
Using ontologies to support decentral product
development processes

Patrick D. Stiefel1, Christian Hausknecht1 and Jörg P. Müller1

1 Clausthal University of Technology, Department of Informatics

{patrick.stiefel, christian.hausknecht, joerg.mueller}@tu-clausthal.de

Abstract. Adaptive and open platforms for cross-organizational collaborative
product development (CPD) need flexible architectures and network solutions
as well as novel data integration concepts supporting distributed, decentralized
collaboration. Previous approaches to solving this problem have largely ignored
the requirement of providing interoperable formats for product model data that
enable the support of collaborative product development activities. This paper
proposes the use of ontology technology to address this problem; it presents the
integration of ontology technology into existing model-driven approaches to
product development, and evaluates the applicability of the approach by
describing a use case with limited CPD platform functionality.

Keywords: Decentral and collaborative product development (CPD), Peer-To-
Peer based collaboration, Ontologies in a distributed collaboration environment,
Model-driven development of decentral organized information systems.

1 Introduction

Cross-organizational, collaborative Product Development (CPD) is the state-of-the-art
approach to support knowledge sharing in multi-party cross-organizational
engineering projects [1]. To support CPD processes, new collaboration platform
technologies are required. They should provide an added value at product definition
and execution stages by reducing collaboration complexity and obstacles.

There are many CPD platform design recommendations that mainly focus on data
sharing and mapping. These recommendations address one of the key problems of
product development: the integration of heterogeneous product model definitions [2].
What still remains is the question on how to accelerate the product development
processes, especially in the early phases of the product lifecycle where the major
challenge is to efficiently share rapidly changing product design approaches among
development teams [3].

These requirements result in new design strategies for CPD platforms. Existing
client-/server-based approaches are too inflexible to support loosely coupled, ad-hoc
collaboration situations. Therefore, our research focuses on developing decentral
information technologies to support CPD processes [4,5]. One of the results is the
Product Collaboration Platform (PCP), an experimental peer-to-peer (P2P) software
platform to support decentral product development processes. As presented in [1], we
follow a model driven development (MDD) approach to design information systems

for decentral and collaborative product development (DeCPD). Based on
Computation Independent Models (CIM) we employ an iterative process to develop
different abstractions of IT models: starting from IT architecture models over
platform specific models (PSM) to concrete software artifacts. We employ an agent-
based approach to model the distributed collaboration logics, as is explained in
Section 2.1.

When developing distributed systems for knowledge sharing there is a need to
provide a common language. Product developers act in different languages and
normally have unequal action courses and best-practices when doing their model
design activities. A common global CIM process model constrains the user in his
process sequence but it does not explain the objective of the collaboration. This
results in a lack of interoperability. To deal with model-centric processes, we have to
introduce a common formal language that defines the intent of each collaboration
step. Ontologies give us the possibility to enhance decentral information knowledge
sharing with semantics. Collaborations based upon a semantic data model provide the
possibility to understand a collaborations partner design requirements (specification)
and to answer in an understandable format (proposal) without changing local product
data management strategies. Thus, ontologies are an important building block to
achieve interoperability between distributed model repositories and DeCPD
processes. Last but not least we are able to underpin the suitability of the model-
driven approach [6].

The structure of this paper is the following: After introducing DeCPD and ontology
concepts in Section 2, we will discuss some related work experiences in Section 3.
Section 4 deals with DeCPD CIM level models to provide a technology independent
need for concepts like ontologies. Section 5 with corresponding PSM models and
introduces in our ontology concepts. In the last section we evaluate our approach by
providing a reference scenario that we implemented in our Product Collaboration
Platform (PCP). The scenario depicts on a simple LEGOTM building example.

2 Background

2.1 Model-driven decentral and collaborative product development

Each DeCPD process describes a distributed solution of a given product engineering
problem (specification). Our approach is based on the Distributed Problem Solving
developed for multi-agent systems [7, 8]. The DeCPD process provides a synthesis of
the distributed partial solutions of the participants (proposals) to an overall solution
satisfying the initial requirements set up by the initiator.

The engineering problem in our work can be represented as the search of a set of
product model (PM) components matching the specification. Product engineers are
normally confronted with this problem in the design phase of the product lifecycle.
This view enables us to conceptualize a PM Specification by a query that describes
features, which the target component has to fulfill; a corresponding PM Proposal
represents one possible design solution.

