
dCIM: An Agent-Based Distributed Common
Information Model for Teams of Mobile Robots

Maksims Fiosins1, Björn Zeise2, Björn Gernert3,
Sebastian Schildt3, Paul Fritsche2, Ramin Safar Manesh1,

Jörg P. Müller1, Bernardo Wagner2, and Lars Wolf3

1 Department of Informatics
Technische Universität Clausthal, Clausthal, Germany

[maksims.fiosins|rsm13|joerg.mueller]@tu-clausthal.de

2 Institute for Systems Engineering
Leibniz Universität Hannover, Hannover, Germany
[zeise|fritsche|wagner]@rts.uni-hannover.de

3 Institute for Operating Systems and Computer Networks
Technische Universität Braunschweig, Braunschweig, Germany

[gernert|schildt|wolf]@ibr.cs.tu-bs.de

Abstract. Mobile robots are used in a variety of applications including
manufacturing, logistics and disaster recovery. In these domains, there is
often a requirement to act autonomously, but cooperatively. In this case,
autonomous agents and multi-agent systems are useful approaches to
represent and execute individual robot decision-making as well as robot
coordination and cooperation. A central problem in multi-robot systems
is how to store and organize the knowledge individual robots acquire from
their sensors or from other robots, and to create an adequate common
representation of the environment (including robots’ beliefs, goals, and
commitments). In this paper, we present the architecture of a Distributed
Common Information Model (dCIM), which can be used as a knowledge
base for intelligent agents controlling mobile robots. We describe the con-
cept and use of the so-called Information Integration Interface (3I); also
the architecture covers methods for reliable communication. Addition-
ally, we depict and validate the advantages of the proposed architecture
using the example of high-level plan adaption. Finally, we discuss open
research challenges to be faced in the further development of dCIM.

1 Introduction

Over the past few years, mobile service robots have been widely used in different
applications, such as logistics [6], manufacturing processes [5], or household [12].
Although in some cases robots can be controlled by operators, the requirement
to act autonomously without direct human control is common for these domains.
Another important requirement for robots is to operate in teams, which should



2 Fiosins et al.

form and coordinate autonomously. Thus, there is a trend towards using teams
of cooperating robots, as exemplified by KIVA Systems’ multi-robot fulfilment
system4. Another example is the coordinated exploration of large-scale territories
by multiple robots [9][13]. Some of the advantages of multi-robot systems are:

– broader sensor coverage and faster information acquisition,

– decentralized/redundant information storage,

– gain in reliability and robustness towards failure, and

– high flexibility in task execution.

The requirements of the above-mentioned applications imply a space-and-
time-variant environment model as presented in [7]. In analogy to the human
memory, the memory in this environment model is organized in three partitions:
sensory memory, short-term memory, and long-term memory. While the raw
sensor information is stored in the sensory memory, the short-term memory
holds (possibly abstracted) environment information deemed relevant for the
robot. Information that is further classified as useful is transferred (and further
abstracted) into the long-term memory.

Besides the property of space and time variance, in robotic applications often
there is the requirement to model, process and represent arbitrary information.
In this field, notable work has been done in the RoboEarth5 project, in which
the KnowRob knowledge processing system [20] has been developed. KnowRob,
which is based on ontologies, offers some relevant design considerations regard-
ing knowledge processing systems. Important considerations mentioned are that
those systems must operate effectively and efficiently, must provide the robot
with self-knowledge, and need to provide methods for automatically acquiring
and integrating information from different (sensor) sources. Although dCIM will
not be based on ontologies, all of these considerations will be taken into account
in the development process.

Lee [8] distinguishes three main methods for designing information models.
First, there is a relational approach, where entities are described and related
through attributes and stored in a relational database. Second, there is a func-
tional approach, which represents information flow though a database network.
The third approach is object-oriented, which extends the relational approach
by encapsulation and modeling of behaviour. The approach presented in this
work can be classified as functional, because we developed our architecture
information-centered, considering the information evolution from raw data to
high abstracted knowledge.

In [4], we presented an approach to autonomous team-based exploration in
disaster scenarios. We demonstrated the feasibility of robot teams that perform
reconnaissance missions enabling them to share information and to perform dy-
namic task scheduling. We introduced an architecture called dCIM, on whose
detailed description the focus of the presented work lies.

