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Abstract. Using purely agent-based platforms for any kind of simula-
tion requires to address the following challenges: (1) scalability (efficient
scheduling of agent cycles is difficult), (2) efficient memory management
(when and which data should be fetched, cached, or written to/from
disk), and (3) modelling (no generally accepted meta-models exist: what
are essential concepts, what just implementation details?). While dedi-
cated professional simulation tools usually provide rich domain libraries
and advanced visualisation techniques, and support the simulation of
large scenarios, they do not allow for “agentization” of single compo-
nents. We are trying to bridge this gap by developing a distributed, scal-
able runtime platform for multiagent simulation, MASeRaTi, addressing
the three problems mentioned above. It allows to plug-in both dedicated
simulation tools (for the macro view) as well as the agentization of certain
components of the system (to allow a micro view). If no agent-related
features are used, its performance should be as close as possible to the
legacy system used.

Paper type: Technological or Methodological.

1 Introduction

In this paper, we describe ongoing work on a distributed runtime platform for
multiagent simulation, MASeRaTi, that we are currently developing in a joint
project (http://simzentrum.de/en/projects/desim). The idea for MASeRaTi
evolved out of two projects, Planets and MAPC. In both projects, we imple-
mented, completely independently, running systems for different purposes. One
to simulate urban traffic management, the other to simulate arbitrary agent
systems in one single platform.

Agent-Based Traffic Modelling and Simulation: We developed ATSim, a
simulation architecture that integrates the commercial traffic simulation
framework AIMSuN with the multiagent programming system JADE (im-
plemented in JAVA): ATSim was realized within Planets, a project on co-
operative traffic management (http://www.tu-c.de/planets).
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Agent-Based Simulation Platform: We implemented, in JAVA, an
agent-based platform, MASSim, which allows several simulation scenarios
to be plugged in. Remotely running teams of agents can connect to it and
play against each other on the chosen scenario. MASSim has been developed
since 2006 and is used to realise the MAPC, an annual contest for multiagent
systems.

While the former system centers around a commercial traffic simulation plat-
form (AIMSuN), the latter platform is purely agent-based and had been devel-
oped from scratch. Such an agent-based approach allows for maximal freedom
in the implementation of arbitrary properties, preferences, and capabilities of
the entities. We call this the micro-level: each agent can behave differently and
interact with any other agent.

The traffic simulation platform AIMSuN, which easily runs tens of thousands
of vehicles, however, does not support such a micro-level view. Often we can
only make assumptions about the throughput or other macro-features. There-
fore, with ATSim, we aimed at a hybrid approach to traffic modelling and inte-
grated the JADE agent platform in order to describe vehicles and vehicle-to-X
(V2X) communication within a multiagent-based paradigm. One of the lessons
learned during the project was that it is extremely difficult to agentize.! certain
entities (by, e.g. plugging in an agent platform) or to add agent-related features
to AIMSuN in a scalable and natural way.

Before presenting the main idea in more details in Section 2, we point to
related work (Section 1.1) and comment about the overall structure of this paper.

1.1 Related Work

In the past decade a multitude of simulation platforms for multiagent systems
have been developed. We describe some of them with their main features and
note why they are not the solution to our problem. The Shell for Simulated Agent
Systems (SeSAm) [22] is an IDE that supports visual programming and facili-
tates the simulation of multiagent models. SeSAm’s main focus is on modelling
and not on scalability.

GALATEA [9] is a general simulation platform for multiagent systems de-
veloped in Java and based on the High Level Architecture [24]. PlaSMA [14]
was designed specifically for the logistics domain and builds upon JADE. Any-
Logic (http://wuw.anylogic.com/) is a commercial simulation platform writ-
ten in Java that allows to model and execute discrete event, system dynamics and
agent-based simulations, e.g. using the included graphical modelling language.
MATSim(http://www.matsim. org/) was developed for large-scale agent-based
simulations in the traffic and transport area. It is open-source and implemented
in Java. The open-source simulation platform SUMO [23] was designed to man-
age large-scale (city-sized) road networks. It is implemented in C++ and sup-
ports a microscopic view of the simulation while it is not especially agent-based.

! To agentize means to transform given legacy code into an agent so that it belongs to
a particular multiagent system (MAS) This term was coined in [29]. In [28], Shoham
used the term agentification for the same purpose.
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Mason [26] is a general and flexible multiagent toolkit developed for simulations
in Java. It allows for dynamically combining models, visualizers, and other mid-
run modifications. It is open-source and runs as a single process. NetLogo[30]
is a cross-platform multiagent modelling environment that is based on Java and
employs a dialect of the Logo language for modelling. It is intended to be easily
usable while maintaining the capability for complex modelling.

TerraMFE (http://www.terrame.org/) is a simulation and modelling frame-
work for terrestrial systems which is based on finite, hybrid, cellular automata
or situated agents. We are using a similar architecture (Section 3), but we add
some features for parallelisation and try to define a more flexible model and
architecture structure.

Most frameworks with IDE support are not separable, so the architecture
cannot be split up into a simulation part (e.g., on a High Performance Comput-
ing (HPC) cluster) and a visualisation/modelling part for the UI. Therefore an
enhancement with HPC structure produces a new design of large parts of the
system. Known systems like Repast HPC (http://repast.sourceforge.net/)
use the parallelisation structure of the message passing interface MPI
(http://www.mcs.anl.gov/research/projects/mpi/), but the scenario
source code must be compiled into platform specific code. Hence, the process of
developing a working simulation requires a lot of knowledge about the system
specifics.