As described in the introduction modern approaches to collaboration platforms are
needed to support the engineering problem described above. In designing a DeCPD
collaboration platform, we follow a model-driven top-down approach. To model the
underlying collaboration process we start with Computation Independent Models
(CIM) that describe the functionalities of the platform on the functional level. We use
the Business Process Modeling Notation (BPMN) to express CIM models in a
language suitable for the audience (i.e. engineers).

The result of performing this process are decentral architectures at Platform
Specific Model (PSM) level. We design Business Process Execution Language
(BPEL) workflows with especial architecture elements to cover the requirements
given by decentral information systems subject to our work. Our BPEL workflows are
model-centric; they cover event-driven trigger patterns (such as publish-subscribe)
from the P2P overlay network.

The focus of this paper is not on the development of MDD models but on their
application combined with the use of ontologies that provide the flexible and scalable
approach required for collaborative product engineering platforms. In doing so, we
aim at
• supporting ad-hoc interconnections between world-wide distributed partners that

often did not collaborate in the past and
• effectively distributing product models among participating engineers for load

balancing reasons, and a more efficient execution of product development
processes for the reasons of task sharing.

2.1 Ontologies

We propose using ontologies to represent product model data and metadata. We will
give a short introduction into the core concepts of ontologies and related technologies.

We use the web ontology language (OWL1) which is standardized by the W3C.
OWL is based upon the resource description framework (RDF2), which is also a W3C
standard. RDF enables the linking between objects, so called RDF Resources. This
linking can be described by a directed graph, where nodes represent resources and the
edges represent named links. This graph structure is also called triple. OWL itself
defines some important concepts upon RDF:
• classes are similar to sets as they group together individuals having the same

properties. For example, a class represents “Lego building bricks” or “plates”.
• properties describe the connection between individuals or the assignment of

data values to them. For example, an individual of the class brick could have a
property hasWidth which holds a value of “24”.

• individuals are instances of classes like in class-based programming languages
(Java, C++, C# e.g.).

OWL provides a wealth of additional constructs, but these are the most important
ones and sufficient for understanding this paper. Fig. 1 shows a simple example: Two

1 http://www.w3.org/TR/owl-features/ [19th February 2010]
2 http://www.w3.org/RDF/ [19th February 2010]

individuals (Tuc01 and Tuc02) belong to the class Brick. Tuc01 has a property
isConnectedWith, which uses Tuc02 as endpoint. Furthermore it has another property
hasWidth, which assigns the data value “24” to it.

Fig. 1. OWL example

Real world ontologies are much more complex and much harder to understand and
validate. For that reason, techniques are required to query triples. One query language
to provide this functionality is SparQL3, which is also a recommendation by the W3C.
SparQL has much similarity with SQL. SparQL enables to select arbitrary subsets
(subgraphs) from a given RDF graph that fulfill the users constraints (= graph
pattern). Furthermore, a SparQL query specifies which elements from the result
should be returned. A SparQL query has the general form:

SELECT ?subject ?predicate ?object
WHERE {
 ?subject ?predicate ?object.
}

After the SELECT statement, elements that should be returned by the query are
defined, no matter if these are individuals, classes, or properties. Within the WHERE
clause, we define the graph pattern that the query engine has to match.

SELECT ?item
WHERE {
 ?item rdf:type Brick.
 ?item isConnectedWith ?other_item.
}

The following example (see Fig. 1) shows the selection of an individual (from the
given ontology), the type of which is Brick and that has a relationship to another item,
specified by the property isConnectedWith. The following SparQL query will return
the name “Tuc01”.

3 http://www.w3.org/TR/rdf-sparql-query/ [19th February 2010]

3 Related Work

There are existing research approaches related to the topic of CPD that use semantic
descriptions. We observe that there are mainly two ways how ontologies are used in
CPD: (1) as a formal description for product model content, or (2) as a structural base
that enable a mapping between several product data formats.

3.1 Ontologies as formal product model description

Kim [9] proposes the usage of ontologies for adding a semantic description to product
model representations so that it possible to specify the meaning of design challenges.
The author introduces an ontology-based specification of an assembly design, so
called AsD. Based on this AsD, a product engineer can describe the topology of
assemblies and their joining relations, mainly focusing on spatial, geometric
characteristics. With computational reasoners it is possible to infer the meaning of an
assembly connection. This helps developers understand the meaning of design
decisions within a CPD process.

