
Similarity-Based Resource Retrieval in Multi-Agent Systems
by Using Locality-Sensitive Hash Functions

Malte Aschermann, Jörg P. Müller

Abstract. In this paper we address the problem of retrieving similar resources

which are distributed over a multi-agent system (MAS). In distributed environ-
ments identification of resources is realized by using cryptographic hash func-

tions like SHA-1. The issue with these functions in connection with similarity

search is that they distribute their hash values uniformly over the codomain.
Therefore such IDs cannot be used to estimate the similarity of resources, un-

less one enumerates the whole search space and retrieves every resource for

comparison. In this paper we present a three-layer architecture and a data
model to efficiently locate similar resources in linear time complexity by using

locality-sensitive hash functions. We design the data model as an extension

to distributed environments (MAS), which only need to provide at least basic
resource management capabilities, such as storing and retrieving resources by

their ID. We use a benchmark data set to compare our approach with state-of-

the-art centralized heuristic approaches and show that, while these approaches
provide better search accuracy, our approach can deal with decentralized data

and thus, allows us to flexibly adapt to dynamic changes in the underlying

MAS by distributing and updating sets of information about similarities over
different agents. locality-sensitive hash functions, multi-agent systems, simi-

larity search

1. Introduction

In many real-world application contexts, such as product development [SHM12]
or medical diagnosis [WSHM95], information relevant for decision-making is dis-
tributed across systems and organizations. For instance, companies rely on efficient
product data management systems (PDM) to share specifications and models with
their suppliers. To date, the client-server approach is prevalent for organizing this
type of systems. We found that, while it is efficient for a limited set of participants
and especially if security concerns (e.g. intellectual properties) are an issue, it will
not scale well for larger amounts of data distributed over larger number of part-
ners, which need access to minor, overlapping subsets of the data and additionally
need to exchange information with participants to satisfy e.g., construction-related
constraints. This problem becomes even worse because suppliers need to store a
rapidly growing number of product revisions of similar, but mutually compatible
parts, assemblies or even whole modules. In [SHM12], we proposed a Product Col-
laboration Platform (PCP) – based upon the FreePastry [DEG+12] overlay system
– supporting decentralized product development; we showed that this approach can
outperform the single-server model. A very important aspect of decentralized ar-
chitectures lies in the distribution of data objects by the overlay network, thus a
participant can easily retrieve all the information about a specific product specifi-
cation if he knows its identifier. One aspect not considered in [SHM12] was the

1

SIMILARITY-BASED RESOURCE RETRIEVAL IN MULTI-AGENT SYSTEMS 2

fact that in product collaboration environments the exact characteristics of needed
parts, assemblies or even modules won’t be necessarily known during development;
the ability to locate specifications that are similar to a given specification can reduce
development time. However, distributed semantic similarity-based search exceeds
the scope of existing peer-to-peer (P2P) overlay systems such as Pastry, as it re-
quires more computational intelligence and flexibility at the partners sides. There-
fore, we are moving from peer-to-peer systems towards multi-agent systems (MAS),
incorporating richer local computation models as well as more flexible modes of in-
teraction. A practical scenario would be the collaborative development of a twin
engine, which can be seen in Fig. 1. The blue highlighted activities display pro-
cesses for locating specifications of similar and compatible parts or assemblies, the
red activity references a subprocess, which, for matters of simplicity, is not shown.
As shown in the activity diagram, it is – during the planning phase – reasonable to

Search for
compatible
twin engine

Obtain
compatible
twin engine

Develop
twin engine

Search for
compatible

chassis

Obtain
compatible

chassis

Develop
chassis

Search for
compatible

subassembly

Obtain

”
Engine w/o

chassis“

Develop

”
Engine w/o

chassis“

Twin engine

Specification

Chassis

Specification

Engine w/o chassis

Specification

[else]

[collaboration

partner found]

[collaboration

partner found]

[else]

[collaboration

partner found]

[else]

