LightJason - A BDI Framework Inspired by Jason
Malte Aschermann, Philipp Kraus, and Jorg P. Miiller

ABSTRACT.

Current BDI agent frameworks often lack necessary modularity, scalabil-
ity and are hard to integrate with non-agent applications. This paper reports
ongoing research on LightJason, a multi-agent BDI framework based on Agent-
Speak(L), fine-tuned to concurrent plan execution in a distributed framework;
LightJason aims at efficient and scalable integration with existing platforms.
We state requirements for BDI agent languages and corresponding runtime sys-
tems, and present the key concepts and initial implementation of LightJason
in the light of these requirements. Based on a set of requirements derived
for scalable, modular BDI frameworks, the core contribution of this paper is
the definition of a formal modular grammar for AgentSpeak(L++), a modular
extension of AgentSpeak(L), and its underlying scalable runtime system. A
preliminary validation of LightJason is given by means of an example evac-
uation scenario, an experimental analysis of the runtime performance, and a
qualitative comparison with the Jason platform.

1. Introduction

Agent-oriented programming (AgOP) [Sho93] is about building systems con-
sisting of software agents maintaining mental states, based on declarative logical
languages. The Belief-Desire-Intention (BDI) paradigm [RG95] has become the
prevalent approach to AgOP and multi-agent systems (MAS). Such agent pro-
grams consist of statements in first-order logic, allowing agents to deduce new
facts, commit to plans and eventually execute actions. A very popular language for
programming BDI agents is AgentSpeak(L) [Rao96|. Jason [BHWO7| has been
instrumental to the popularity of AgentSpeak(L) by providing a BDI agent frame-
work that combines an extension of AgentSpeak(L) with an interpreter and provides
integrated development environment (IDE) plugins for JEdit and Eclipse. However,
analysing the level of usage of BDI agent frameworks in software engineering prac-
tice reveals a sobering picture. A look at the major programming indices Tiobe
ITIO], Redmonk [Red| and PopularitY [Pop|, which measure the popularity of
programming languages, shows that the world of practice is still dominated by im-
perative and object-oriented languages. Only Tiobe lists any logic-based languages:
The major proponent Prolog is ranked 33rd. AgOP languages are not represented
at all. Furthermore, in their study of MAS application impact, [MF14] show that
among the agent languages, the only ‘true’ BDI language with some application
impact is Jack, a proprietary language, while the use of languages like Jason or

Parts of this work were supported by the German Research Foundation (DFG) through the
Research Training Group SocialCars: Cooperative (De-)centralized Traffic Management (GRK
1931).

LIGHTJASON - A BDI FRAMEWORK INSPIRED BY JASON 2

GOAL is restricted to academic prototypes. The hypothesis underlying our re-
search is that part of the reasons for this dire state are elementary shortcomings
of AgOP languages regarding modularity, maintainability, software architecture in-
teroperability, performance, and scalability. This paper reports ongoing research
on a multi-agent framework based on AgentSpeak(L) which aims at an efficient
and scalable integration into existing platforms, enabling non-agent-aware systems
to incorporate agent-based optimisation techniques to solve distributed problems.
We present the initial version of LightJason, a BDI agent framework fine-tuned to
concurrent plan execution in a distributed environmentﬂ

2. Requirements and State of the Art

Requirements. Over the past years, we have gained experience in modelling
and engineering multi-agent applications based on the BDI paradigm (most notably
in domains of traffic and industrial business processes), but also with developing
agent programming languages and runtime platforms. While we consider the BDI
abstraction appealing and intuitive for modelling sociotechnical systems, we were
often confronted with the limitations of today’s agent platforms. From these lim-
itations, we derived a number of requirements for BDI agent platforms, which
extend the list of general requirements from [BHWOT, p. 7]) and are summarised
as follows: 1) Integrability in existing software architectures. 2) Modularisation
of agents and underlying data structures. 3) Agent scripting language with strict
language syntax. 4) Action checking during parsing time, not during run time. 5)
Avoid action-centric reasoning cycle as argued by [ADK™16|. 6) Parallel execu-
tion of plans in separated execution tasks. 7) Agent generation mechanism for easy
instantiation of large numbers of agent. 8) Hierarchically structured belief bases
and actions in semantic groups.

Discussion of state of the art. The main concepts of BDI frameworks are
mostly based on the Procedural Reasoning System (PRS) [GL86), [GL87| and the
first robust implementations such as AMARS |[dLGT04|. As [MDAO5] and sub-
sequent surveys point out, virtually all existing multi-agent frameworks are not
designed for productive use (performance, scalability) and easy integration with
specific domains. The design of agent-based scripting languages leads to chal-
lenges in maintainability; e.g. Bordini et al. [BBdOJT02, p. 1300] state that:
“[T]he AgentSpeak(L) code is not elegant at all. The resulting code is extremely
clumsy because of the use of many belief addition, deletion, and checking (for con-
trolling intention selection) [...] [and] thus a type of code that is very difficult to
implement and maintain.” Though this is a paper from 2002, the situation has
not changed much. MAS platforms like Jason provide a separate runtime system,
these approaches raise issues regarding scalability and consistency, especially when
combining existing systems with MAS. In the case of Jason, this also can lead
to ill-defined execution behaviour of agents, especially regarding clarity when an
iteration of the agent control cycle has ended (see requirement [2| above).

