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Abstract. The distributed and often decentralised nature of com-
plex stochastic traffic systems having a large amount of distributed
data can be represented well by multi-agent architecture. Traditional
centralized data mining methods are often very expensive or not fea-
sible because of transmission limitations that lead to the need of the
development of distributed or even decentralized data mining meth-
ods including distributed parameter estimation and forecasting. We
consider a system, where drivers are modelled as autonomous agents.
We assume that agents possess an intellectual module for data pro-
cessing and decision making. All such devices use a local kernel-
based regression model for travel time estimation and prediction. In
this framework, the vehicles in a traffic network collaborate to opti-
mally fit a prediction function to each of their local measurements.
Rather than transmitting all data to one another or a central node in
a centralized approach, the vehicles carry out a part of the computa-
tions locally by transmitting only limited amount of data. This lim-
ited transmission helps the agent that experiences difficulties with its
current predictions. We demonstrate the efficiency of our approach
with case studies with the analysis of real data from the urban traffic
domain.

1 INTRODUCTION

Multi-agent systems (MAS) often deal with complex applications,
such as sensors, traffic, or logistics networks, and they offer a suit-
able architecture for distributed problem solving. In such applica-
tions, the individual and collective behaviours of the agents depend
on the observed data from distributed sources. In a typical distributed
environment, analysing distributed data is a non-trivial problem be-
cause of several constraints such as limited bandwidth (in wireless
networks), privacy-sensitive data, distributed computing nodes, etc.
The distributed data processing and mining (DDPM) field deals with
these challenges by analysing distributed data and offers many al-
gorithmic solutions for data analysis, processing, and mining using
different tools in a fundamentally distributed manner that pays care-
ful attention to the resource constraints [3].

Traditional centralized data processing and mining typically re-
quires central aggregation of distributed data, which may not always
be feasible because of the limited network bandwidth, security con-
cerns, scalability problems, and other practical issues. DDPM car-
ries out communication and computation by analyzing data in a dis-
tributed fashion [10]. The DDPM technology offers more efficient
solutions in such applications.

In this study we focus on the urban traffic domain, where many
traffic characteristics such as travel time, travel speed, congestion
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probability, etc. can be evaluated by autonomous agents-vehicles in
a distributed manner. In this paper, we present a general distributed
regression forecasting algorithm and illustrate its efficiency in fore-
casting travel time.

Numerous data processing and mining techniques were suggested
for forecasting travel time in a centralized and distributed manner.
Statistical methods, such as regression and time series, and artificial
intelligence methods, such as neural networks, are successfully im-
plemented for similar problems. However, travel time is affected by a
range of different factors. Thus, accurate prediction of travel time is
difficult and needs considerable amount of traffic data. Understand-
ing the factors affecting travel time is essential for improving predic-
tion accuracy [13].

We focus on non-parametric, computationally intensive estima-
tion, i.e. Kernel-based estimation, which is a promising technique
for solving many statistical problems, including parameter estima-
tion. In our paper, we suggest a general distributed kernel-based algo-
rithm and use it for forecasting travel time using real-world data from
southern Hanover. We assume that each agent autonomously esti-
mates its kernel-based regression function, whose additive nature fits
very well with streaming real-time data. When an agent is not able to
estimate the travel time because of lack of data, i.e., when it has no
data near the point of interest (because the kernel-based estimation
uses approximations), it cooperates with other agents. An algorithm
for multi-agent cooperative learning based on based on transmission
of the required data as a reply to the request of the agent experi-
encing difficulties was suggested. After obtaining the necessary data
from other agents, the agent can forecast travel-time autonomously.

The travel-time, estimated in the DDPM stage, can serve as an in-
put for the next stage of distributed decision making of the intelligent
agents [5].

This study contributes in the following ways: It suggests (a) a de-
centralized kernel-based regression forecasting approach, (b) a re-
gression model with a structure that facilitates travel-time forecast-
ing; and it improves the application efficiency of the proposed ap-
proach for the current real-world urban traffic data.

The remainder of this paper is organized as follows. Section 2 de-
scribes the related previous work in the DDPM field for MAS, kernel
density estimation, and travel-time prediction. Section 3 describes
the current problem more formally. Section 4 presents the multivari-
ate kernel-based regression model adopted for streaming data. Sec-
tion 5 describes the suggested cooperative learning algorithm for op-
timal prediction in a distributed MAS architecture. Section 6 presents
a case study and the final section contains the conclusions.