Figure 1. Collaborative development of a twin engine (parts/assemblies from [Sie12])

look for parts or assemblies (e.g. the chassis), which have already been developed
beforehand and are similar enough to be compatible with an initial specification.
This allows us to restrict the search space to similar specifications, which are, how-
ever, distributed across participants in the collaboration network. By incorporating
P2P lookup techniques like distributed hash tables (DHT) into multi-agent systems
(MAS), we can accomplish this efficiently in logarithmic time (e.g. binary search
in trees, finger tables). However, this only works well if the hash value of the re-
source is known or can be trivially computed by using a previously known copy
of the resource. Thus, in particular, existing methods cannot cope well with the
requirements of similarity search. In this paper we design a novel general-purpose
local sensitive data model and present an efficient distributed algorithm for locat-
ing resources similar to given prototypes. We compare the lookup performance of
our approach with state-of-the-art centralized heuristic classification approaches,
such as k-means or neural gas. In the following we will assume that an underly-
ing decentralized infrastructure (MAS) already exists, and therefore can trivially
locate resources if their exact identifier (i.e. hash-value) is known to the searching

SIMILARITY-BASED RESOURCE RETRIEVAL IN MULTI-AGENT SYSTEMS 3

party. Thus we will elaborate how product collaboration between different par-
ticipants, i.e. agents, can be optimized by introducing specialized types of agents,
which dynamically keep track of similar data (i.e. resource specifications), therefore
minimize the search-space and allowing to locate similar data in linear time.

This paper is structured as follows: In Section 2, we discuss related work. Sec-
tion 3 provides a short introduction to similarity search by using locality sensitive
hash functions. In Section 4 we present the locality sensitive data model; a quali-
tative and experimental evaluation is given in Section 5. Section 6 concludes with
a discussion of results and outlook to future work.

2. Related Work

There is a rich body of work on grouping resources and optimizing data man-
agement with respect to availability and minimal lookup-time for certain data clus-
terings (e.g. by topics or similarity in general). In this section, we discuss three
approaches for large-scale management of resources in distributed environments:
OceanStore, Kademlia and Squid.
OceanStore The OceanStore architecture [KBC+00] is a resource manage-
ment system for securely storing sensitive information in untrustworthy environ-
ments and to guarantee high availability even in very large and highly distributed
networks. This is accomplished by using a technique called promiscuous caching,
to keep as many data copies as possible distributed in the whole network at a time.
Therefore OceanStore is very well suited to be used in networks where participants
are scattered over large distances and resources belonging to certain users need to
be made available very fast depending on the user’s current location. Though this
concept comes with a high reliability and availability of data, the identification of re-
sources is done by using cryptographic hash functions like SHA-1 [KBC+00, p. 3].
Given the fact that it is infeasible to conclude the content of data just by knowing
a hash value, one would need to completely enumerate the search space to find
similar resources. Therefore this approach is not suitable for a similarity-sensitive
localization.
Kademlia The Kademlia protocol as a method for content sensitive resource
management has been introduced by Maymounkov and Mazières in [MM02]. The
authors are using lookup information which are provided by distributed hash tables
to find resources efficiently. The content sensitive localization is achieved by using
an xor-metric to compare distances between the IDs of participants and hash values
of resources. Those IDs, whose hash values have a minimal distance to a participant,
are assigned to it accordingly. Therefore requests for data objects with similar IDs
can be answered quite efficiently. The problem with this approach also lies in the
generation of IDs, which are – equally to OceanStore – SHA-1-based. For this
reason Kademlia is not suited for grouping resources by mutual similarity of their
content and does not provide an efficient way to look for similar data.
Squid A third quite interesting approach for similarity-based data management
is an extension of the P2P overlay network Chord. In their work Schmidt and
Parashar [SP03] address the issue that due to the homogenous distribution of
hash-IDs, the locality of similar resources can not be accounted for. The authors
propose an extension to Chord to sustain the locality of resources [SP03, p. 228].
They use multi-dimensional key-spaces and thus allow lexicographic searches to
neighboring resources by using Hilbert space-filling curves. Squid is a promising
approach to locate similar data-objects in a distributed environment. However,
Shu et al. point out, that “Squid [...] partition[s] the space statically” and that “In
Squid [...], the partitioning level needs to be decided beforehand.” [SOlTZ05, p. 2].
In the context of this paper we will present a method in which no static partitioning

SIMILARITY-BASED RESOURCE RETRIEVAL IN MULTI-AGENT SYSTEMS 4

occurs, but rather a dynamic assignment of similar resources to so called buckets
(see Section 4) is made. We will show that this approach is far better suited for
the dynamic nature of distributed environments with autonomous participants.