4 http://www.kivasystems.com/
5 http://roboearth.org/



dCIM: An Agent-Based Distributed Common Information Model 3

In the context of multi-robot systems, the Multi-Agent System (MAS) para-
digm has been successfully applied [11][21][14]. On the one hand, MAS provides
an intuitive conceptual model and algorithms for multi-robot systems, because
it supports (i) the notion of autonomy including restricted local states, local
preferences, motivations, and capabilities, (ii) the notion of communication and
coordination between autonomous entities; (iii) a unified view of human and
automated agents (e.g. mixed human-robot teams); and (iv) models and mech-
anisms that allow an integrated study of the relationship between individual
and collective reasoning and decision-making, including multi-agent planning,
game-theoretic models, auctions and market mechanisms, and models of com-
putational social choice (see e.g. [2]). On the other hand, mobile robots provide
agents with a physical body, allowing them to observe the environment using
physical sensors and to manipulate it using physical actuators.

Robots collect information using different types of sensors. Based on this
information and tasks allocated to the robots, they create plans for task exe-
cution, which are sequences of actions (commands to actuators). However, they
only have a partial and noisy view of the environment. Besides, they often are
unable to perform all the tasks by themselves. Therefore, it is beneficial to work
in teams.

In teams, the robots are able to coordinate their behavior. This can be done in
several ways and on different levels of abstraction: sharing information about the
environment, exchanging tasks, coordinating task execution sequence and plans
of task execution, coordinating single actions etc. Usually, changes on one of these
possible levels requires also changes on other ones. Typically, modifications of
information in lower levels of abstraction lead to changes at higher abstraction
levels.

In this paper, we present a conceptual information model for teams of mo-
bile robots, which we call dCIM. The architecture describes generic interfaces,
an approach to data structure representation, and algorithms allowing coop-
eration between robots. There are two main contributions in this work: First,
a general system layout including a description for information organization is
presented. The system is designed to run standalone on every robot. The robots
have the ability to exchange information, as long as communication between
them is available. The second contribution is the so-called 3I which represents
the foundation to deal with a variety of problems in information fusion, such
as information synchronization, information tracking and information incest. To
show the benefits in 3I some experiments are made for evaluation. At the end of
this paper, upcoming challenges related to dCIM are outlined.

2 dCIM Architecture

A major problem in designing intelligent agents is the construction of an ad-
equate information model, which supports storing information about the envi-
ronment, processing it and providing the decision making module with sufficient
information for efficient behavior. Another important aspect is the information



4 Fiosins et al.

exchange between the agents, which allows the agents to have more exact view
of the environment as well as to coordinate their behavior.

There are some attempts to describe generic information models for intelli-
gent agents. For example, [3] describes a generic model, which supports schedul-
ing, resource allocation and actions based on dynamic temporal infprmation.
However, this model is mostly oriented to master-slave robot architectures. An-
other approach is the Agent Academy architecture [19], a generic platform for
design and deployment of intelligent agents, which combines the information
storage, information processing and agent training. However, the Agent Academy
architecture is mostly oriented to the local models of agents, not on information
exchange.

In the robotics domain, there are specific requirements for information mod-
els, which are not usually covered by generic architectures. The first one is the
fact that one of the central data structures in robotics is a map of the environ-
ment. The map can be more or less detailed depending on the quality of sensors.
The amount of raw data from sensors is comparatively big, which makes its
processing and conversion to more compact but less detailed formats necessary.
For that reason it is sensible to consider a hierarchical information model struc-
ture. Due to the fact that maps of the environment can be very dynamic and
change over time, a layer-based approach is applicable. The second specific re-
quirement is the need of information exchange and cooperation. In this context,
the information exchange on all levels of the information model may be neces-
sary. Therefore, the development of a homogeneous but customizable information
model, which may operate on heterogeneous robots, is needed. Additionally to
these two requirements, the information acquired by sensors and received from
other robots is highly dynamic, partial and uncertain, which should be taken
into account in the design of the model.

dCIM is the distributed knowledge base of the overall robotic system. Ev-
ery robot maintains its own dCIM-instance. One single dCIM-instance offers a
best-effort global world view to only the robot itself, while the combination of
all instances represents the best global view of the whole system. With today
methods of information fusion, processing information of one robot’s sensors
is a well-studied problem. The difficulty in the presented approach lies in the
arbitrary number of robots whose information shall be merged.