Similar to Kim’s approach, Liang [10] studies the description of connections
between LEGO™ objects due their given geometric structure. He also implements an
ontology using OWL, that describes these connections (he calls them “ports”) in order
to use it as a tool to find possibilities for connecting assemblies or to prove their
validity.

In [11], Mostefai describes a generic and extensible product ontology especially
designed to use in the area of mechanics. This is mainly used to facilitate a common
understanding among different people such as engineers with their CAD/CAM
experience, production planners, IT technicians, etc. If all these people accept a
“common ontology”, they can contribute to a unified product model.

3.2 Ontologies as a support for product model data exchange

Another use case for ontologies in CPD is the need to develop a platform-independent
interchange format for product data. In [2], Patil, Dutta and Sriram propose an
ontology-based framework to handle this task, called “Product Semantic
Representation Language” (PSRL). They claim that the traditional solutions based
upon industry standards for product data exchange (e.g. STEP, Standard for the
Exchange of Product Model Data) are limited by the fact, that the semantics are
ignored, which may lead to loss of information at transformation processes. They
further claim that a better mapping solution can be achieved with PSRL that expresses
semantics of a product model and not just plain parameters and values.

To conclude, what we did not find in existing ontology approaches yet is to use
ontologies as semantic description in a decentrally organized product engineering
process. That is what we need in our work: The cross-organizational process state has
to be determined from the product model and that would be impossible when not
using ontologies to define semantic information and process coherences upon flat

product model data. As a result, in our approach; we can allocate IT modules the
capability to interpret intermediate collaboration results and to make the right
decisions until the final result is reached.

4 DeCPD CIM level models

In this section we give an overview of several model design aspects at CIM level.
This should help to understand the main motivation when designing a DeCDP
platform.

4.1 CIM: Process aspect

Using BPMN we build generic, cross-enterprise business processes (CBPs) to
describe global DeCPD processes. Each CBP defines participating roles, public
processes, and a collaboration protocol, carefully matched to the requirements given
in a product modeling environment.

To build CBPs that describe DeCPD processes we specified the following generic
public processes:
• GenerateSpecification is the process to specify a query that describes the

searched component characteristics in a PM Specification, while
GenerateProposal is the counterpart of the process mentioned before, which is
used by participants to describe a target component in a PM Proposal.

• PublishProposal makes a PM Proposal available to selected collaboration
partners. At CIM layer, it is not specified how this is realized from a technical
point of view; thus, e.g., on PSM layer the IT experts could provide a distributed
database solution for storing PM Proposal information.

• By contrast, PublishSpecification distributes a PM Specification among the
developers involved in the collaboration. Suppose that the product model
handling was realized using databases; in that case the PM Specification would
be a SQL-type query that should deliver answers to the collaboration initiator
when executing it after several participants have provided valid proposals.

• The process Search describes the possibility to search for existing PM
Specifications / Proposals in a distributed collaboration environment. The search
mechanism has no bearing on the execution of a PM Specification query
(perform a SQL query e.g.), but it means to find their physical location in the
collaboration network. Beyond each search process, there is a complex request-
acknowledge and routing method to assure that only trustworthy partners get
requested PM Specifications and/or -Proposals. These methods are part of our
research and will not be discussed in this paper.

• In some environments, it is useful to have a Notify process. In technical terms,
this corresponds to event-triggered messaging. Independent from any technical
realization, it means the participant to register on a particular event, like e.g. the
event “newProposal”, whereby he gets informed about every public changes
made in this collaboration instance.

• Last but not least a process Analyze is needed, that encapsulates the user’s
decision on how to proceed a collaboration based on the incoming proposals.

Generic DeCPD processes differ in the following three characteristics. The PM
distribution (specifies how physical PM Specification and/or -Proposal data
resources are dedicated to collaboration participants), hierarchies (describes the
maximum levels of sub-collaborations, in the case of a 0-level collaboration there is
no subdivision) and iterations (allows the compilation of versions and variants).