Repast HPC' represents a parallel agent simulation framework written in
C++. It introduces local and non-local agents which can be distributed along
with the environment among different processes. Technically, it uses Boost and
Boost.MPI to create the communication between the processes. A dedicated
scheduler defines the simulation cycle. A problem of Repast HPC is the “hard
encoding” structure of the C++ classes, which requires good knowledge about
the Repast interface structure. In our architecture, we separate the agent and
scheduling structure into different parts, creating a better fit of the agent pro-
gramming paradigm and the underlying scheduler algorithms.

Also, a number of meta models for multiagent-based simulation (MABS) have
been developed so far. AMASON [21] represents a general meta-model that
captures the basic structure and dynamics of a MABS model. It is an abstrac-
tion and does not provide any implementation. MAIA [15] takes a different
approach by building the model on institutional concepts and analysis. The re-
sulting meta-model is very detailed, focusing on social aspects of multiagent
systems. easyABMS [13] provides an entire methodology to iteratively and vi-
sually develop models from which code for the Repast Simphony toolkit can
be generated. The reference meta model for easyABMS is again very detailed
making it possible to create models with minimal programming effort.

To summarize, we find that most platforms are either written in Java or are
not scalable for other reasons. Many are only used in academia and simply not
designed to run on a high performance computing cluster. Common challenges
relate to agent runtime representation and communication performance.
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1.2 Structure of the Paper

In Section 2 we discuss our past research (ATSim and MASSim), draw conclu-
sions and show how it led to the new idea of a highly scalable runtime platform
for simulation purposes. We also give a more detailed description of the main fea-
tures of MASeRaTi and how they are to be realized. The main part of this paper
is Section 3, where we describe in some detail our simulation platform, including
the system meta-model and the platform architecture. Section 4 presents a small
example on which we are testing our ideas and the scalability of the system as
compared to MASSim, a purely agent-based approach implemented in Java. We
conclude with Section 5 and give an outlook for the next steps to be taken.

2 Essential Concepts and Features of MASeRaTi

In this section, we first present our own research in developing the platforms
ATSim (Subsection 2.1) and MASSim (Subsection 2.2). We elaborate on lessons
learned and show how this resulted in the new idea of the scalable runtime
platform MASeRaTi (Subsection 2.3).

2.1 Traffic Simulation (ATSim)

Most models for simulating today’s traffic management policies and their ef-
fects are based on macroscopic physics-based paradigms, see e.g. [17]. These
approaches are highly scalable and have proven their effectiveness in practice.
However, they require the behaviour of traffic participants to be described in
simple physical equations, which is not necessarily the case when considering
urban traffic scenarios. Microscopic approaches have been successfully used for
freeway traffic flow modelling and control [27], which is usually a simpler prob-
lem than urban traffic flow modelling and control, due to less dynamics and
better predictability.

In [8], we presented the ATSim simulation architecture that integrates the
commercial traffic simulation framework AIMSuN with the multiagent program-
ming system JADE. AIMSuN is used to model and simulate traffic scenarios,
whereas JADE is used to implement the informational and motivational states
and the decisions of traffic participants (modelled as agents). Thus, all features of
AIMSuN (e.g. rich GUI, tools for data collection and data analysis) are available
in ATSim, while ATSim allows to simulate the overall behaviour of traffic, and
traffic objects can be modelled as agents with goals, plans, and communication
with others for local coordination and cooperation.

AIMSuN (Figure 1(a), left side) provides an API for external applications
to access its traffic objects via Python or C/C++ programming languages. But
the JADE-based MAS (right side of Figure 1(a)) is implemented in Java, which
leads to problems with scalability. To enable AIMSulN and the MAS to work
together in ATSim, we used CORBA as a middleware. Technically we imple-
mented a CORBA service for the MAS and an external application using the
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Fig. 1. Overview of the platforms

AIMSuN API to access the traffic objects simulated by AIMSuN. The CORBA
service allows our external application to interact with the MAS directly via ob-
ject references. For details on the integration architecture, we refer to [8]. Two
application scenarios were modelled and evaluated on top of ATSim: The simula-
tion of decentralized adaptive routing strategies, where vehicle agents learn local
routing models based on traffic information [12], and cooperative routing based
on vehicle group formation and platooning [16]. The overall system shown in
Figure 1(a) was developed in a larger research project and contained additional
components for realistic simulation of V2X communication (extending the OM-
NET++ simulator), and for formulating and deploying traffic control policies;
see [11].

Our evaluation of the ATSim platform using a mid-sized scenario (rush hour
traffic in Southern Hanover, one hour, approx. 30.000 routes, see [11]) showed
that while the agent-based modelling approach is intuitive and suitable, our
integration approach runs into scalability issues. Immediate causes identified
for this were the computationally expensive representation of agents as Java
threads in Jade and the XML-based inter-process communication between Jade
and the AIMSulN simulator. In addition, system development and debugging
proved difficult because two sets of models and runtime platforms needed to be
maintained and synchronised.