2 RELATED PREVIOUS WORK

2.1 Distributed Data Mining in Multi-agent
Systems

A strong motivation for implementing DDPM for MAS is given by
Da Silva et al. in [3], where authors argue that DDPM in MAS deals
with pro-active and autonomous agents that perceive their environ-
ment, dynamically reason out actions on the basis of the environ-
ment, and interact with each other. In many complex domains, the
knowledge of agents is a result of the outcome of empirical data
analysis in addition to the pre-existing domain knowledge. DDPM
of agents often involves detecting hidden patterns, constructing pre-
dictive and clustering models, identifying outliers, etc. In MAS,
this knowledge is usually collective. This collective ’intelligence’
of MAS must be developed by distributed domain knowledge and
analysis of the distributed data observed by different agents. Such
distributed data analysis may be a non-trivial problem when the un-
derlying task is not completely decomposable and computational re-
sources are constrained by several factors such as limited power sup-
ply, poor bandwidth connection, privacy-sensitive multi-party data.

Klusch at al. [11] concludes that autonomous data mining agents,
as a special type of information agents, may perform various kinds
of mining operations on behalf of their user(s) or in collaboration
with other agents. Systems of cooperative information agents for data
mining in distributed, heterogeneous, or homogeneous, and massive
data environments appear to be quite a natural progression for the
current systems to be realized in the near future.

A common feature of all approaches is that they aim at integrat-
ing the knowledge that is extracted from data at different geograph-
ically distributed network sites with minimum network communica-
tion and maximum local computations. Local computation is carried
out on each site, and either a central site communicates with each
distributed site to compute the global models or a peer-to-peer archi-
tecture is used. In the case of the peer-to-peer architecture, individual
nodes might communicate with a resource-rich centralized node, but
they perform most tasks by communicating with neighbouring nodes
through message passing over an asynchronous network [3].

A distributed system should have the following features for the
efficient implementation of DDPM: the system consists of multiple
independent data sources, which communicate only through message
passing; communication between peers is expensive; peers have re-
source constraints (e. g. battery power) and privacy concerns [3].

Typically, communication involves bottlenecks. Since communi-
cation is assumed to be carried out exclusively by message passing,
the primary goal of several DDPM methods, as mentioned in the liter-
ature, is to minimize the number of messages sent. Building a mono-
lithic database in order to perform non-distributed data processing
and mining may be infeasible or simply impossible in many appli-
cations. The costs of transferring large blocks of data may be very
expensive and result in very inefficient implementations [10].

Moreover, sensors must process continuous (possibly fast) streams
of data. The resource-constrained distributed environments of sensor
networks and the need for a collaborative approach to solve many
problems in this domain make MAS architecture an ideal candidate
for application development.

In our study we deal with homogeneous data. However, a promis-
ing approach to agent-based parameter estimation for partially het-
erogeneous data in sensor networks was suggested in [7]. Another
decentralized approach for homogeneous data was suggested in [18]
to estimate the parameters of a wireless network by using a paramet-
ric linear model and stochastic approximations.

2.2 Travel Time Prediction Models

Continuous traffic jams indicate that the maximum capacity of a road
network is met or even exceeded. In such a situation, the modelling
and forecasting of traffic flow is one of the important techniques that
need to be developed [1]. Nowadays, knowledge about travel time
plays an important role in transportation and logistics, and it can be
applied in various fields and purposes. From travellers’ viewpoints,
the knowledge about travel time helps to reduce the travel time and
improves reliability through better selection of travel routes. In lo-
gistics, accurate travel time estimation could help reduce transport
delivery costs and increase the service quality of commercial deliv-
ery by delivering goods within the required time window by avoiding
congested sections. For traffic managers, travel time is an important
index for traffic system operation efficiency [13].

There are several studies in which a centralized approach is used to
predict the travel time. The approach was used in various intelligent
transport systems, such as in-vehicle route guidance and advanced
traffic management systems. A good overview is given in [13]. To
make the approach effective, agents should cooperate with each other
to achieve their common goal via the so called gossiping scenarios.
The estimation of the actual travelling time using vehicle-to-vehicle
communication without MAS architecture was described in [14].

On the other hand, a multi-agent architecture is better suited for
distributed traffic networks, which are complex stochastic systems.
Further, by using centralized approaches the system cannot adapt
quickly to situations in real time, and it is very difficult to trans-
mit a large amount of information over the network. In centralized
approaches, it is difficult or simply physically impossible to store
and process large data sets in one location. In addition, it is known
from practice that the most drivers rely mostly on their own expe-
rience; they use their historical data to forecast the travel time [5].
Thus, decentralized multi-agent systems are are fundamentally im-
portant for the representation of these networks [1]. We model our
system with autonomous agents to allow vehicles to make decisions
autonomously using not only the centrally processed available infor-
mation, but also their historical data.