When designing the dCIM layout and information model, the following main
questions need to be answered:

– How does the dCIM architecture look like (Section 2.1)?
– What are the principles in storing information of a robot in a dCIM-instance

(Section 2.2)?
– What kind of information should be exchanged between the robots and how

to deal with conflicts in the information when two robots communicate (Sec-
tion 2.3)?

– How to avoid faulty communication between robots (Section 2.4)?
– How is information processed in a dCIM-instance and how are the individ-

ual robots’ plans adapted depending on updated dCIM information (Sec-
tion 2.5)?



dCIM: An Agent-Based Distributed Common Information Model 5

Global
Operator

DCIM-Instance of Robot A

In
creasin

g
 D

eg
ree

of A
b
straction

D
ata Flow

Robot A Robot B

Robot C

3I

3I

Fusion/
Merging/

Rejecting/
...

Algorithms
that interpret
and abstract

Data

12

3

Information
Integration
Interface

(3I)

Communication to
other Robots only

through Information
Integration Interface

Sensors
of Robot A

Arbitrary Number
of Robots

Sensor Data
Layer

Highly
Abstracted
Task Layer

Frag. 1
Frag. 2

...

Frag. 2

Frag. 1

...

Frag. 2

Frag. 1

...

Fig. 1: dCIM scheme

In the following sections, we will provide an overview to dCIM. Accordingly,
we will first present the general system layout. After that, an approach for cre-
ating information models as well as the communication interface called 3I will
be explained.

2.1 General Layout

The main focus in the development of dCIM lies on decentralization. For that
purpose, there is a standalone dCIM-instance on every single robot. dCIM can
be seen as the knowledge base of the robotic system. The general layout of dCIM
is depicted in Figure 1. A dCIM-instance consists of three main parts: (1) the
communication interface that incorporates information from other robots into
the own robot’s information storage, (2) the layers for storing information and
(3) several algorithms that interpret and abstract information.

The information of a robot is composed of two different kinds of resources.
First of all, a dCIM-instance relies on its own robot’s sensor inputs. In large
environments explored by only a few robots it is possible that there is only a
small number of rendezvous (the robots that meet and communicate with each
other). For that reason, the own sensor inputs of a robot are the primary source
of information for the respective dCIM-instance. As can be seen from the scheme
there is a second source of information for a dCIM-instance: a robot can receive
external information from an arbitrary number of other robots in communication
range. This way, a robot is able to gather information in addition to its own



6 Fiosins et al.

sensor data. To exchange information, the robots use the so-called 3I. This is
a communication interface that operates on every single abstraction layer and
is the only way to exchange information between the robots and the (human)
operator. In this manner, it is possible to approach information fusion problems
such as information incest. 3I will be explained in detail in Section 2.3.

The information storage in a dCIM-instance divides into several layers. These
layers differ in their level of abstraction, which means that there will be at
least two layers – one with raw sensor data and one with highly abstracted
and interpreted information. Between those layers there can be as many other
layers as necessary. Since the information layers can be defined very individually,
nearly every type of information can be stored in a dCIM-instance. Since dCIM
is designed to be the knowledge base for mobile robots, the information stored
will be of a kind that is useful for robot navigation, i.e. odometry and laser scan
data, occupancy grid maps or trajectories for path planning. The information
flow between the different layers is unidirectional (from low to high abstraction
level).

In order to facilitate information collection and distribution, we split the
organization structure into two dimensions. The first dimension is represented
by the use of different information layers. Each layer of information supports a
specified level of abstraction; the information of the next level can be inferred
from the previous one using corresponding algorithms. The second dimension is
represented by the use of information fragments. On each layer the information
is divided into fragments, which are usually predefined at design time. They
represent spatial or logical parts of the information, which are independent from
each other.

The information flow in the storage layers of a dCIM-instance is accomplished
by algorithms that interpret and abstract information. The input information
of these algorithms is always of a lower abstraction level than the output in-
formation. One typical example of such an algorithm would be a Simultaneous
Localization and Mapping (SLAM) algorithm with odometry and laser scan data
as inputs and e.g. occupancy grid maps as output.

The decentralized nature of information requires a corresponding decentral-
ized organization in dCIM. In multi-agent and robotic research, attention is
usually paid to hierarchical organization of actions. In our approach, we will
concentrate on hierarchical organization of information, and couple it with hier-
archical organization of actions.