2.2 Multi-Agent Programming Contest (MAPC)

The MASSim platform [5,4] is used as a simulation framework for the Multi-
Agent Programming Contest (MAPC) [2](http://multiagentcontest.org).
Agents are running remotely on different machines and are communicating in
XML with the server over TCP/IP. The server computes the statistics, gen-
erates visual output and provides interfaces for the simulation data while the
simulation is running.

A drawback of dividing the simulation in such a way is the latency of
the network that can cause serious delays. Network communication becomes a
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bottleneck when scaling up; the slowest computer in the network is determining
the overall speed of the simulation. Running the simulation in one Java virtual
machine leads to a centralised approach that might impede an optimal run (in
terms of execution time) of a simulation.

Figure 1(b) depicts the basic components of the MASSim platform. MAS-
Sim will mainly serve us as a reference to compare scalability with MASeRaTi
right from the beginning (using the available scenarios). We want to ensure
that MASeRaTi outperforms MASSim in both computation time and number
of agents.

2.3 MASeRaTi: Challenges and Requirements

Our new simulation platform, MASeRaTi (http://tu-c.de/maserati), aims
at combining the versatility of an agent-based approach (the micro-view) with
the efficiency and scalability of dedicated simulation platforms (the macro-view).
We reconsider the three challenges mentioned in the abstract for using a purely
agent-based approach.

Scalability: Efficient scheduling of agent cycles is a difficult problem. In agent
platforms, usually each agent has her own thread. Using e.g. Java, these
threads are realised in the underlying operating system which puts an upper
limit of approximate 5000 agents to the system. These threads are handled
by the internal scheduler and are therefore not real parallel processes. In the
MASeRaTi architecture we develop a micro-kernel where agents truly run
in parallel. In this way, we reduce the overhead that comes with each thread
significantly. We believe that this allows for a much better scalability than
agent systems based on (any) programming language, where all processes are
handled by the (black-box) operating system. Additionally, many simulation
platforms use a verbose communication language (e.g., XML or FIPA-ACL)
for the inter-agent communication that becomes a bottleneck when scaling
up. We exploit the efficient synchronisation features of MPI instead.

Efficient Memory Management: Which data should when be fetched from
disk (cached, written)? Most agent platforms are based on Java or simi-
lar interpreter languages. When using them we have no control over the
prefetching or caching of data (agents need to access and reason about their
belief state): this is done by the runtime mechanism of the language. We do
not know in advance which available agent is active (random access), but
we might be able to learn so during the simulation and thereby optimise
the caching mechanism[1]. This is the reason why we are using the scripting
language Lua in the way explained in the next section.

Modelling Support: As of now, no generally accepted meta-model for
multiagent-based simulations exists. We would like to distinguish between
essential concepts and implementation details. What are the agents in the
simulation? Which agent features are important? We also want the mod-
elling framework to assist a simulation developer in creating her scenario
as well as hide the complexity of a parallelised simulation, while not being
restrictive in terms of modelling capability.
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So the main problem we are tackling is the following: How can we develop
a scalable simulation environment, where the individual agents can be suitably
programmed and where one can abstract away from specific features? We would
like to reason about the macro view (usually supported by dedicated simulation
tools) as well as zooming into the micro view when needed. The overhead for
supporting the microview should not challenge overall system scalability:

(1) If no agents are needed (no micro-view), the performance of MASeRaTi
should be as close to the legacy code (professional simulation tools) as pos-
sible.

(2) If no legacy code at all is used, MASeRaTi should still perform better or at
least comparable to most of the existing agent platforms (and it should have
similar functionality).

Due to general considerations (Amdahl’s law[18]) and the fact that not all pro-
cesses are completely parallelizable, it is not possible to achieve (1) perfectly (no
agents: performance of MASeRaTi equals performance of legacy code).

In addition to a scalable platform we also provide a meta-model for multiagent-
based simulations (MABS) in order to address the third challenge. The focus in
this paper is on the first two challenges. The meta-model serves as a general
starting point for the development of a MABS and ensures a certain structure
of a simulation that is needed by the underlying platform in order to facilitate
scalability. We have chosen Lua mainly because of its efficiency. It allows both
object-oriented and functional programming styles and is implemented in native
C. For details we refer to Section 3.2.

To conclude, we formulate these basic requirements for MASeRaTi that di-
rectly follow from the identified challenges: (1) the support of a macro and
micro view of a simulation, (2) a scalable and efficient infrastructure, and (3) a
multiagent-based simulation modelling framework that also supports non-agent
components.

3 Overview of the System

The overall architecture of our framework is inspired by concepts from game
development. The state of the art in developing massively multiplayer online
role-playing games (MMORPGS) consists in using a client-server architecture
where the clients are synchronised during game play [10] via a messaging system.
Well-known games include Blizzards’s World of Warcraft or EA’s SimCity 2013,
which supports multiplayer gaming with an “agent-based definition” in its own
Glassbox engine (http://andrewwillmott.com/talks/inside-glassbox).