Traffic information generally goes through the following three
stages: data collection and cleansing, data fusion and integration, and
data distribution [12]. The system presented in [12] consists of three
components, namely a Smart Traffic Agent, the Real-time Traffic In-
formation Exchange Protocol and a centralized Traffic Information
Centre that acts as the backend. A similar architecture is used in
this study, but the prediction module, incorporated into Start Traf-
fic Agent (vehicle agent), is different. In our study we do not focus
on the transmission protocol describing only the information, which
should be sent from one node to another, without the descriptions of
protocol packets. The centralized Traffic Information Centre in our
model is used only for storing system information.

The decentralized MAS approach for urban traffic network was
considered in [2] also, where the authors forecast the traversal time
for each link of the network separately. Two types of agents were
used for vehicles and links, and a neural network was used as the
prediction model.

For travel time forecasting different regression models can be ap-
plied. Linear multivariate regression model for decentralized urban
traffic network was proposed in [4]. This regression model is well-
studied, is parametric and allows estimation of each variables contri-
bution. However is not sufficiently effective in the case of non-linear
systems. Alternatively non-parametric kernel-based regression mod-
els can be applied. These models can be effectively used for any types



of systems, however are relatively new and not well-studied yet. The
efficiency of non-parametric kernel-based regression approach for
traffic flow forecasting in comparison to parametric approach was
made in [17]. In this study we apply non-parametric kernel regres-
sion for the similar traffic system as in [4] in order to increase the
prediction quality.

2.3 Kernel Density Estimation

Kernel density estimation is a non-parametric approach for estimat-
ing the probability density function of a random variable. Kernel den-
sity estimation is a fundamental data-smoothing technique where in-
ferences about the population are made on the basis of a finite data
sample. A kernel is a weighting function used in non-parametric es-
timation techniques.

Let X1, X2, . . . , Xn be an iid sample drawn from some distribu-
tion with an unknown densityf . We attempt to estimate the shape of
f , whose kernel density estimator is

f̂h(x) =
1

nh

n
∑

i=1

K

(

x−Xi

h

)

, (1)

where kernelK(•) is a non-negative real-valued integrable function
satisfying the following two requirements:

∫

∞

−∞
K(u)du = 1 and

K(−u) = K(u) for all values ofu; h > 0 is a smoothing parame-
ter called bandwidth. The first requirement toK(•) ensures that the
kernel density estimator is a probability density function. The second
requirement toK(•) ensures that the average of the corresponding
distribution is equal to that of the sample used [8]. Different kernel
functions are available: Uniform, Epanechnikov, Gausian, etc. They
differ in the manner in which they take into account the vicinity ob-
servations to estimate the function from the given variables.

A very suitable property of the kernel function is its additive na-
ture. This property makes the kernel function easy to use for stream-
ing and distributed data [8], [3], [7]. In [11], the distributed kernel-
based clustering algorithm was suggested on the basis of the same
property. In this study, kernel density is used for kernel regressionto
estimate the conditional expectation of a random variable.

3 PROBLEM FORMULATION

We consider a traffic network with several vehicles, represented as
autonomous agents, which predict their travel time on the basis of
their current observations and history. Each agent estimates locally
the parameters of the same traffic network. In order to make a fore-
cast, each agent constructs a regression model, which explains the
manner in which different explanatory variables (factors) influence
the travel time. A detailed overview of such factors is provided
in [13]. The following information is important for predicting the
travel time [15]: average speed before the current segment, number
of stops, number of left turns, number of traffic light, average travel
time estimated by Traffic Management Centres (TMC). We should
also take into account the possibility of an accident, network over-
load (rush hour) and the weather conditions.

Let us consider a vehicle, whose goal is to drive through the defi-
nite road segment under specific environment conditions (day, time,
city district, weather, etc.). Let us suppose that it has no or little ex-
perience of driving in such conditions. For accurate travel time esti-
mation, it contacts other traffic participants, which share their expe-
rience in the requested point.

In this step, the agent that experiences difficulties with a forecast
sends its requested data point to other traffic participants in the trans-
mission radius. The other agents try to make a forecast themselves.
In the case of a successful forecast, the agents share their experience
by sending their observations that are nearest to the requested point.
After receiving the data from the other agents, the agent combines
the obtained results, increases its experience, and makes a forecast
autonomously.