Formally, the hierarchical organization of information can be defined as fol-
lows. Let A = {a1, a2, . . . , aN} be a set of N agents. Each agent aj owns a dataset
Dj , which represents information that is currently available to it. Dj includes
all information available to aj , such as maps of the environment, locations of
objects and other agents etc., including all layers and fragments.

Let Dj,l be the information of the agent aj on l-th level of hierarchy. We
suppose that it consists of fragments, and define Dj,l,q the q-th fragment of the
information on l-th layer.



dCIM: An Agent-Based Distributed Common Information Model 7

As we already mentioned, the information on the next layer can be obtained
from the previous one using interpreting algorithms. Additionally, the fragments
on higher abstracted layers depend only on the part of fragments on the previous
layer. This provides us with a networked structure for information organization.
Let Ij,l,q be a set of fragments on the l−1-th layer, on which the fragment Dj,l,q

depends. Let U j,l,q be a function, which allows to calculate the fragment of the
next layer from the previous one. Then the update of the layer information looks
like

Dj,l,q = U j,l,q(Dj,l−1,q′ |Dj,l−1,q′ ∈ Ij,l,q).

As we already mentioned, each robot is equipped with sensors, allowing it to
sense the environment. Let us denote Oj = {oj1, o

j
2, . . .} an set of observations

about fragments 1, 2, . . . , received by robot j. Note that Oj is a set of low-level,
raw observations which will later be transformed to highly abstract knowledge
of the robot.

When a robot receives an observation Oj , it updates its fragments on the
lowest level Dj,1. For this purpose, there is an update function U j,1,q, which
updates information depending on a new observation Oj :

Dj,1,q = U j,1,q(Dj,1,q, ojq).

One example of such an interpretation and abstraction method is SLAM,
which produces grid maps and information about the robot’s position out of raw
sensor data. However, U j,1,q should take into account trustworthiness of new
information Oj . For this purpose, the old information and the new observation
are usually processed by a trust function, which determines possible conflicts:

U j,1,q(Dj,1,q, ojq) = MLEj,q(TRj,q(Dj,1,q, ojq).

The update function U(·) can have different forms and is defined at design
time. If some redundant information is stored at lower layer, the next layers can
be estimated using hierarchical resampling [1].

2.2 Data Structure

As mentioned before, in dCIM information is stored in several layers. The pur-
pose of these layers is to store and organize the information. The composition
of all the layers of a dCIM-instance is therefore a information representation in
the sense of a replacement of the original environment (see [18, p. 524]). There
are many different ways to organize information in a data storage system. It
is common to use one of the Knowledge Organization Systems (KOSs) classifi-
cations, thesauri or ontologies (as described in [18, pp. 635]) for this purpose.
These KOSs have a hierarchical structure in common, but differ in the level of
complexity. Complexity in this context means that there exist different kinds of
relations between the information fragments in the KOS. Thesauri and ontologies
for instance offer more sophisticated relations than simple classifications. Those
complex relations are especially useful in systems that provide a high level of



8 Fiosins et al.

artificial intelligence (e.g. automated reasoning). Since the robotic systems for
which dCIM is designed will not need such complex relations, the data structures
for the layers will be oriented towards classification-like KOSs. For this reason,
information will be stored in a textual representation, namely the XML format.

Listing 1.1: Exemplary XML structure encoding an occupancy grid map

<OccupanyGridMap>
<timestamp>100</timestamp>
<source>robot01</source>
<r e s o l u t i o n >0.1</ r e s o l u t i o n>
<width>100</width>
<height>100</height>
<o r i g i n>
<x>451</x>
<y>729</y>
<z>1042</z>
<r o l l >1.1</ r o l l>
<pitch >1.2</ pitch>
<yaw>1.3</yaw>

</o r i g i n>
<gr id>
<occ c e l l =”1”>50</occ>
<occ c e l l =”2”>0</occ>
<occ c e l l =”3”>100</occ>

</gr id>
</OccupancyGridMap>

One has to keep in mind that the data fragments in dCIM can be arbitrarily
defined. We do not want to predefine any data structures in this paper, because
dCIM has to be seen as the paradigm for an information model. That means
that – as long as the other application-specific parts of the system (i.e. the 3I
and the interpreting algorithms) can handle the user-defined data structures –
one only has to consider using XML syntax and to pay attention to the presence
of required meta data and payload. Listing 1.1 shows an exemplary dCIM infor-
mation fragment – an occupancy grid map. While the first elements of the data
tree represent classical meta data (which is very important for the 3I in order
to compare data fragments), the actual data (payload) is stored in the < grid >
respectively the < occ > elements. In dCIM, information of every abstraction
level is stored and transmitted in a XML format as seen in the listing. dCIM
allows to create information fragments for every desired purpose, as long as the
3I and the algorithms processing the information can handle the data structures.