The DeCPD process sequences in CIM Business Process Diagrams (BPDs) depend
on the exact values of these three parameters. To evaluate the necessity of ontologies
in the field of DeCPD we reduce complexity by setting up a 0-level collaboration
between one initiator und a set of participants. PM Specifications are distributed
among all participants via broadcast and the PM Proposals are interchanged via
point-to-point transfer between initiator and corresponding participant. To maintain
relevance to real world scenarios at product development we do consider iterations.
Fig. 2 shows an example BPD for only one participant.

Fig. 2. BPD for o-level collaboration with iterations

4.2 CIM: Data aspect

As described in Section 3 we need a data model that fits on the process described
above. We defined the meta-model as shown in Fig. 3.

+

Generate
Specification

+

Analyze
Specification

In
iti

at
or

Te
iln

eh
m

er
 A

+

Generate Proposal

+

Analyze Proposal

Proposal OK

Specifications Product
model

Revise Proposal

Proposal Not OK

Proposals

+

Search
Specification

+

Search Proposal

Revise
Specification

Fig. 3. DeCPD data meta-model

A concrete instantiation of the meta-model and its resulting complexity depends on
the DeCPD characteristics (hierarchies and iterations) of a DeCPD project and
therefore mainly on the amount of sub-collaborations (sub-projects, subP) and the
maximum number of PM Specification- and PM Proposal variants (varS/varP),
respectively versions (verS/verP). As a variant we describe all PM Specifications /
Proposals that belong to one single component and that are published in parallel. Note
that each variant has got only one valid version.

To conclude, due to the process limitation that no sub-projects are allowed (cp.
Section 4.1), we can concentrate on the collaboration process itself and not on the
difficulties that affect us when putting together the sub-results from sub-projects.

4.3 CIM: Service aspect

In describing DeCPD services and their behavior at CIM level, we distinguish
between two dimensions: Service Execution and Service Coordination.

At execution dimensions we distinguish between local and distributed service
execution. In local service execution, each collaboration partner hosts all needed
DeCPD core services on its own; thus, the availability of needed services is ensured at
any time (= local service execution). In the case that DeCPD core services are
distributed between participants we have to provide additional service discovery
methods at run time. Furthermore we distinguish between central and decentral
service execution. In the central case, only selected partners provide a choice of core
services, whereas in the decentralized case core services are distributed between
participants.

Considering the coordination dimension we distinguish between central and
decentral coordination. Central coordination needs a coordinator that controls the
cross-enterprise service workflow; decentral coordinated workflows do not need a
coordinator, but decentral, model-centric mechanisms that make a control flow
possible.

To summarize, we decided to use a decentralized coordinated collaboration
strategy with local DeCPD core service execution. Using local service execution we
do not need to concentrate on strategies for a distributed service search that is as
complex as decentral product model data exchange and provides nearly the same
challenges. Rather we prefer not using a coordinator and control the workflows by
querying the state of the distributed product model.

5 Ontologies for a concrete PSM level data model

The generic data model at CIM level has to be concretized at PSM level by specifying
specific data elements needed to fulfill the requirements of a DeCPD. In this section
we describe on how to use an ontology approach to specify the PSM data model.

5.1 Ontologies to describe components and connections

One of the core concepts of DeCPD is the decomposition of an overall product
development problem (CIM: project) into several sub-problems (CIM: sub-projects).
Central element of the CIM data meta-model is the sub-project related component.

The challenge at PSM level is to specify components in an interoperable way, that
means to cover aspects of different business domains like design, functional
requirements, economic or of course geometric and topological parameters. To
generate such a component description, all relevant parameters must be representable
in a meaningful and feasible way. This is where we apply ontologies due to their
flexibility and power of expression.

As known from many programming languages we provide a common domain
specific base for the fundamental expressions. This ontology, that we call
BaseOntology (BaseOnt), depends on the domain of the collaboration and must define
appropriate classes, properties and even individuals if needed. For sure the scope of
our BaseOnt is limited to the field of product development, although it contains
essential concepts that could be use in other application domains. The BaseOnt must
be available for all participants in a DeCPD process.