3. Similarity-Based Localisation

Identification, management and localisation of resources in distributed envi-
ronments is typically done by using cryptographic hash functions (e.g. SHA-1)
which leads to homogenous distributed IDs in the range of possible hash values.
Although intended to minimize the probability of hash collisions, it makes finding
similar resources by using such IDs as lookup information problematic. To find
similar resources one could try to compute diff(h−1(IDxi

), xref) → min! for each
available resource ID and a given reference xref ; doing so, however, is infeasible due
to the properties of cryptographic hash functions. Alternatively, one would need to
request every available resource and locally compute the differences between them
and the reference object. If the difference is below a given threshold – respectively
the similarity above – a candidate is found. This approach, though significant faster
than computing h−1, would still need quadratic time complexity (O(n(n− 1))) to
find the similarities between each of n existing resources.

In this paper we propose the use of locality-sensitive hash functions1 (LSH),
as originally presented by Koga et al. [KIW04] to address this problems. In con-
trast to cryptographic hash functions, LSH provides collision maximising properties.
Their idea is, that similar values of vectors x ∈ Rn map to the same hash-value
g(ux) ∈ {0, 1}k. To accomplish this, hash functions gi ∈ H are applied to elements
of a data-set X ⊂ Rn, which map vectors x to hash values. Multiple functions
(l = |H|) are used in order to increase the likelihood of collisions and identify
similar data-points. For using vectors of Rn to represent product specifications,
resources have to be transformed into vectors, by using specific characteristics (e.g.
measurements) as vector attributes.

x = (1, 5, 4)

ux = 10000 11111 11110

g = 10000 11111 111100 1 1 1

g(ux)= (0, 1, 1, 1)

y = (2, 4, 5)

uy = 11000 11110 11111

g = 11000 11110 111110 1 1 1

g(uy) = (0, 1, 1, 1)

Figure 2. Exemplary locality sensitive hashing of x and y

In a first step the vector x has to be transformed into an unary representation.
For instance the vector x = (1, 5, 4) would become ux = (u(x1) ◦ u(x2) ◦ u(x3)) =
(10000 11111 11110) in unary notation by concatenating xi ones followed by C =
max(x)−xi zeros. This step is necessary to apply the hash functions gi, which map
unary vectors to binary vectors of fixed length k, denoted as gi : ux → {0, 1}k. Here,
for each gi, k indices are chosen at random of the size-fixed unary representation
of x and are concatenated as follows: g(u) = (uP (1) ◦ uP (2) ◦ · · · ◦ uP (k)), with set
P , containing a random permutation of indices {1, . . . , k}.

Each vector is organised in sets called buckets. A bucket, for example Bh, is
uniquely identified by a hash value h ∈ {0, 1}k and contains all pairwise collisions
(i.e. potential similarities) of vectors which share the same LSH-value h.

1We use the term of locality in the sense of semantic similarity, rather than geographic location.

SIMILARITY-BASED RESOURCE RETRIEVAL IN MULTI-AGENT SYSTEMS 5

Taken the prior chosen value of x = (1, 5, 4) and additionally y = (2, 4, 5) with
a single hash function g and an exemplary index permutation of P = (3, 7, 9, 12)
(implying k = 4) the resulting hash values would be g(ux) = g(uy) = (0, 1, 1, 1) (see
Fig. 2). Due to this hash collision, x and y belong to the same bucket B(0111) =
{x, y}, identified by the hash value of their collision (ID(B(0111)) = (0, 1, 1, 1)). This
would indicate that x and y are similar to each other.

LSH-heuristics are primarily used for an approximate – but quite efficient –
computation of k-nearest-neighbor graphs in linear time [KIW04, p. 116], where
the time complexity amounts to O(nl|B|) < O(n2). Beyond that, this technique
can be used to locate similar data points to a given prototype, which can be seen as
a search query to look for. The goal is to find data points (i.e. candidates), near
a given prototype p, of a finite data set Xcand ⊆ X. Candidates s are similar to a
search request p iif

s ∈ Xcand ⇔ ∃g, g′ ∈ H : g(s) = g′(p) ∨ g′(s) = g(p).