2.3 Information Integration Interface

In decentralized control architecture, no centralized conflict resolution rules can
be applied. Moreover, each dCIM-instance needs to decide by itself which infor-
mation it is going to accept and how to fuse and merge available information.



dCIM: An Agent-Based Distributed Common Information Model 9

Two or more dCIM-instances are able to exchange sensor data, maps, tasks or
any other information that can be extracted from any layer of the dCIM. There-
fore, dCIM fragments, which contain the information, need to be processed in
the 3I. As well as for the data structures, we do not want to predefine any spe-
cific rules of the 3I. Instead, we give some conceptual advise for the creation of
such rules.

In general, the acquisition of information in a dCIM-instance is not as pre-
dictable as in the case of a centralized architecture. In case of a decentralized
system, there is always the chance of correct information loss, because dCIM
needs to decide by itself what is a relevant and correct information or what is
wrong; hence, there is an evolutionary development inside the system. The diffi-
culty of designing a dCIM-instance is the consideration of all relevant influences,
systematizing them into layer based dynamic data structures. The kind of com-
munication, the physical model of the robots and the environment need to be
considered when designing the 3I.

The main task of the 3I is to integrate external information (information from
other robots) into the own dCIM-instance. For that purpose, there is external
communication between different robots on the one hand and internal commu-
nication between the 3I and the internal information layers of one particular
dCIM-instance on the other hand (as seen in Figure 1). New information (dCIM
fragments) are gathered through external communication. These fragments in-
clude meta data that can be used to establish a contextual connection between
the new fragments and information that is already part of some dCIM infor-
mation layer. Depending on parameters like acquisition time/location, origin or
reliability the 3I has the ability to fuse, merge or reject the new information.

2.4 Communication

Many technologies can be integrated into robots to facilitate exchange of infor-
mation in a team. A common low-cost and high-bandwidth solution is WiFi.
Depending on the operating environment and requirements, other technologies
are possible: For very small energy-constrained robots the WSN technology such
as IEEE 802.15.4 could be an alternative. In dome deployments cellular networks
might be an alternative for long range links.

However, independent from the used radio technologies the challenges when
communicating in such dynamic scenarios are always the same: Continuous con-
nectivity between all entities can not be guaranteed. Robots may move out of co-
munication range. The network might get divided into several distinct connected
subsets. The communication stack needs to deal with these conditions and pro-
vide the best possible delivery of information, while some inevitable issues such
as inconsistency of information and varying levels of available information need
to be dealt with at the dCIM level.

To optimize information proliferation in a network with intermittent connec-
tivity the system adopts a store-carry-and-forward technique: Instead of finding
a stable route between arbitrary endpoints in the network, communication par-
ticipants will store any received information until a new contact comes into



10 Fiosins et al.

range. Thus, the network which runs dCIM is effectively a Delay Tolerant Net-
work (DTN). The DTN abstracts the network discontinuities, making sure that
data will arrive eventually even under high network strain. By using a DTN soft-
ware stack the application does not need to deal with disconnections and broken
links. However, even with a DTN data can not always be delivered: If the net-
work is partitioned and it is physically impossible to transfer data to specific
nodes within a predefined time, the dCIM needs to handle this situation.

Communication between several intelligent robots shall be possible on every
layer of data abstraction. To share information with other robots, we define
a send function Mj,i,l(t) = Sendj(D

j,l, i, t), which decides whether and which
information the robot j should send from its information layer l to robot i at
time t. There are several important variants of the send function:

– The function may be independent on the parameter i. In this case we have
a broadcast function, which sends equal information to all robots.

– The decision, whether to send the information, is dependent on parameter t
and not on Dj,l(t). In this case we have information sent periodically.

– The decision, whether to send the information, depends on the measure of
difference ||Dj,l(t)−Sj,l(t− 1)||. That is why information is sent only in the
case of changes.