In short, decentralized travel-time prediction consists of three
steps: 1) local prediction; 2) in the case of unsuccessful prediction:
selection of agents for experience sharing and sending them the re-
quested data point; 3) aggregation of the answers and prediction.

4 LOCAL PARAMETER ESTIMATION

The non-parametric approach to estimating a regression curve has
four main purposes. First, it provides a versatile method for exploring
a general relationship between two variables. Second, it can predict
observations yet to be made without reference to a fixed parametric
model. Third, it provides a tool for finding spurious observations by
studying the influence of isolated points. Fourth, it constitutes the
flexible method of substitution or interpolating between adjacentX-
values for missing values [8].

Let us consider a non-parametric regression model [9] with a de-
pendent variableY and a vector ofd regressorsX

Y = m(x) + ǫ, (2)

whereǫ is the disturbance term such thatE(ǫ|X = x) = 0 and
V ar(ǫ|X = x) = σ2(x), andm(x) = E(Y |X = x). Further,
let (Xi, Yi)

n
i=1 be the observations sampled from the distribution of

(X, Y ). Then the Nadaraya-Watson kernel estimator is

mn(x) =

∑n

i=1
K

(

x−Xi

h

)

Yi
∑n

i=1
K

(

x−Xi

h

) =
pn(x)

qn(x)
, (3)

whereK(•) is the kernel function ofRd andh is the bandwidth. Ker-
nel functions satisfy the restrictions from (1). In our case we have
a multi-dimensional kernel functionK(u) = K(u1, u2, . . . , ud),
that can be easily presented with univariate kernel functions as:
K(u) = K(u1) ·K(u2) · . . . ·K(ud). We used the Gaussian kernel
in our experiments.

Network packets are streaming data. Standard statistical and data
mining methods deal with a fixed dataset. There is a fixed sizen for
dataset and algorithms are chosen as a function ofn. In streaming
data there is non: data are continually captured and must be pro-
cessed as they arrive. It is important to develop algorithms that work
with non-stationary datasets, handle the streaming data directly, and
update their models on the fly [6].

This requires recursive windowing. The kernel density estimator
has a simple recursive windowing method that allows the recursive
estimation using the kernel density estimator:

mn(x) =
pn(x)

qn(x)
=

pn−1(x) +K
(

x−Xn

h

)

Yn

qn−1(x) +K
(

x−Xn

h

) . (4)

5 DECENTRALISED MULTI-AGENT
COOPERATIVE LEARNING ALGORITHM

In this section, we describe the cooperation for sharing the predic-
tion experience among the agents in a network. While working with



streaming data, one should take into account two main facts. The
nodes should coordinate their prediction experience over some pre-
vious sampling period and adapt quickly to the changes in the stream-
ing data, without waiting for the next coordination action.

Let us first discuss the cooperation technique. We introduce the
following definitions.

Let L = {Lj | 1 ≤ j ≤ p} be a group ofp agents. Each agent
Lj ∈ L has a local datasetDj = {(Xj

c, Y
j
c )|c = 1. . . . , N j}, where

X
j
c is ad-dimensional vector. In order to underline the dependence

of the prediction function (3) from the local dataset of agentLj , we
denote the prediction function bym[Dj ](x).

Consider a case when some agentLi is not able to forecast for
somed-dimensional future data pointXi

new because it does not have
sufficient data in the neighbourhood ofX

i
new. In this case, it sends

a request to other traffic participants in its transmission radius by
sending the data pointXi

new to them. Each agentLj that has received
the request tries to predictm[Dj ](Xi

new). If it is successful, it replies
to agentLi by sending its best data representativesD̂(j,i) from the
neighbourhood of the requested pointX

i
new. Let us defineGi ⊂ L,

a group of agents, which are able to reply to agentLi by sending the
requested data.

To select the best data representatives, each agentLj makes a
ranking among its datasetDj . It can be seen from (3) that eachY j

c

is taken with the weightwj
c with respect toXi

new, where

w
j
c =

K

(

X
i
new−X

j
c

h

)

∑n

l=1
K

(

X
i
new−X

j

l

h

)
.

The observations with maximum weightswj
c are the best candidates

for sharing the experience.
All the dataD̂(j,i), Lj ∈ Gi received by agentLi should be ver-

ified, and duplicated data should be removed. We denote the new
dataset of agentLi asDi

new =
⋃

Lj∈Gi D̂
(j,i). Then, the kernel

function of agentLi is updated taking into account the additive na-
ture of this function:

m[Di
new](x) =

∑

Lj∈Gi

m[D̂(j,i)](x) +m[Di](x). (5)

Finally, agent Li can autonomously make its forecast as
m[Di

new](X
i
new) for Xi

new.