This means, that all s – for which at least one hash function of H leads to a collision
with p – are candidates and therefore similar to p. From the set Xcand, which is
significant smaller than X, data points worth further consideration can be selected
using exact measuring methods due to the quite efficient elimination of irrelevant
data in the previous step.

4. Locality Sensitive Data Model (LSDM)

We propose a three layer architecture based on LSH to address the problems
as previously explained in the introduction, i.e., how to efficiently locate similar re-
sources in distributed multi-agent environments, where the identification commonly
takes place via cryptographic hash functions. We propose an extension to existing
MAS-based resource management systems (e.g. [VMCF05], [KFA07]) with the
intention of providing a highly flexible method to add similarity-based localization
to other platforms and to reduce unnecessary complexity.
Architectual Design The actual extension consists of agents, managing lists
of mutually similar resources. These agents, which we further call locality-sensitive
agents (LS-agents), are not only responsible for sharing their own resources, but
also for managing similarity lists and keeping these up-to-date. As shown in Fig. 3,
the LSDM extends a classic two-layer architecture, consisting of a resource and
agent layer, with a third layer containing the LS-agents. The technique, presented
in the previous Section 3 (finding similar vectors and organizing them in buckets
by using LSH functions) will be modified in such a way that it can be built upon
MAS.

The goal is to link reference specifications (search queries) q to sets of similar
resources. To minimize the workload and to increase the availability of these sets,
it is not advisable to entrust them to one single agent. Rather we distribute the
buckets among available agents. This can be achieved by viewing buckets as re-
sources and using the same cryptographic hash function fX which is used to identify
agents responsible for certain resources and to identify the resources themselves. If
this hash function fX (e.g. SHA-1) is applied to bucket-IDs, they can be treated
like ordinary resources and the responsible agent can easily be determined by using
the underlying distributed resource management system. For this assignment in
detail, see Fig. 4. Here the LS-agents hold – beside their own ID – sets of similar
resources Sh. Taking into account that storing whole resources in Sh is not desir-
able for reasons of data protection and possibly large resources, we only store their
cryptographic hash values (which sufficiently identify resources) in Sh.

SIMILARITY-BASED RESOURCE RETRIEVAL IN MULTI-AGENT SYSTEMS 6

resources

buckets

agents

owns
owns

LS-agents

add(), del()
refupdate()

requestParams()

requestS()

rehash()

sync()

LSDM
(extension)

MAS-based
resource
management

references

references

Figure 3. Three-layer architecture of LSDM

f
X (h

i)→
f
X (a

ls)

fX
(hj)
→ fX

(a ls
)

ID : fX(als)

Shi
: {fX(ry), . . . }

Shj : {fX(rx), . . . }

buckets LS-agents attributes

bucket hi

rx

...

bucket hj

ry

...

als

Figure 4. Assignment of buckets to LS-agents by using a cryptographic hash function fX

Identification of Similar Resources Assuming a reference specification s ∈
Rn exists, we can locate similar resources using the above described approach. At
first we need to compute all LS-hash values h to determine bucket IDs, in which
collisions (i.e. similar resources) can be found and put them into one set Bs:
Bs = {h | h = g(s),∀g ∈ H}. Then we can identify the responsible agents by
determining IDagent(h) = fX(h) ∀h ∈ Bs and request their similarity sets Shi

by
using the underlying resource management system (e.g. issuing a get(IDagent(h))
command). If we merge these sets Shi into one combined set S = Sh1 ∪ · · · ∪ Shn

we will get every ID of resources similar to the reference specification s.
Requirements to the LSDM Regarding the design of our data model, the
following requirements are of great importance: 1. If information about similar
objects is passed to the LSDM, it has to accept and process them in any case. 2.
Similar resources (if they exist) to any given reference specification (i.e. prototype)

SIMILARITY-BASED RESOURCE RETRIEVAL IN MULTI-AGENT SYSTEMS 7

have to be returned to the user. 3. Regularly modification of resources needs to
be taken into account. 4. Resources, which are removed from the underlying data
model, also needs to be removed from the LSDM. 5. In decentralized environments
sign-outs or even unforeseen malfunctions of agents can not be ruled out. Therefore
appropriate countermeasures need to be in place to prevent loss of information.
These issues can be addressed as follows:

(1) Publication of Resources Initially every agent a, which publishes
a resource r to the MAS, needs to have the necessary LSH parameters
(i.e. k, l,H), for which it issues the requestParams() command to one of
the existing LS-agents. (Since the LSH parameters have to be the same
throughout the LS-agents, it can ask any of them.) Then it can compute
hi = gi(r),∀gi ∈ H (i = {1, . . . , |H|}) to get a set of LSH-values hi, which
identify similarity lists, managed by LS-agents. These lists can now be
requested from the MAS by viewing hi as regular resources and thus
get the responsible agents by IDLSagenti = fX(hi). In the last step the
publishing agent calls add(IDLSagenti,hi,fX(r)), which tells IDLSagenti to
add the hash value of r to its similarity list Shi

. Each LS-agent also stores,
additionally to IDr, the IDa of its publisher, which is useful to push rehash
requests to agents. (See Fig. 5 and 5. Exception Handling below.)

IDa :: agent IDh :: LS-agent

0. addToMAS(r)

1. requestParams()

LSH functions

2. Calculate LSH values of r

3. add(h, IDr)

4. Add (IDa, IDr) to Sh

Loop: Add resource IDs to similarity listsLoop: Add resource IDs to similarity lists

IDa :: agent IDh :: LS-agent

0. removeFromMAS(r)

1. requestLSHParams()

LSH functions

2. Calculate LSH values of r

3. remove(h, IDr)

Remove (IDa, IDr) of Sh

Loop: Remove resources from similarity listsLoop: Remove resources from similarity lists

Figure 5. The process of adding resources to LSDM (left) and removing them (right)

(2) Localisation of Similar Resources To find similar resources, ac-
cording to a reference specification s, the agent requests the LSH parame-
ters from any LS-agent via requestParams(). If it already received those,
this step can be omitted. The agent needs to compute the set of LSH val-
ues Bs to get all LS-agents IDLSagenti = fX(hi), with hi ∈ Bs, responsible
for bucket hi. Thereupon the similarity lists Shi can easily be received by
calling requestS(

IDLSagenti ,hi) to the corresponding LS-agents. The actual resources, which
are similar to s, are retrievable by their ID ∈ Shi

by using the methods
of the underlying MAS.

(3) Modification of Resources If resources are modified (rold → rnew),
it will have an impact on their similarities to other existing resources.
Therefore the assignments of outdated (fX(rold)) and new (fX(rnew)) re-
source IDs to similarity lists S need to be reviewed and – if necessary –
updated. To accomplish this, the modifying agent calculates Brold and
Brnew

(analogue to above) and tells every LS-agent derived from Brold to
remove the similarity references (del()) and every LS-agent derived from
Brnew to add those (add()).

SIMILARITY-BASED RESOURCE RETRIEVAL IN MULTI-AGENT SYSTEMS 8

(4) Removal of Resources Resources r, which are removed from the
MAS, need to be removed from the LSDM as well. Again, an agent needs
to have the LSH parameters, which it can retrieve via requestParams().
It then computes all buckets which contain hash values hi = gi(r),∀gi ∈
H, identifying similarity lists Shi

. After that, the agent tells the respon-
sible LS-agents to remove all references to IDr from their similarity lists
(del()). (See Fig. 5)

IDa :: agent IDh :: LS-agent IDh′ :: LS-agent IDa′ :: agent

0. addToMAS(r)

requestParams(r̂)
r̂ > maxi{xi}:

initLSH(r̂)

sync(date(), H, r̂, k, l)

rehash(H, k, l)

Rehash resources with
updated LSH functions

update()-loopupdate()-loop

Loop: Reinitialize LSH functions and parametersLoop: Reinitialize LSH functions and parameters

LSH functions

Calculate LSH values of r

add(h, IDr)

Add (IDa, IDr) to Sh

Figure 6. The process of adding resources if the maximal vector attribute is exceeded

(5) Exception Handling One aspect which arises from using LSH func-
tions is, that once hash functions of H are defined, they constrain the size
of possible vector attributes by maxx∈X(xi). If a new vector y ∈ Rn \ X
needs to be hashed, we have to rehash every existing resouce in X and
rebuild and redistribute the buckets. In this case every LS-agent tells
each agent a, which can be found in its similarity lists, to rehash() and
republish their resources. (See Fig. 6)

Additional issues are malfunctioning or suddenly disconnecting LS-
agents. Therefore, to prevent loss of similarity lists, we need to have
backups among the agents of the MAS. We propose to have additional
(backup) LS-agents to counteract these issues. Similar to [SP03] we can
apply xor-metrics to LS-agent’s IDs to determine neighboring agents and
let them take over, if actual LS-agents are not available anymore.