As we chose the LEGO™ system as domain for our example scenarios (cp. Section
6), our BaseOnt provides a special vocabulary for a collaboration in this product
development area and we define the following five superclasses:
• Component. Holds the subclasses Project, Assembly and Part that are

constructional superclasses themselves. Derived from Part, we define LEGO™
elements such as Brick, Plate, Lego Technic Part, and others. In the example,
these special Part classes represent all the different kind of LEGO™ building
bricks that can be purchased on the market.

• Connection. Within the Connection classes it is possible to describe the type
and the implementation of connections between parts, assemblies and perhaps
other important stuff. This is especially needed to ensure, that the different PM
Proposals connects well during the synthesis phase of the collaboration.

• Requirement. This class helps to specify the various kinds of requirements
concerning a component. We distinguish between functional (movability or
flexibility) and non-functional requirements (price, weight, or material).

• Resource. Using this class, ontology elements can be linked to external data
storages such as files or database tuples. Generally, an external data source
contains more detailed information than provided by the ontology.

• ValuePartitions. This is a helper superclass to construct enumeration classes
that are needed to restrict the ontology user when defining values.

Using these predefined elements, a participant can describe a component by
generating needed individuals derived from the given classes. By using properties
individuals can be tied together or atomic values can be assigned to them. Sometimes
the problem may occur that the BaseOnt’s classes are not adequate to build up an
individual. In this case the missing elements can easily be added to a custom project
ontology (PrOnt), cp. Section 5.3.

Next to the simple description of components, connections between them have to
be represented. We provide a solution for this requirement by defining special

connection classes in our BaseOnt. So the connection modality (from physical point
of view), the involved components and additional semantic information (why the
connection is modeled the way it is) can be described in the same way as shown
above.

5.3 Project and component queries

For describing the project and its components that should be developed during
collaboration we use so called project queries (PrQ) that work upon a special project
ontology (PrOnt) which extend the BaseOnt with project specific stuff.

In a PrOnt we define the main component that represents our project subject as a
new class by deriving from the Project class using the subClassOf built-in property of
OWL. Additionally components are defined by deriving from the Assembly class. In
order to represent the topological structure, we create an individual for each new type
we defined before and link them together via the isChildOf property of the BaseOnt
like building up a bill of material (BOM). To declare which components should really
be developed in collaboration we mark each individual with a boolean value using the
BaseOnt’s isExposed property. In summary this results in an ontology structure that
holds all the information about types and topological structure of the collaboration.

To extract these information from the PrOnt we use a project independent PrQ,
which is of course defined in the W3C standardized SparQL query language. The PrQ
basically searches for types of those individuals, which are children of another
individual that represents a type being a subclass of the Project class. The query
returns the name of the component, if it should be developed in the collaboration and
the associated project type as shown below:

PREFIX lego: <http://tuc.de/ontologies/lego_base.owl#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT ?components ?value ?root_type
WHERE {
 ?root lego:hasChild ?x;
 rdf:type ?root_type.
 ?root_type rdfs:subClassOf lego:Project.
 ?x lego:isExposed ?value;
 rdf:type ?components.
 ?components rdfs:subClassOf lego:Assembly.
}

In either case it might be the initiator that generates the first revision of the PrQ and
the PrOnt. Dependent of the knowledge a collaboration initiator owns when
specifying a new PrQ/PrOnt composition he might not be able to describe the
components. This case might be suitable in real word scenarios when developing new
products. So we must differentiate between a project partitioning made by the initiator
and those made by the participants themselves.

In reality a one-step PrQ breakdown is unrealistic. According to the supply
pyramid a given PrQ will be specified more precisely from tier to tier. So a PrQ
distributed by a OEM will be republished in a further collaboration by a 1st tier

supplier and so on. Regarding our data meta-model in Section 4.2 it means that
projects are recursively subdivided into sub-projects that are connected together by
the components interfaces in principal.

The distribution of PrQ’s is in general only practicable between participants from
maximally two supply pyramid layers due to their interest in collaborate. The question
is also to allow and/ or how to handle supplier rivals.

After having distributed a project description the initiator hopes to find participants
interested in developing selected components. Desired requirements of a PM
specification are specified in a component specification query (CSQ). In contrast to
the PrQ/PrOnt the person that describes a CSQ (= the initiator in general) is not the
one who will also provide the CompOnt (= one of the participants). The component is
still to be defined (cp. Section 5.1.2).