While a game architecture is a good starting point for our purposes, of course
we cannot assume a server system with hundreds of hardware nodes, which is
powerful enough to handle a MMORPG system. Also, for developing purposes,
we need a system running on a single node (think of a common desktop PC).
The source code (i.e. scenario) developed there must then be transferable to a
HPC system, where the real simulation is executed.
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Our underlying agent-oriented meta-model uses the well established concept
of a BDI agent [28,31] in a variant inspired by the agent programming language
Jason [7] combined with the idea of an entity [3] that evolved out of experiences
gathered in the MAPC. However, the used concepts are completely exchangeable,
due to the flexibility of Lua, and developers are not forced to use them. In
our agent model, agents connect to these entities in the simulation world.
Agents consist of a body and a mind: While the mind (being responsible for
the deliberation cycle, the mental state etc.) does not have to be physically
grounded, the entity has to be located in an area of the simulation. Thus, an
entity is an object with attributes that an agent can control and that might be
influenced by the actions of other agents or the overall simulation. Intuitively,
an agent can be viewed as a puppet master that directs one (or more) entities.

3.1 Architecture
Our system is composed of three layers (Fig. 2):

Micro-Kernel (MK): The micro-kernel represents the technical backbone of
the system. It is written in the C++ programming language to get the neces-
sary performance and provides basic network parallelisation and scheduling
algorithms. The layer defines the system’s underlying structure containing
interfaces e.g. for plug-ins, serialisation, Prolog for knowledge representa-
tion and reasoning, or statistical accumulation. In short, this bottom layer
describes a meta-model for a generic parallel simulation (Section 3.2).

Agent-Model Layer (AML): The agent-model layer (Section 3.4) introduces
agent-oriented concepts (e.g. agents, environments, artifacts etc.) to the sys-
tem and thus describes a model of an agent-based simulation. It is imple-
mented in the scripting language Lua (http://www.lua.org/) [20] to ensure
maximum flexibility. Due to the multi-paradigm nature of Lua, pure object-
oriented concepts are not supported by default. That is, Lua uses only simple
data types and (meta-) tables. Fortunately, based on this, we can create an
object-oriented structure in Lua itself. This allows us to work in a uniform
fashion with UML models regarding the AML and the scenario layer.

Scenario Layer (SL): The third and topmost layer represents the instantia-
tion of the AML with a concrete scenario, e.g., a traffic setting or the MAPC
cow scenario (to be introduced later in Section 4). It is illustrated by dotted
boxes in Fig. 2 to emphasise the distinction from the AML layer. Section 4
provides an example of a concrete scenario fitting this layer.

An important aspect is the linkage between the three layers, and in particular
the connections between the micro-kernel and the AML (illustrated in Fig. 2)
which is discussed further in the following sections.

3.2 Micro-kernel

The micro-kernel represents the technical side of the system and is split up into
two main structures (Fig. 3(b)). The core part (below) contains the scheduler
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Fig.2. MASeRaTi system architecture: UML class diagram

algorithms, the core and memory management, the network and operating sys-
tem layers and the plug-in API together with a Prolog interpreter. Above these
core utilities, the Lua interpreter (top) is defined and each class structure on the
core can be bound to “Lua objects”. The Lua runtime is instantiated for each
process once, so there is no elaborated bootstrapping.

The choice of Lua was mainly motivated by the scaling structure and the
game developing viewpoint. Lua, a multi paradigm language, has been used for
game development for many years ([25]). An advantage of Lua is the small size
of its interpreter (around 100 kBytes) and the implementation in native C with
the enhancement to append its own data structures into the runtime interpreter
with the binding frameworks. The multiparadigm definition of Lua, especially
object-oriented and functional [20], can help us to create a flexible metamodel
for our simulation model. Lua can also be used with a just-in-time compiler.

The kernel defines basic data structures and algorithms (Fig. 3(a)):

Simulation: A global singleton simulation object, which stores all global op-
erations in the simulation e.g. creating agents or artifacts. It defines the
initialization of each simulation; the constructor of the Simulation object
must create the world object, agent objects, etc.

Object: Defines the basic structure of each object within the simulation. All
objects have got a UUID (Universally Unique Identifier), a statistical map
for evaluating statistical object data, the (pre-/post-)tick methods to run
the object and the running time data, which counts the CPU cycles during
computation (for optimisation).

Prolog: An interface for using Prolog calls within the simulation.

Each class is derived from the Lua Binding class, so the objects will be mapped
into the AML.

The mapping between the micro-kernel and the AML is defined using a lan-
guage binding concept. The Lua interpreter is written in native C. Based on this
structure, a C function can be “pushed” into the Lua runtime. The function will



90 T. Ahlbrecht et al.

! Micro-kernel (MK

| N i ‘ Prolog Synchronized Object
i [currentTick Object publish
| | SimulationTicks preTransfer
! [ numberofCores postTransfer s
| | currentCorelD serialize 2
i | numberOfThreads deserialize S
| | currentThreadiD \V4
|| createObject( Name, Count ) Object .
i | releaseObject( Object ID / Object ) Statistic Map Data-Type
| uuiD
[>| preTick
tick
postTick foad
V4 RunningTime store
] h
gelClassName |
getMethods !
]

send Database'7)
receive Filesystem

setLostProbabili

(a) Micro-kernel: UML class diagram

Lua Runtime
Lua Interpreter I Lua Binding
Scheduler Plugin API
Core & Memory Management | Prolog
Network MPI Layer | OS Layer

(b) Architecture

Fig. 3. Micro-kernel data model (a) and architecture (b)

be stored into a global Lua table; the underlying C function is used with a script
function call.