5. Evaluation

The LSH technique underlying our data model is the central aspect of this pa-
per, and its overall effectiveness depends on the accuracy of LSH’s approximation.
Therfore, we focus our evaluation on a qualitative analysis of our data model and
on experimental comparisons between our approach and state-of-the-art clustering
techniques on standard benchmark data. Here we want to show, that our approach

SIMILARITY-BASED RESOURCE RETRIEVAL IN MULTI-AGENT SYSTEMS 9

can compete with well known clustering techniques and – moreover – prove its
usefulness in decentralised environments, such as MAS, by providing a fair approx-
imative classification of the available and shared resources in order to minimize the
relevant similarity-search-space beforehand.
Qualitative Analysis For the distributed management of similarity informa-
tion in multi-agent systems, our proposed data model LSDM – as part of a three
layer architecture – can be an effective approach compared to centralized clustering
of resources, by distributing the workload of clustering and communication over
various agents. By introducing the concept of locality sensitive hash functions, we
distributed the main workload of computing similarity information over the partic-
ipating agents (i.e. collaborating partners, willing to share resources) and assigned
the management of similarity lists to multiple LS-agents. Here the time complexity
for each agent to LS-hash its resources amounts to O(nl|B|) (see [KIW04, p. 116]),
where n denotes the number of resources, l the number of LS-hash functions and
|B| the bucket size. Therefore this process is of linear computational complexity
(see Section 3). As this step only needs to be done initially or if a rehashing is
needed in exceptional cases (see Section 4), this approach has very little impact on
the overall computation time of each agent. The management overhead of buckets,
induced by the LS-agents is minimal, as these agents only act as ‘yellow pages’
for search queries. This method also incorporates the idea of multi-agent systems,
by providing a more fault tolerant and load balanced way of managing buckets
compared to a centralized clustering instance and avoiding performance penalties
induced by bottlenecks or singe-point-of-failures. Without the need for such an
instance, our data model can be used in contexts with high volatility of available
agents if precautions – in terms of backup LS-agents – are taken.
Experimental Setup and Results In our experimental scenario we measure
the accuracy of finding similar elements from a database, containing disjunct classes
of similar elements. As a benchmark data set for our evaluation, we chose the Wis-
consin Diagnostic Breast Cancer database (WDBC), a well known benchmark set
of clinical cases [WSHM95], which we transformed into integer-based vectors, in
order to use it for our data model. The data set consists of 699 data points (but due
to 16 incomplete results we could only use 683), each described as an 11-dimensional
vector containing two identifying attributes (sample ID and classification). There-
fore we used nine attributes as a data vector and the remaining two to assess the
accuracy of our similarity approximation by using the Rand index.

In our experiment we only focused on the accuracy of LSH and measured the
impact of different hash output lengths and number of used hash functions to the
resulting accuracy of classification. We chose output lengths of 1 to 5, from 5 to 90
bits in steps of five and 1 to 20 hash functions. For each combination of number
of hash functions and output length, we ran the LSH classification 100 times to
obtain a good mean accuracy. In each iteration we randomised the hash functions
to minimise errors due to bad functions. As shown we plotted the average accuracy
against the number of used functions Fig. 7 and output length Fig. 8. (The omitted
samples lied in between those shown and were removed for a better overview.)