Fig. 4. DeCPD query routing

In the following we will take a look at the query routing that fulfills the
requirements of the DeCPD process shown in Fig. 2. We consider a collaboration
with only one initiator and an arbitrary amount of participants. Each sub-collaboration
(again with one initiator and several participants) would adhere to the following base
procedure:

 Step 1: The BaseOnt is extended to the PrOnt by specifying additional

components that are not yet contained.
 Step 2: The project describing PrQ is generated. Executed on the PrOnt each

PrQ returns the list of components to construct during collaboration.
 Step 3: The initiator generates a separate CSQ (= PM Specification) in that the

component requirements are specified.
 Step 4: A participant receives the PrOnt and the PrQ. Based on that he can

decide whether to provide participate at collaboration or not.

network

Project
Ontology

Initiator

Generate
Project SparQL Query

(PrSQ)

Participant

Generate
Component Ontology

(CompOnt)

PrSQ

Component
Ontology

Evaluate
PrSQ

Base
Ontology
(BaseOnt)

4
6

Generate
Component SparQL

Query (CSQ)

Spezification (S)

3

CSQ

Require
CSQ

5

CompOnt

2

7

Generate
Project Ontology

(PrOnt)
1

 Step 5: Interested participants require a CSQ of the component they are
interested in from the initiator.

 Step 6: The PrOnt is extended to the CompOnt (= PM Proposal) by again
specifying additional components.

 Step 7: The CompOnt is submitted to the initiator and evaluated by executing
the CSQ.

5.2 Component proposals

A PM Proposal at PSM level should describe a concrete implementation of a PM
Specification. Therefore a ComponentOntology (CompOnt) is provided. Dependent on
the used domain specific CAD models an individual mapping of relevant attributes
and features into the CompOnt is needed. The mapping is again realized by generating
and combining individuals using PrOnt’s classes and properties. Additionally the
CompOnt should provide links to the ontology’s source CAD files. During evaluation
of a PM Proposal the original CAD file is still a useful and important representation.

6 Evaluation: Sample use case

As proof of concept we implemented an example use case that combines the PSM
service concepts with the ontology based data model approach. In the sample use
case, we simulate the collaborative construction of a LEGO™ bulldozer (as illustrated
in Fig. 5).

Fig. 5. LEGO™ bulldozer to evaluate ontologies at DeDCP

The bulldozer represents the data element project and consists of three components
that are specified by the initiator: A chassis, a body and a shield.

Fig. 6. Project Ontology for the sample use case

As listed in Section 5.3, the first step is to use the BaseOnt and extend it to the PrOnt
(cp. Fig. 4, Step 1) by adding project-specific components such as a class for the
bulldozer, the chassis, the body and the shield and mark the bulldozer as the project
class. For the topolocigal structure we define individuals for each type using the
hasChild property and mark them via the isExposed property to identify which
component is a PM Specification. Mind that not each component of the underlying
bill-of-material has to be developed within the collaboration.

With a special SparQL Query (= PrQ) that is developed in step 2, the exposed
classes can be determined when running the query. Let us assume that in our
reference scenario all three components should be developed by collaboration
participants.

For each exposed component the initiator has to implement a specification as
SparQL query in the third step (cp. Fig. 4, Step 3). In summary there are three
requirements for this assembly, one restricting the dimension, a second demanding the
movability, and the third limiting the costs. The schema of this query type is quite
generic and can be used for arbitrary projects and not only for describing LEGO™
toys.

PREFIX spec: <http://tuc.de/ontologies/spec_bulldozer.owl#>
PREFIX lego: <http://tuc.de/ontologies/lego_base.owl#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT ?item
WHERE {
 ?item rdf:type spec:Chassis;
 lego:hasRequirement ?req_dim, ?req_mov,

?req_costs.
 ?req_dim rdf:type lego:Dimension;
 lego:hasDepth 8;
 lego:hasWidth ?width
 FILTER(?width >= 20 && ?width <= 30).
 ?req_mov rdf:type lego:Moveability;
 lego:hasAxisRelation lego:XValue,

lego:ZValue;
 lego:hasMoveability lego:LinearValue.
 ?req_costs rdf:type lego:Costs;
 lego:hasCosts ?price FILTER(?price <= 45.99).
}

Based upon these requirements provided in a CSQ, a developer can now start to
implement a PM Proposal. This is done by generating a CompOnt that follows the
structure of the CSQ. Therefore a collaboration participant’s work is to map his final
parameters from his proposed product model into the CompOnt.