6 CASE STUDIES

We simulated a traffic network in the southern part of Hanover (Ger-
many). The network contains three parallel and five perpendicular
streets, creating fifteen intersections with a flow of approximately
5000 vehicles per hour.

The vehicles solve a travel time prediction problem. They receive
information about the centrally estimated system variables (such as
average speed, number of stops, congestion level, etc.) for this city
district from TMC, combine it with their historical information, and
make adjustments according to the information of other participants
using the presented cooperative-learning algorithm. In this case, the
regression analysis is an essential part of the local time prediction
process. We consider the local kernel based regression model (3)and
implement the cooperative learning algorithm (5). The factors are
listed in Table 1. The selection and significance of these variables
was considered in [4].

We simulated 20 agents having their initial experience represented
by a dataset of size 20 till each agent made 100 predictions, thus
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Figure 1. Average number of communications over time for differenth

making their common experience equal to 2400. We assumed the
maximal number of transmitted observations from one agent equals
2.

Table 1. System factors influencing the travel time

Variable Description

Y travel time (min);
X1 length of the route (km);
X2 average speed in the system (km/h);
X3 average number of stops in the system (units/min);
X4 congestion level of the flow (Veh/h);
X5 number of traffic lights in the route (units);
X6 number of left turns in the route (units).

During the simulation, to predict more accurately, the agents used
the presented cooperative learning algorithm that supported the com-
munication between agents with the objective of improving the pre-
diction quality. The necessary number of communications depends
on the value of the smoothing parameterh. The average number
of necessary communications is given in Figure 1. We can see the
manner in which the number of communications decreased with the
learning time. We variedh and obtained the relation between the
communication numbers andh as a curve. The prediction ability of
one of the agents is presented at Figure 2. Here, we can also see the
relative prediction error, which decreases with time. The predictions
that used communication between agents are denoted by solid tri-
angles, and the number of such predictions also decreases with the
time.

The goodness of fit of the system was estimated using a cross-
validation technique. We assume that each agent has its own training
set, but it uses all observations of other agents as a test set, so we
use 20-fold cross-validation. To estimate the goodness of fit, we used
analysis of variance and generalized coefficient of determinationR2

that provides an accurate measure of the effectiveness of the predic-
tion of future outcomes by using the non-parametric model [16]. The
calculatedR2 values and the corresponding number of the observa-
tions that were not predicted (because cooperation during testing was
not allowed) depending onh are listed in Table 2. From Figure 3 we
can also see howR2 is distributed among the system agents. The
results suggest that we should find some trade-off between system



0 20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Time

R
el

at
iv

e 
fo

re
ca

st
in

g 
er

ro
r

Self prediction
Prediction after communication

Figure 2. Relative prediction error and communication frequency of a
single agent over time

R2

F
re

qu
en

cy

0.75 0.80 0.85 0.90 0.95

0
20

40
60

80

Figure 3. Distribution of goodness of fit measureR2 using
cross-validation for the whole system,h = 2

accuracy (presented byR2) and the number of necessary communi-
cations (presented by the percentage of not predicted observations),
which depend onh. The point of trade-off should depend on the com-
munication and accuracy costs.

Table 2. R2 goodness of fit measure using cross-validation for the whole
system for differenth

Characteristic of System h=2 h=3 h=5 h=8

System averageR2 0.86 0.84 0.83 0.82
Average % of not predicted observations 3 1 0.5 0.1

A linear regression model [4] applied to the same data gives lower
average goodness of fitR2=0.77, however predictions can be calcu-
lated for all data points.

7 CONCLUSIONS

In this study, the problem of travel-time prediction was considered.
Multi-agent architecture with autonomous agents was implemented
for this purpose. Distributed parameter estimation and cooperative

learning algorithms were presented, using the non-parametric kernel-
based regression model. We demonstrated the efficiency of the sug-
gested approach through simulation with real data from southern
Hanover. The experimental results show the high efficiency of the
proposed approach. In future we are going to develop a combined
approach that allows agent to choose between parametric and non-
parametric estimator for more accurate prediction.
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J. E. Gentle, W. Ḧardle, and Y. Mori, Springer, Berlin/Heidelberg, 2004.

[7] C. Guestrin, P. Bodik, R. Thibaux, M. Paskin, and S. Madden, ‘Dis-
tributed regression: an efficient framework for modeling sensor network
data’, inProc. of the 3rd Int. Sym. on Information Processing in Sensor
Networks, Berkeley, (2004).
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