Our concept defines the micro-kernel in UML; instantiated C++ objects
are mapped into the runtime environment by a Lua binding framework
(e.g. Lua Bridge (https://github.com/vinniefalco/LuaBridge) or Luabind
(http://wuw.rasterbar.com/products/luabind.html)). Classes and objects
in Lua are not completely separate things, as a class is a table with anonymous
functions and properties. If a Lua script creates an object, it calls the construc-
tor, which is defined by a meta-table function, the underlying C++ object will
be also created and allocated on the heap. The destructor call to an object de-
terministically removes the Lua object and its corresponding C++ object. All
C++ objects are heap-allocated and encapsulated by a “smart pointer”, as this
helps avoiding memory leaks. This concept allows consistent binding between
the different programming languages and the layer architecture.

Each Object comes from the Communication interface, which allows an object
to send any structured data to another object. Three subclasses inherit from the
central Object. This structure is necessary for creating a distributed and scalable
platform with optimisation possibility:

Synchronised Object: An object of this type is synchronised over all instances
of the micro-kernel (thread and core synchronised). It exists also over all
instances and needs a blocking communication. In the agent programming
paradigm the world must be synchronised.
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Non-synchronised Object: This object exists only on one instance of the
micro-kernel and can be transferred between different instances of the micro
kernel. It should be used e.g. for agents and norms, because the evaluation
is independent from other objects. Using the “execution time” of the tick
(time complexity), we can group such objects together.

Data-Type: This object represents a data structure, e.g. a multigraph for the
traffic scenario with routing algorithms (Dijkstra, A* and D*). The data
types will be pushed into the micro-kernel with the plug-in API. The Access-
Type creates the connection to the storing devices.

Synchronised and non-synchronized objects are implemented via Boost. MPI?
structure, and the Access-Type defines the interface to a database or the filesys-
tem for storing / loading object data. The access via the data interface will
be defined by the Boost.Serialization library?, so we can use a generic inter-
face. Based on the Data-Type we can use the defined plug-in API for math
datatypes, which allows e.g. to create a (multi-) graph interface for our traffic
scenario, based on Boost-Graph?. A plug-in is defined in a two-layer structure
(Fig. 4). The plug-in is written in C++ (the algorithm part) and based on
the Lua binding structure mapped into the higher layers (the function invoking
part). This two layer strucutre enables us to use a differential equation solver
like Odelnt (http://www.odeint.com/) to simulate the macroscopic view in the
simulation (e.g. a highway traffic model can be simulated with a differential
equation while employing a microscopic agent-based view for an urban traffic
area. The “glue” between these two types can be defined by a “sink / source
data-type”).

The plug-in interface is based on a native C implementation to avoid problems
with name managing in the compiler and linker definition. Plug-ins are stored
in a dynamic link library; they are loaded upon start of the kernel.

Design Tradeoffs. Next, we discuss alternatives and trade-offs when designing
a runtime system to take a deeper look into that of MASeRaTi. During runtime
we propose to ask which objects need to be defined as synchronised or non-
synchronised datasets. The implementation of the FIPA-ACL definition, e.g., is
a blocking operation, because we can update the object only after we have pro-
cessed the input data, so each external data input creates a slower performance.

2 http://boost.org/doc/libs/release/libs/
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With the implementation we create additional workload, because parser, lexer
and interpreter must also process the data.

One MASeRaTi runtime instance implements a thread-pool (see
Subsection 3.3) which processes all objects. Scalability is obtained by looking
at local instances and taking the global view over all instances into account.

3.3 Optimisation
In [32], Wooldridge describes some pitfalls in agent developing:

1. “You forget that you are developing multithreaded software”.
2. “Your design does not exploit concurrency”.
3. “You have too few agents”.

As discussed in Section 3.2 there are two disjoint sets of objects in our simula-
tion: non-synchronised and synchronised objects. Taking the above three state-
ments seriously, our aim is to design a scalable, multi-threaded and multi-core
system which can handle a large number of agents that act concurrently. With
the technical restrictions (memory and number of threads), we need another
approach, which is inspired by the technical view of an MMORPG:

— We create a scheduler on its own to handle the agents. It is based on a thread
pool.

— We measure the average of the calculation time of each agent when it is
active (counting the CPU cycles).

— Based on this result, we optimise the number of agents between the micro-
kernels with a thread-/core-stealing algorithm (in future work we aim to
describe this with a stochastic process).

