOf lego:Project. 
    ?x          lego:isExposed  ?value; 
                rdf:type        ?components. 
    ?components rdfs:subClassOf lego:Assembly. 
}  
 

In either case it might be the initiator that generates the first revision of the PrQ and 
the PrOnt. Dependent of the knowledge a collaboration initiator owns when 
specifying a new PrQ/PrOnt composition he might not be able to describe the 
components. This case might be suitable in real word scenarios when developing new 
products. So we must differentiate between a project partitioning made by the initiator 
and those made by the participants themselves. 

In reality a one-step PrQ breakdown is unrealistic. According to the supply 
pyramid a given PrQ will be specified more precisely from tier to tier. So a PrQ 
distributed by a OEM will be republished in a further collaboration by a 1st tier 



supplier and so on. Regarding our data meta-model in Section 4.2 it means that 
projects are recursively subdivided into sub-projects that are connected together by 
the components interfaces in principal.  

The distribution of PrQ’s is in general only practicable between participants from 
maximally two supply pyramid layers due to their interest in collaborate. The question 
is also to allow and/ or how to handle supplier rivals. 

After having distributed a project description the initiator hopes to find participants 
interested in developing selected components. Desired requirements of a PM 
specification are specified in a component specification query (CSQ). In contrast to 
the PrQ/PrOnt the person that describes a CSQ (= the initiator in general) is not the 
one who will also provide the CompOnt (= one of the participants). The component is 
still to be defined (cp. Section 5.1.2). 

 

 

Fig. 4. DeCPD query routing 

In the following we will take a look at the query routing that fulfills the 
requirements of the DeCPD process shown in Fig. 2. We consider a collaboration 
with only one initiator and an arbitrary amount of participants. Each sub-collaboration 
(again with one initiator and several participants) would adhere to the following base 
procedure: 

 
 Step 1: The BaseOnt is extended to the PrOnt by specifying additional 

components that are not yet contained. 
 Step 2: The project describing PrQ is generated. Executed on the PrOnt each 

PrQ returns the list of components to construct during collaboration. 
 Step 3: The initiator generates a separate CSQ (= PM Specification) in that the 

component requirements are specified. 
 Step 4: A participant receives the PrOnt and the PrQ. Based on that he can 

decide whether to provide participate at collaboration or not. 
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 Step 5: Interested participants require a CSQ of the component they are 
interested in from the initiator. 

 Step 6: The PrOnt is extended to the CompOnt (= PM Proposal) by again 
specifying additional components. 

 Step 7: The CompOnt is submitted to the initiator and evaluated by executing 
the CSQ. 

5.2   Component proposals 

A PM Proposal at PSM level should describe a concrete implementation of a PM 
Specification. Therefore a ComponentOntology (CompOnt) is provided. Dependent on 
the used domain specific CAD models an individual mapping of relevant attributes 
and features into the CompOnt is needed. The mapping is again realized by generating 
and combining individuals using PrOnt’s classes and properties. Additionally the 
CompOnt should provide links to the ontology’s source CAD files. During evaluation 
of a PM Proposal the original CAD file is still a useful and important representation. 

6   Evaluation: Sample use case 

As proof of concept we implemented an example use case that combines the PSM 
service concepts with the ontology based data model approach. In the sample use 
case, we simulate the collaborative construction of a LEGO™ bulldozer (as illustrated 
in Fig. 5). 

 
Fig. 5. LEGO™ bulldozer to evaluate ontologies at DeDCP 
 
The bulldozer represents the data element project and consists of three components 
that are specified by the initiator: A chassis, a body and a shield. 
 



 

Fig. 6. Project Ontology for the sample use case 

As listed in Section 5.3, the first step is to use the BaseOnt and extend it to the PrOnt 
(cp. Fig. 4, Step 1) by adding project-specific components such as a class for the 
bulldozer, the chassis, the body and the shield and mark the bulldozer as the project 
class. For the topolocigal structure we define individuals for each type using the 
hasChild property and mark them via the isExposed property to identify which 
component is a PM Specification. Mind that not each component of the underlying 
bill-of-material has to be developed within the collaboration. 

With a special SparQL Query (= PrQ) that is developed in step 2, the exposed 
classes can be determined when running the query. Let us assume that in our 
reference scenario all three components should be developed by collaboration 
participants.  

For each exposed component the initiator has to implement a specification as 
SparQL query in the third step (cp. Fig. 4, Step 3). In summary there are three 
requirements for this assembly, one restricting the dimension, a second demanding the 
movability, and the third limiting the costs. The schema of this query type is quite 
generic and can be used for arbitrary projects and not only for describing LEGO™ 
toys.  

 
PREFIX spec: <http://tuc.de/ontologies/spec_bulldozer.owl#> 
PREFIX lego: <http://tuc.de/ontologies/lego_base.owl#>  
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
SELECT ?item 
WHERE { 
    ?item           rdf:type                 spec:Chassis; 
                    lego:hasRequirement      ?req_dim, ?req_mov, 

?req_costs. 
    ?req_dim        rdf:type        lego:Dimension; 
                    lego:hasDepth   8; 
                    lego:hasWidth   ?width 
                    FILTER(?width >= 20 && ?width <= 30). 
    ?req_mov        rdf:type                lego:Moveability; 
                    lego:hasAxisRelation    lego:XValue,  

lego:ZValue; 
                    lego:hasMoveability     lego:LinearValue. 
    ?req_costs      rdf:type        lego:Costs; 
                    lego:hasCosts   ?price FILTER(?price <= 45.99). 
}  
 
 



Based upon these requirements provided in a CSQ, a developer can now start to 
implement a PM Proposal. This is done by generating a CompOnt that follows the 
structure of the CSQ. Therefore a collaboration participant’s work is to map his final 
parameters from his proposed product model into the CompOnt. 

To check if the CompOnt is a valid proposal, both participants and the initiator 
need to execute the CSQ upon this CompOnt. If the result of a CSQ is an individual of 
a requested component (cp. individual Tuc01 in Fig. 8 below) the proposal is valid, if 
not it is invalid and there may remain some unfulfilled requirements. 
 

 

Fig. 8. Extract from component ontology for a CAD representation of a LEGOTM bulldozer 
chassis (LDraw). 

When the initiator has received enough valid PM Proposals (CompOnts) for each 
component, he can assemble them into a result ontology instance (ResOnt), which 
represents the package solution. In other words, it means that assembling all 
corresponding CAD model files will result in a final CAD model like the one shown 
in Fig. 5. 

7   Conclusion and outlook 

As mentioned in Section 3, there is a lack of using ontologies to support distributed 
collaboration processes like those addressed in this paper. The development and 
application of an ontology especially designed for decentral organized product 
development enables the full realization of DeCPD platforms. We are now able to 
complete our existing experimental PCP implementation, which was presented at the 
CeBIT trade fair in Hannover in 2009, by integrating the missing semantic data 



description module. With it we have the possibility to interpret relevant information 
from the state of the distributed product model that allows us to follow a decentrally 
developed process model. 

Beside the integration of the ontology concept into our PCP, we have to evaluate 
the applicability in real world engineering scenarios that is on CIM layer, i.e., 
independent from any IT realization. At the same time existing methods and protocols 
for query distribution and routing have to be evaluated and expanded to hierarchically 
designed DeCPD processes containing sub-collaborations. In that case we get 
confronted with the problem of describing interfaces between product models that 
could perhaps be realized in a similar way. This problem is yet unsolved. Finally, a 
more practical requirement which we shall address in future work is to provide 
automatic mappings from CAD files into the ontology approach. 
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