– The message Mj,i,l(t) is usually split into fragments, which correspond to
the fragments of data.

All of these variants have to be covered by the 3I. Receiving the messages
Mi,j(t), robot j can integrate them into the information Dj,l(t). For this purpose,
an update function Umsg

j (s, i, t) updates the information:

Dj,l(t+ 1) = Umsg
j (Dj,l(t),Mi,j,l(t))

The update function Umsg
j also combines maximum likelihood estimation

(MLE) with trust in the message Mi,j :

Umsg
j (Sj(t),Mi,j(t)) = MLEmsg(TRmsg(Sj(t), Oj(t), i)).

Note that the trust function TRmsg includes an additional component – the
index of robot i. This is because there can be different trusts to different robots.

A possibility to improve network quality is allowing the distribution of ad-
ditional networking elements by the robots themselves as a means to build a
more dense network [16]. A standard way of implementing a DTN is the Bun-
dle Protocol (BP) which is specified in RFC5050 [17]. Proven Bundle Protocol
implementations suitable for running on robots are available. For example IBR-
DTN [15] supports different communication technologies such as WiFi or IEEE
802.15.4 even in heterogeneous environments and runs on a variety of different
hardware including embedded systems.

2.5 Task allocation and scheduling

In this section we will describe the interaction between different dCIM modules.
We show how raw sensor data is processed in dCIM in order to obtain high-level
tasks. Additionally, the principle of the 3I will be clarified.



dCIM: An Agent-Based Distributed Common Information Model 11

The robots have a global task pool T . All tasks in this pool should be exe-
cuted by the robots. In general, the robots should perform three interconnected
activities in order to execute them:

– Task allocation/re-allocation
– Task scheduling/sequence planning
– Task planning/actions

The task allocation step is necessary to assign tasks to robots, i.e. to find
subsets T j ⊂ T such that

⋂
T j = T . That means that each task is covered by

at least one robot. The costs of the subsets T j depend on the sequence of task
execution by each individual robot, so the cost C(T j) of the subset T j is defined
by the permutation π(T j) and individual costs of tasks Cind(tk), tk ∈ T j . Also
these costs depend on datasets Dj , available to the robot j:

Cj(T j) = Cj(π(T j), Cind(tk), Dj |tk ∈ T j).

Finding the optimal permutation is called task scheduling; finding the opti-
mal individual costs is connected with determining the action sequence for an
individual task and is called task planning. Note that these tasks can be solved
on different abstraction levels Dj,l. We used auction approach for this purpose;
the details are described in [4].

Note that tasks from the set T are represented as high-level tasks. They may
be formulated for example as ”bring X from A to B”. In order to calculate costs
of such tasks and then to execute them, hierarchy of tasks is necessary. Such
hierarchy represents tasks from higher level of abstraction until commands to
physical motors.

It is convenient to coordinate hierarchy of information with hierarchy of tasks.
Let us suppose that there are different levels of actions. Let T j,l = {tj,lk } be a set
of possible actions of l-th level of j-th robot. We suppose that the cost of l-th
level actions depend on information of l-th level and costs of tasks of l − 1-th
level, which are included into l-th level task (define this set as J(tj,lk )).

Cj(tj,lk ) = Cj,l(tj,l−1
m , Dj,l|tj,l ∈ J(tj,lk )).

3 Experiments

In order to illustrate the concepts of dCIM, we perform the following experi-
ments. We consider a team of mobile robots, which act in a partially known
environment. This means that the map of the environment, which is available
to the robots (Figure 2a), differs from the actual map (Figure 2b).

In this experiment, the robots have to transport items (boxes) between par-
ticular locations in the environment. They receive messages from the boxes re-
questing a transport. The robots then decide decentrally, which one of them is
going to perform the task.

During their operations the robots scan the real environment, detecting in-
accuracy in their maps. Detected differences between the prior known map and



12 Fiosins et al.

(a) Map available to the robots (b) True map of the environment

Fig. 2: Maps used in the experiments

the actual environment are transferred to other robots, which can update their
plans accordingly. As a measure of the system’s efficiency we calculate a total
distance (in this case in abstract ”steps” unit), which the robots have to travel to
complete all the tasks. The experiment is repeated several times with the same
map and an average distance is calculated.