After having defined one discrete simulation step, we denote this step “tick” and
the process definition of one step is as follows (Figure 5):

run simulation step

foreach simulation step
foreach synchronized object
synchronize object
call tick
wait for all threads are finished

|
| el
| [synchfonized
object|exists]

synchronize object
call tick

‘:\:;':::::::::::::::::::::::::: / fo reac h non—s y nc h ron 1 zZe d O b J ect

ol start object time measurement
R ik call tick
stop object time measurement
M wait for all threads are finished
|
3 Fig. 5. Simulation tick
|
L == measuement J
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[non syn¢hronized
object exist]

start time
measurement

[el$e] \

call tick
stop time
measurement

steal unprocessed
objects from other
cores

add stolen objects
to current list

foreach unprocessed objects on each
core

foreach local non—sync. object
start time measurement
call tick
stop time measurement

steal unprocessed non—sync.
objects from other cores

push the stolen objects into the
local working list

wait for all

Fig. 6. Stealing process on an instance
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Each simulation object owns a tick method, which is called by the scheduler
(pre/post tick calls are not shown here). There exist only two global blocking
operations for synchronisation over all kernel instances. Each micro-kernel pro-
cess runs the (global) synchronised objects first. After finishing, the simulation
environment is synchronised on each kernel. In the next step, the kernel runs
the non-synchronised objects. This second loop can be run in a fast way, e.g.
the agents do nothing, so the micro-kernel idles, then the while-loop sends “steal
requests” and gets objects from the other instances (Figure 6).

Figure 7 shows the stealing process (bullets are the agents, with different
calculation times) over all running MASeRaTi instances

Fig. 7. Stealing process over all instances
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Fig. 8. Agent-model layer: UML class diagram

This idea allows the processing of a large number of agents with different
(complex) plans and belief bases, because we can define the optimisation process
with different targets and methods. The simulation consists of a finite number
of discrete steps and objects, so we can describe the process with a discrete
stochastic approach.

3.4 Agent-Model Layer

The agent-model layer (AML) (depicted in Fig. 8) defines a meta-model of an
agent-based simulation. It provides the basic structure and serves as a starting
point for an implementation. We start by explaining the structure, followed by
the overall system behaviour; we end with a general description of the develop-
ment process. Realization details (pseudo code) can be found in the appendix of

.

Structure. The structure of the meta-model is heavily influenced by the goal
of creating a simulation which can be distributed over several nodes or cores.
In such a parallelised multiagent simulation, the developer has to determine for
each object whether it has to be present on each and every core or if it is sufficient
to have the object running independently on a single core only. We prefer the
latter, since that implies less execution time. In contrast, an object like a global
artifact has to be accessible by virtually any other object. Thus, it must be made
available and therefore executed on each core.

The goal of the AML is to simplify the development of parallel multiagent
simulations by defining a number of abstract objects or object categories that
normally have to be synchronised and those that can usually run independently.
Nevertheless, a developer can easily modify the AML to her needs, in particular
redefining the synchronicity of objects.

Figure 8 illustrates the structure of the AML. Mainly, a simulation consists of
a singleton Simulation, the non-synchronised object types Agent, Norm, and the
synchronised classes Area, Artifact, ObjectGroup. While for the Simulation
only one instance is allowed, the other objects can be instantiated several times.
All instantiated objects are being executed in a step-based fashion and therefore
implement a tick method that is called exactly once per simulation cycle.
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Simulation: The simulation class in the AML is the Lua-based counterpart
to the simulation class in the MK. It is responsible for the creation, initial-
isation and deletion of objects. Thus, it is in full control over the simulation.

Agent: As we aim to simulate as many agents as possible we have to ensure
that this part of the model can run independently of the rest. Therefore
we define two kinds of agents as non-synchronised objects: a generic agent
based on [31] and a more sophisticated BDI agent [28] inspired by Jason [7].
The agent interacts with the environment through entities [3]. In general
an agent can have random access to the simulation world. Therefore, we
can only encapsulate some parts of the agent, namely the internal actions
and functions like reasoning. But the effects on the environment have to be
synchronised to make them known to all other objects. This is the reason
for splitting the agent into two parts: the mind (the agent) and the body
(the entity). The generic agent has three methods that are invoked in the
following order: (1) perceive, (2) think, and (3) act. Inside these methods,
those of the respective entity can be called directly while communication
between objects has to be realised by a synchronised object (for instance by
means of an artifact).

BDI Agent: The BDI agent is a little more sophisticated and consists of a
Belief Base representing the current world view, a set of Events describ-
ing changes in the mental state, a set of plans Plans, and a set of Intentions
describing the currently executed plans. Fig. 9 shows an overview of the agent
cycle. Black (continuous) lines represent the activity flow while red (dashed)
lines show the data flow. The agent cycle is executed from within the agent’s
tick method. In each tick, the agent first perceives the environment and
checks for new messages. Based on this information, the belief base is up-
dated and an event for each update is generated. From the set of events one
particular event is selected and a plan that matches this event will be cho-
sen and instantiated. During a simulation run this might result in multiple
instantiated plans at the same time and allows the agent to pursue more
than one goal in parallel. We decided to limit the agent to the execution of
one external action (that affects the environment) but allow several internal
actions per simulation tick. The next method selects the next action of an
instantiated plan (i.e. the next action of an intention). In contrast to Jason,
the agent cycle does not stop here if it was an internal action or a message,
i.e., an action that does not affect the environment. Thus, the agent selects
the next event (if possible) or next intention (if possible) until (1) it reaches
a global timeout (set by the simulation) or (2) an external action is executed
that forces a synchronisation, or (3) if the set of events and intentions are
both empty.