To check if the CompOnt is a valid proposal, both participants and the initiator
need to execute the CSQ upon this CompOnt. If the result of a CSQ is an individual of
a requested component (cp. individual Tuc01 in Fig. 8 below) the proposal is valid, if
not it is invalid and there may remain some unfulfilled requirements.

Fig. 8. Extract from component ontology for a CAD representation of a LEGOTM bulldozer
chassis (LDraw).

When the initiator has received enough valid PM Proposals (CompOnts) for each
component, he can assemble them into a result ontology instance (ResOnt), which
represents the package solution. In other words, it means that assembling all
corresponding CAD model files will result in a final CAD model like the one shown
in Fig. 5.

7 Conclusion and outlook

As mentioned in Section 3, there is a lack of using ontologies to support distributed
collaboration processes like those addressed in this paper. The development and
application of an ontology especially designed for decentral organized product
development enables the full realization of DeCPD platforms. We are now able to
complete our existing experimental PCP implementation, which was presented at the
CeBIT trade fair in Hannover in 2009, by integrating the missing semantic data

description module. With it we have the possibility to interpret relevant information
from the state of the distributed product model that allows us to follow a decentrally
developed process model.

Beside the integration of the ontology concept into our PCP, we have to evaluate
the applicability in real world engineering scenarios that is on CIM layer, i.e.,
independent from any IT realization. At the same time existing methods and protocols
for query distribution and routing have to be evaluated and expanded to hierarchically
designed DeCPD processes containing sub-collaborations. In that case we get
confronted with the problem of describing interfaces between product models that
could perhaps be realized in a similar way. This problem is yet unsolved. Finally, a
more practical requirement which we shall address in future work is to provide
automatic mappings from CAD files into the ontology approach.

References

1. Li, W.D. and Qiu, Z.M. (2006): State-of-the-Art Technologies and Methodologies for
Collaborative Product Development Systems. In: International Journal of Production
Research, 44(13), pp. 2525-2559.

2. Patil, L., Dutta,D. and Sriram, R. (2005): Ontology-Based Exchange of Product Data
Semantics. In: IEEE Transactions on automation science and engineering,Vol.2,
No.3, pp. 213-225.

3. Li W.D., Ong S.K. and Nee A.Y.C. (2006): Integrated and Collaborative Product
Development Environment. Technologies and Implementations. World Scientific
Publishing Co. Pte. Ltd. Singapore.

4. Stiefel, P. D.; Müller, J. P. (2007): ICT interoperability challenges in decentral, cross-
enterprise product engineering. In: Gonçalves; Ricardo J., pp. 171–182.

5. Stiefel, P. D.; Müller J.P. (2008): Realizing dynamic product collaboration processes
in a model-driven framework: Case study and lessons learnt. In: K.-D. Thoben, K. S.
Pawar, & R. Gonçalves, eds., 14th International Conference on Concurrent
Enterprising, 23-25 June 2008, Lisbon, Portugal.

6. Stiefel, P.D and Müller, J.P. (2009): A model-based software architecture to support
decentral product development processes. In: Proceedings of the Eighth Workshop on
eBusiness, Web2009, Arizona; to be published.

7. Müller, J. P. (1996): The Design of Intelligent Agents – a Layered Approach. Lecture
Notes in Artificial Intelligence, Volume 1177, Springer-Verlag.

8. Smith, Reid G. (1981): Frameworks for Cooperation in Distributed Problem Solving.
In: IEEE Transactions on systems, man, and cybernetic, Volume 11, Seiten 61-70.

9. Kim, K.-Y. et al. (2006): Ontology-based assembly design and information sharing
for collaborative product development, In: Computer-Aided Design, Vol. 38, pp.
1233-1250.

10. Liang, Vei-Chung and Paredis, C.J.J. (2003): A port ontology for automated model
composition. In: Proceedings of the 2003 Winter Simulation Conference.

11. Mostefai, S. et al. (2004): Effective Collaboration in Product Development via a
Common Sharable Ontology. In: Journal of Computational Intelligence, Vol.2, No. 4,
pp. 206-212.