Our first experiment demonstrates how the number of steps increases, if the
robots have an inaccurate map of the environment. The results presented in
Figure 3 demonstrate that – for the given environment – the robots with an
inaccurate map require a 5 - 15 % higher travel distance.

 

Number of robots

A
v
e
ra

g
e
 n

u
m

b
e
r 

o
f 

s
te

p
s

accurate map

inaccurate map

4 5 6 7 8

1
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

Fig. 3: Average travel distance depending on number of robots with incorrect
(above) and correct (below) map of the environment



dCIM: An Agent-Based Distributed Common Information Model 13

Our next experiment demonstrates how the communication influences the
system’s efficiency. Figure 4a depicts the average number of steps depending on
the communication radius. Looking at it, we see that it is possible to reduce the
number of steps to 5 - 15 % – and achieve the same efficiency as by correct maps.

 

Number of robots

A
v
e
ra

g
e
 n

u
m

b
e
r 

o
f 

s
te

p
s

no communication

comm. radius = 10
communication by request

4 5 6 7

1
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

(a) Average travel distance depending
on the communication radius

 

Number of robots

A
v
e
ra

g
e
 n

u
m

b
e
r 

o
f 

s
te

p
s

scan radius = 3

scan radius = 10

scan radius = 16

4 5 6 7
1

0
0

0
1

2
0

0
1

4
0

0
1

6
0

0

(b) Average travel distance depending
on the scan radius

Fig. 4: Results of the investigation of communication/scan radius influence

The last set of experiments allows us to understand the role of information
collection for the system’s efficiency. Figure 4b demonstrates how the scanning
radius influences the travel distance. Here we see only a decrease of 3 - 5 % of
traveling distance.

4 Open Challenges

In the current stage of development, dCIM offers conflict resolution only on a
highly abstracted task layer. One upcoming challenge is to create an extension
to the 3I, which is capable of solving conflicts on other (especially low-level)
information layers. It is assumed, that these algorithms will have a performance-
disturbing influence on the 3I since much more information has to be processed
at low-level information layers.

Another topic that – in this work – only has been mentioned is the devel-
opment of a method to merge dCIM-instances of different robots. This can be
necessary in situations where the robots’ communication fails or where the robots
explore a very large environment travelling through the same areas at different
time not getting into communication range. Such a fusion method could pro-
vide the best global view of the whole system/environment including as much
information of all deployed robots.



14 Fiosins et al.

As we described in section 2.2, in dCIM it shall be possible to define own data
structures. In order to make dCIM more compatible for different kinds of robots,
it is sensible to constrain this feature for some information. For very common
information (e.g. map data) it is desirable to use standardized data structures.
First efforts in this area were made by the IEEE Robotics and Automation
Society Standing Committee for Standards Activities (RAS-SCSA), especially
the Map Data Representation Working Group (MDR WG6). The standard aims
to provide specifications for representing 2D metric and topological maps [10].
When the standard is available it should be reviewed whether it could be useful
in dCIM or not.

5 Conclusions

In this work, we presented a software architecture called dCIM that forms the
knowledge base for teams of mobile robots in various applications. We outlined
the principle layout of dCIM and explained why XML-like data structures are
most suitable for the architecture. Additionally, we introduced an interface to
resolve conflicts in data integration that arise with e.g faulty communication or
ambiguous observations.

We further explained the path data takes through a variable number of data
layers, abstracting data from low-level to high-level. The influence of changes in
the environment, which are propagated through dCIM and the 3I between differ-
ent intelligent robots, was evaluated in several experiments. These experiments
confirmed the usefulness of the proposed architecture.

Due to the fact that dCIM is still in an early stage of development, varieties
of extensions and improvements are possible. Some of these open challenges were
described within this paper.

References

1. Andronov, A., Fiosins, M.: Applications of resampling approach to statistical prob-
lems of logical systems. Acta et Commentationes Universitatis Tartuensis de Math-
ematica 8, 63–72 (2004)

2. Brandt, F., Conitzer, V., Endriss, U.: Computational social choice. In: G. Weiss
(ed.) Multiagent Systems, 2nd edn., pp. 213–283. MIT Press (2013)

3. Chang, A.: A computational data model of intelligent agents with time-varying
resources. In: J.J.J.H. Park, L. Barolli, F. Xhafa, H.Y. Jeong (eds.) Information
Technology Convergence, Lecture Notes in Electrical Engineering, vol. 253, pp.
783–791. Springer Netherlands (2013)