What our results show is that the accuracy of LSH’s resource classification
depends on two important parameters: The number of used hash functions and the
unary output length of them. Regarding the output length our experiment shows,
that by increasing the output length towards the allowed maximum (vmaxwbc =
90 = len(x) maxx∈X(xi)), the accuracy decreases continuously until it reaches a
minimum of 0.46 (Fig. 8) for our chosen data set, which can also be seen in Fig. 7
for the output length of 90. By combining the results for both parameters, we
measured an accuracy of 85.0% with a standard deviation of 0.7 for an – in our

SIMILARITY-BASED RESOURCE RETRIEVAL IN MULTI-AGENT SYSTEMS 10

Figure 7. Accuracy of LSH against the number of used LS-functions

Figure 8. Accuracy of LSH against the output length of used LS-functions

case – optimal parameter choice of 20 hash functions with a length of 15. Regarding
Fig. 7, one additional fact worth mentioning are the two curves for LSH lengths
1 and 5. Here we assume, that by increasing the number of hash functions, the
amount of false-positives grows significantly faster compared to the other curves,

SIMILARITY-BASED RESOURCE RETRIEVAL IN MULTI-AGENT SYSTEMS 11

due to the very short output lengths. Therefore the results for 1 and 5 can be
treated as anomalies.

Supervised C4.5

LSH
k-Means
[HH07]

Batch NG
[HH07]

decision tree
[HCSoRDoCS96]

Accuracy in % 85.0 93.6 94.7 96.0
StdDev 0.7 0.8 0.8 –

Table 1. Accuracy of LSH compared to state-of-the-art techniques for WDBC clas-
sifications

In ?? we confronted our results for the WBCD with other, comparable, exper-
iments (see [HH07], [HCSoRDoCS96]). As can be seen, heuristics like k-Means,
Neural Gas and C4.5 outperform our approach in terms of accuracy by roughly 10
– 20%. Here we would like to point out, that these heuristics operate centralized
with complete knowledge of the available data set. Our data model in contrast, is
able to compute bucket IDs without concrete knowledge of any existing resource,
and purely relies on the approximation done by previously chosen LS-hash func-
tions. Furthermore, every single agent only needs to know his own resources and
does not need to exchange any information with other agents, except for buckets,
containing cryptographic hashed values of resources. Due to the fact that the accu-
racy also considers elements that are similar but not located, it is possible to obtain
them by increasing the number of hash functions and thus making it more likely
for them to be found. Although this approach increases the set of false-positives,
it can, by gradually extending |H|, help to get more similar resources. Therefore,
given that our main goal was to minimize the search-space for similar resources, an
seemingly lower accuracy can significantly reduce the costs of comparing possible
candidates, if the overhead, induced by non-similar resources, would still be orders
of magnitude smaller than the whole search-space.

6. Conclusion and Outlook

The central aspect of the locality sensitive data model (LSDM) is the extension
of an existing multiagent system (MAS), used in decentralized collaborated product
development, to efficiently locate similar resources. The main contributions of
this paper are twofold. First, we proposed and evaluated the incorporation of
collision maximizing hash functions into existing agent-based resource management
systems. Here the goal was to avoid a centralized approach, by using one single
agent to manage sets of similar resources, but instead distribute these sets over
multiple agents to minimize the management overhead, bottlenecks and single-
point-of-failures. By using locality sensitive hash functions it is possible to compute
the buckets, containing IDs of similar resources, in linear time and distribute them
over LS-agents which are responsible for them.

Second, we showed in our experiments that that choose suitable LSH parame-
ters (number of hash functions and output length) is important for achieving good
results. Although we discovered that our approach is unable to achieve the same
accuracy results as centralized state-of-the-art clustering and classification heuris-
tics in terms of overall accuracy, we managed to reduce the search-space for similar
resources significantly. Here further research is needed to conclude if the LSH pa-
rameter can be determined beforehand, as prior benchmarking and computation of
optimal parameters is often not practical.

Our current approach faces several limitations: First we pointed out, that only
vectors of Nn are suitable for LS-hashing. Therefore, as mentioned in Section 3,

SIMILARITY-BASED RESOURCE RETRIEVAL IN MULTI-AGENT SYSTEMS 12

resources have to be transformed into integer vectors, by using specific characteris-
tics of data objects (e.g. measurements) as vector attributes. Real-valued vectors
for example could be easily transformed by using a fixed length of decimal places
and multiplying them with a constant scalar value, but this would drastically limit
the overall precision of the data set. Therefore it is reasonable to conduct fur-
ther research on how to express product specifications as vectors or use different
approaches in this context. Second, we have chosen the WDBC dataset for experi-
mental evaluation in the absence of publicized benchmark sets of product models.
While our method itself is general purpose, this may restrict generalizability of the
experimental results to similarity search of product models. Research is needed to-
wards creating appropriate benchmark datasets. Finally, we need to explore ways of
further improving the accuracy of LSH-based search e.g., by modifying the random
generation of LS-hash functions to weight more relevant vector attributes.