Artifact: For all passive objects of a simulation we use the artifact method-
ology defined in [6]. Basically, each artifact has a type, a manual in Prolog
(a description of the possible actions associated with it) and a use method
that allows an agent to execute a particular action, i.e. make use of the ar-
tifact. Due to the generality of this approach the developer decides whether
the actions are known by the agents beforehand or not. Additionally, since
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For each Update an Event

Belief Base Events

Percepts B
update ' Events not empty select
Cpercewe)%(ched( MSHBenef Basej Event

i Plans  f---2 »| select Plan }---33 Intentions
- Temporary Beliefs  |--------!
Events empty
Intentions empty

Intentions not empt% ............
external Action .
act

internal Action L
execute
send Message \f \—
Message

‘ Messages

select
Action

Fig. 9. BDI agent cycle: Activity diagram and data flow. Activity is red/dashed and
data flow is black/solid.

the artifact is defined as a synchronous object, one can consider a variation
of this object that implements a method for each of its offered capabilities
and allows for direct method invocation.

Area: So far, we defined the main actors of a simulation but how are they
connected among each other? An artifact does not have to be located inside
a real simulation, i.e., it does not need a physical position (in contrast,
most objects do need one). Therefore, we define an area as a logical or
physical space (similar to the term locality introduced by [19]). There can
be several areas, subareas, and overlapping areas. In the general case, agents
can perform a random access on the environment, so the areas have to be
synchronised and thus be available on all cores of the simulation platform.
Within an area, we define some basic data structures and algorithms for
path finding, etc. The most important issue, the connection of the non-
synchronised agents with the synchronised areas is realised by the use of
entities. Agents perceive the environment and execute actions by using the
entities’ sensors and effectors.

Entity: An entity can be seen as the physical body of an agent located inside
an area. An agent can register to it, get the sensor data, and execute actions
that possibly change the environment. The entity has some effectors and
sensors that are easily replaceable by the simulation developer. Since such
an entity represents the physical body of an agent and is meant to connect
an agent with the environment, it has to be synchronised over all cores.

Institutions and Norms: For now, we provided a rudimentary model as a
placeholder for future extension: An institution is an object that checks for
norm violations and compliance. It operates as a monitor and is also respon-
sible for sanctioning. But a developer can also decide to separate these two
tasks. For the future, we are planning to focus only on three kinds of norms:
obligations, permissions, and prohibitions. Additionally, we will focus on
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exogenous norms (events that occur in at least one area) and not on rules
that affect the agent’s mind, plans etc.

ObjectGroup: Finally, an ObjectGroup — as the name implies — defines a group
of objects. It can be used to group agents, artifacts or other objects. Method
calls on an ObjectGroup are forwarded to all group members, i.e., with a
single method call, all corresponding methods (with the same type signature)
of the group members are invoked. In order to reduce overhead and to avoid
circular dependencies we only allow a flat list of members at the moment.
However, if a hierarchy is needed, it can be easily implemented.

Agent-Model Layer Behaviour. So how does the overall behaviour look?
Initially the simulation object creates a number of agents, areas, object groups,
norms, etc., and changes the global properties in the three phases: preTick,
tick, and postTick. It can delete and create new agents during runtime. But if
the simulation developer decides to allow an agent to create another agent, this
is consistent with the meta-model. The agent cycles are executed in each tick
method. Also, the main procedures of artifacts, norms and areas are executed in
this phase. The preTick is intended to be used as a preparation phase and the
postTick phase for cleaning up.

Design Tradeoffs. As we have seen, the AML tries to facilitate the modelling
of a parallel multiagent simulation by helping the developer deciding whether
objects have to be synchronised or not. Of course, our classification might not
fit each and every possible use case. But because of the flexibility of this layer,
it is possible to easily adapt the AML to the specific domain.

Also, the layer cannot provide all of the concepts related to the agent-oriented
paradigm. We tried to identify those which are of utmost importance and thus
form something like the least common denominator of all agent-based simula-
tions. If further concepts are needed, they can be easily added on demand or
might be readily available if already implemented for another use case.

We mentioned that our BDI agent is restricted to perform at most one external
action per simulation cycle, while it is allowed to perfom internal actions until
it runs out of time. It will be easy to change this behaviour if it proves to be
disadvantageous both in terms of agent or platform perfomance.

We provided a BDI agent in order to (1) show how to transfer an agent concept
to the platform at this level of implementation and (2) ensure that the platform
is easily usable if no specific kind of agent is needed. While our platform is open
to use any agent concepts, it does not have to.

This section contains some heavy technical machinery and describes even
some low level features that are usually not mentioned. But our main aim is to
ensure scalability in an agent-based simulation system. In order to achieve that,
we came up with some ideas (using Lua and how to combine it with BDI-like
agents) that can only be understood and appreciated on the technical level that
we have introduced in this section.
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4 Evaluation: Cow Scenario

Scalability is an important requirement of the platform and therefore has to be
evaluated early on. For that reason we chose the cow scenario from the MAPC
as a first simulation that is realistic enough in the sense that it enforces the
cooperation and coordination of agents. As it is already implemented for the
MASSim platform, it can easily serve as a first benchmark.

In addition, we can test the suitability of the proposed meta-model and test
a first implementation. Furthermore, the cow scenario contains already some
elements of more complex scenarios (as in traffic simulation).