4. Gernert, B., Schildt, S., Wolf, L., Zeise, B., Fritsche, P., Wagner, B., Fiosins,
M., Manesh, R., Müller, J.P.: An interdisciplinary approach to autonomous team-
based exploration in disaster scenarios. In: 12th IEEE International Symposium
on Safety, Security, and Rescue Robotics (SSRR2014), pp. 1–8. IEEE (2014)

6 http://ieee-sa.centraldesktop.com/1873workinggrouppublic/



dCIM: An Agent-Based Distributed Common Information Model 15

5. Giordani, S., Lujak, M., Martinelli, F.: A distributed multi-agent production plan-
ning and scheduling framework for mobile robots. Computers & Industrial Engi-
neering 64(1), 19 – 30 (2013)

6. Hentschel, M., Lecking, D., Wagner, B.: Deterministic path planning and naviga-
tion for an autonomous fork lift truck. In: 6th IFAC Symposium on Intelligent
Autonomous Vehicles (IAV), pp. 102–107. IFAC (2007)

7. Hentschel, M., Wagner, B.: An adaptive memory model for long-term navigation of
autonomous mobile robots. In: Journal of Robotics, vol. 2011. Hindawi Publishing
Corporation (2011)

8. Lee, Y.T.: Information modeling: From design to implementation. Proceedings of
Second World Manufacturing Congress (1999)

9. Liu, L., Shell, D.: Large-scale multi-robot task allocation via dynamic partitioning
and distribution. Autonomous Robots 33(3), 291–307 (2012)

10. Madhavan, R., Yu, W., Schlenoff, C., Prestes, E., Amigoni, F.: Draft standards
development of two working groups [industrial activities]. IEEE Robotics & Au-
tomation Magazine 21(3), 20–23 (2014). DOI 10.1109/MRA.2014.2334971. URL
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6894718

11. Müller, J.P.: The Design of Intelligent Agents, Lecture Notes in Artificial Intelli-
gence, vol. 1177. Springer-Verlag (1996)

12. Nakauchi, Y., Fukuda, T., Noguchi, K., Matsubara, T.: Intelligent kitchen: cooking
support by lcd and mobile robot with ic-labeled objects. In: Intelligent Robots
and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ International Conference on,
pp. 1911–1916 (2005)

13. Reid, R., Braunl, T.: Large-scale multi-robot mapping in magic 2010. In: Robotics,
Automation and Mechatronics (RAM), 2011 IEEE Conference on, pp. 239–244
(2011)

14. Scerri, P.: Team oriented plans and robot swarms (extended abstract). In: Human
Control of Bioinspired Swarms, Papers from the 2012 AAAI Fall Symposium, Ar-
lington, Virginia, USA, November 2-4, 2012, vol. Technical Report FS-12-04, pp.
51–53. AAAI (2012)

15. Schildt, S., Morgenroth, J., Pöttner, W.B., Wolf, L.: IBR-DTN: A lightweight,
modular and highly portable Bundle Protocol implementation. Electronic Com-
munications of the EASST 37, 1–11 (2011)

16. Schildt, S., Rottmann, S., Wolf, L.: Communication architecture, challenges and
paradigms for robotic firefighters. In: Proceedings of the 5th Extreme Conference
of Communication (ExtremeCom 2013). Thorsmork, Iceland (2013). URL http:

//www.ibr.cs.tu-bs.de/papers/schildt-extremecom2013.pdf
17. Scott, K., Burleigh, S.: Bundle Protocol Specification. RFC 5050 (Experimental)

(2007). URL http://www.ietf.org/rfc/rfc5050.txt
18. Stock, W.G.: Handbook of information science. De Gruyter Saur, Berlin, Boston

(2013)
19. Symeonidis, A.L., Kehagias, D., Mitkas, P.A.: Intelligent policy recommendations

on enterprise resource planning by the use of agent technology and data mining
techniques. Expert Syst. Appl. 25(4), 589–602 (2003)

20. Tenorth, M., Beetz, M.: KnowRob: A knowledge processing infrastructure for
cognition-enabled robots. The International Journal of Robotics Research 32(5),
566–590 (2013)

21. Velagapudi, P., Sycara, K., Scerri, P.: Decentralized prioritized planning in large
multirobot teams. In: 2010 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 4603–4609. IEEE (2010)