References

[DEG+12] Peter Druschel, Eric Engineer, Romer Gil, Andreas Haeberlen, Jeff Hoye,

Y. Charlie Hu, Sitaram Iyer, Andrew Ladd, Alan Mislove, Animesh Nandi, Ans-
ley Post, Charlie Reis, Dan Sandler, Jim Stewart, Atul Singh, and Rong Mei

Zhang, Freepastry, 7 2012.

[HCSoRDoCS96] H.J. Hamilton, N. Cercone, N. Shan, and University of Regina. Dept. of Com-
puter Science, RIAC: a rule induction algorithm based on approximate classifi-

cation, Tech. report, 1996.

[HH07] Barbara Hammer and Alexander Hasenfuss, Relational neural gas, Proceedings
of the 30th annual German conference on Advances in Artificial Intelligence, KI

’07, Springer Berlin / Heidelberg, 2007, pp. 190–204.
[KBC+00] John Kubiatowicz, David Binde, Yan Chen, Steven Czerwinski, Patrick Eaton,

Dennis Geels, Ramakrishna Gummadi, Sean Rhea, Hakim Weatherspoon, West-

ley Weimer, Chris Wells, , and Ben Zhao, Oceanstore: An architecture for global-
scale persistent storage, Proceedings of the Ninth international Conference on

Architectural Support for Programming Languages and Operating Systems (AS-

PLOS 2000)) (2000).
[KFA07] H. M. Kelash, H. M. Faheem, and M. Amoon, A multiagent system for dis-

tributed systems management, World Academy of Science, Engineering and

Technology 11 (2007), pp. 91–96.
[KIW04] Hisashi Koga, Tetsuo Ishibashi, and Toshinori Watanabe, Fast hierarchical

clustering algorithm using locality-sensitive hashing, Discovery Science, Lec-

ture Notes in Computer Science, vol. 3245, Springer Berlin / Heidelberg, 2004,
pp. 155–182.

[MM02] Petar Maymounkov and David Mazières, Kademlia: A peer-to-peer information
system based on the xor metric, Revised Papers from the First International

Workshop on Peer-to-Peer Systems (London, UK, UK), IPTPS ’01, Springer-

Verlag, 2002, pp. 53–65.
[SHM12] P. D. Stiefel, C. Hausknecht, and J. P. Müller, Using ontologies to support de-

central product development processes, Agent-Based Technologies and Applica-

tions for Enterprise Interoperability (K. Fischer, J. P. Müller, and R. Levy, eds.),
Lecture Notes in Business Information Processing (LNBIP), vol. 98, Springer-

Verlag, 2012, pp. 114–129.
[Sie12] Siemens, PLM, JT2Go, 2 Cylinder Engine (typical or ”shattered” JT file), 7

2012.

[SOlTZ05] Yanfeng Shu, Beng Chin Ooi, Kian lee Tan, and Aoy-

ing Zhou, Supporting multi-dimensional range queries in
peer-to-peer systems, FIFTH IEEE INTERNATIONAL

CONFERENCE ON PEER-TO-PEER COMPUTING, IEEE, 2005, pp. 173–
180.

[SP03] Cristina Schmidt and Manish Parashar, Flexible information discovery in de-

centralized distributed systems, Proceedings of the 12th High Performance Dis-
tributed Computing (HPDC), IEEE Computer Society, 2003, pp. 226–235.

[VMCF05] P. Vilà, J. L. Marzo, E. Calle, and L. Fàbrega, Multi-agent system co-ordination

in a distributed network resource management scenario, IEEE (2005).

SIMILARITY-BASED RESOURCE RETRIEVAL IN MULTI-AGENT SYSTEMS 13

[WSHM95] W. H. Wolberg, W. N. Street, D. M. Heisey, and O. L. Mangasarian, Computer-

derived nuclear features distinguish malignant from benign breast cytology, Hu-

man Pathology 26 (1995), 792–796.

Clausthal University of Technology, Institute of Informatics, Julius-Albert-Str.

4, D-38678, Clausthal-Zellerfeld, Germany,, {malte.aschermann,joerg.mueller}@tu-clausthal.

de