The cow scenario was used in MAPC from 2008 to 2010. The task for the agents
is to herd cows to a corral. The simulated environment contains two corrals—
one for each team—which serve as locations where cows should be directed to.
It also contains fences that can be opened using switches. Agents only have a
local view of their environment and can therefore only perceive the contents of
the cells in a fixed vicinity around them. A screenshot of the visualisation as
well as a short description of the scenario properties are depicted in Fig. 10. For
a detailed description we refer to [4]. Using the proposed meta-model AML we
can now implement the cow scenario in the following way.?

Fig. 11 shows how we derived the cow scenario classes from appropriate su-
perclasses of the agent-model layer. The grid of the environment is implemented
as an Area. Obstacles are defined by a matrix that blocks certain cells. The two
corrals are subareas located inside the main area. Fences will become Artifacts.
Similarly, we define a switch as an artifact that controls and changes the state
(opened or closed) of a fence when getting activated. The cows are realised by a
reactive agent that perceives the local environment and reacts upon it. For such
a reactive agent the basic Agent definition together with an entity represent-
ing the cow are sufficient, while for the cowboy agents we need a more complex
behaviour that facilitates coordination and cooperation. For this reason we use
the BDIAgent (recall Fig. 9) class and create an entity for each cowboy agent.
Furthermore, for each entity we create a simple MoveEffector that can be used
by the entities to alter their position and a ProximitySensor providing the en-
tities with their percepts. Additionally, we have to define the two teams by using
the notion of an ObjectGroup. Finally, the simulation creates all agents and
entities, assigns them to the two teams and creates the simulation world.

To conclude, this (very preliminary) evaluation shows that it is possible to
express each aspect of the scenario using the predefined classes without the
need to derive further ones from the synchronised or non-synchronised objects.
(Nonetheless, doing so still remains a possibility). Regarding the suitability of
Lua, it is an extremely flexible language that comes at the cost of a certain
degree of usability: any newcomer needs some time to master it. But even then,
having appropriate tools and methodologies that support the modelling process
is a necessity to ensure an improved workflow and reduced error-proneness.

3 The corresponding Lua code can be found in the appendix of [1].
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Fig. 10. The environment is a grid-like world. Agents (red (at top) and blue (at the
bottom) circles) are steered by participants and can move between adjacent cells. Ob-
stacles (green circles) block cells. Cows (brown circles) are steered by a flocking al-
gorithm. Cows form herds on free areas, keeping distance to obstacles. If an agent
approaches, cows get frightened and flee. Fences (x-shapes) can be opened by letting
an agent stand on a reachable cell adjacent to the button (yellow rectangles). An agent
cannot open a fence and then definitely go through it. Instead it needs help from an
ally. Cows have to be pushed into the corrals (red and blue rectangles).

Agent-model layer (excerpt)

[ ion | [_Aea |

[

Artefact |

[ Agent ]

l

l

P\
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[c ion | [ Cowword || [ _Fence || [ CowAgent ] [ CowkEntity | | [ | [MoveEffector Team
l /| ? l | | l l |
Corral Switch [CowboyAgent ] [c ] ?

Fig. 11. Cow scenario: UML class diagram
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5 Conclusion and Outlook

In this paper, we described ongoing work towards a distributed runtime plat-
form for multiagent simulation. The main contributions of this paper are: (1) an
analysis of the state of the art in agent-based simulation platforms, leading to a
set of requirements to be imposed on a simulation platform, focusing on runtime
scalability and efficient memory management; (2) the proposal of a novel ar-
chitecture and design of the MASeRaTi simulation platform, bringing together
a robust and highly efficient agent kernel (written in Lua) with a BDI agent
interpreter including multiagent concepts such as communication and computa-
tional norms; and (3) an initial proof of concept realization featuring a simple
application scenario.

The work presented in this paper provides the baseline for further research
during which the MASeRaTi system will be extended and improved. Issues such
as optimisation of the scheduler and the caching mechanisms sketched in the
appendix of [1] will be explored in more detail. Also, systematic experimental
evaluation will be carried out using more sophisticated and much larger traffic
simulation scenarios. As the ATSim platform introduced in Section 2.1 can deal
with a few thousand (vehicle) agents, we aim MASeRaTi to scale up to one
million agents of comparable complexity (corresponding to the micro-simulation
of multimodal traffic in a large city, including public transport, cars, pedestrians,
city logistics, and infrastructure).

Simulation results obtained this way can be compared to the performance
of other simulation frameworks using benchmark data; scalability can also be
described by varying certain parameters (e.g. number / complexity of agents)
and investigating the resulting degradation of performance. An idea for eval-
uating our optimisation approach (and in particular the adaptive mechanism
for allocating agents to nodes of the runtime system) is the following: By mod-
elling agents’ preferences, capabilities, and interactions, a certain structure is
imposed on the resulting MAS. We intend to evaluate the degree to which this
structure can be mapped to the allocation of agents to the nodes of the dis-
tributed runtime system, by a (domain-independent!) entropy measure. We are
also planning to consider different communication technologies like Bittorrent
(http://www.libtorrent.org/) for the inter-object communication.

Given the three objectives in the abstract, our focus in this paper has been
on the first two: scalability and efficient memory management, whereas we only
touched the third, modelling. Here, one avenue of research is to develop appro-
priate modelling tools to support the MASeRaTi architecture. Finally, method-
ologies for simulation development will be explored, starting from established
methodologies such as GATA, Tropos, or ASPECS.
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