In this paper, we focus on the comparison with AgentSpeak(L)/Jason as the
most prominent (open-source) representative of BDI languages/platform. We com-
pared the legacy Jason 1.4 branch, which is still in use in our research group for
small-scale agent-based traffic simulation (e.g. [DM16]), and the quite recently
published Jason 2.0 branch with our requirements. Jason 1.4 lacks support for all
the above-mentioned requirements except a partially support for modular agents
(requirement 7 due to its include functionality. Jason 2.0 additionally supports
a hierarchical structuring of agents (requirement , but this feature is limited to

For a much more comprehensive version of this short paper, we refer to [AKM16].

LIGHTJASON - A BDI FRAMEWORK INSPIRED BY JASON 3

beliefs and plansﬂ Also, one new feature of Jason 2.0 is parallel execution of plans
[ZH16], which addresses requirement However, like Jason 1.4, Jason 2.0 still
heavily relies on synchronised data structures in their architecture design, implying
slow-downs due to locking and CPU context switches during each agent cycle. In
their approach adding concurrency to the reasoning cycles in Jason, [ZH16| pro-
vided benchmark results regarding scalability; their test setup with only two CPU
cores and synthetic benchmarks (e.g. nested for-loops and Fibonacci sequence) re-
sulted in a linear increase in execution time for up to 500 agents, which would also
be expected for single-thread applications.

In order to tackle the above requirements, we start from the architecture design
of Multi-Agent Scalable Runtime platform for Simulation (MASeRaTi) [ADK™16),
as an attempt to tackle the scalability issues in modern MAS. We created a modi-
fied, light version of AgentSpeak(L) (named AgentSpeak(L++)) and build a Java-
based implementation of the MASeRaTi architecture.

3. LightJason Architecture and Data Model

There is broad agreement in the AgOP literature that “/a] multi-agent system
is inherently multithreaded, in that each agent is assumed to have at least one thread
of control [Woo09!, p. 30]” meaning that agents should be able to pursue more than
one objective at the same time. To implement this conceptual notion of concur-
rency at the technical level, we refer to the basic notion of a thread [TB15] as
a “lightweight process”, and that all threads are running within the same process.
Thus, in LightJason, an agent is be controlled by a thread during the reasoning
process and stores all data for the reasoning internally, by following the thread-
local-storage model. Our general approach in LightJason is to conceive AgOP as a
combination of Imperative, Object-Oriented and Logic Programming, see [AKM16,
p. 6]. To get into a more detailed view, an agent is not one single software compo-
nent but it is split up into two different elements, i.e. agent-mind and agent-body.
This approach is a reverence to the Mind-Head-Body model proposed by Steiner in
ILS95]. The symbolic representation of an agent’s mind is stored as logic literals,
as in Prolog or AgentSpeak(L). All literals of LightJason’s agents are stored within
a belief base for getting access during runtime. During execution the agent asks
for particular literals, initiating a wnification process. As this process is run many
times, we optimised the internal data structure representing the logic elements for
parallel execution and avoiding cost-intensive back-tracking. The Imperative Pro-
gramming paradigm is used to describe the execution behaviour of agents in Light-
Jason (similar to the Patterns of Behaviour (PoBs) in the INTERRAP architecture
[Miil96]). In contrast, to INTERRAP, we provide for parallel execution of PoBs,
so that actions, assignments or expressions can be run or evaluated in parallel.
Finally, LightJason is Java-based; the internal representation of agents is written
in an Object-Oriented Programming (OOP) style with concurrent data structures,
allowing us to create inheritable agent objects running in a multithreading context
and easier integration with domain-specific software systems. To further parallelise
execution and gain more scalability, we made extensive use of state-of-the-art Java
techniques, such as lambda—expressionsﬂ and stream

thtps ://github.com/jason-lang/jason/blob/bd090fe9e16£55194b4ae86ac0850bca6506a19f/
doc/tech/modules-namespaces.pdf

Shttp://www.webcitation.org/61fbGellc

dnttp://wuw.webcitation.org/61fbNP7nX

https://github.com/jason-lang/jason/blob/bd090fe9e16f55194b4ae86ac0850bca6506a19f/doc/tech/modules-namespaces.pdf
https://github.com/jason-lang/jason/blob/bd090fe9e16f55194b4ae86ac0850bca6506a19f/doc/tech/modules-namespaces.pdf
http://www.webcitation.org/6lfbGeOlc
http://www.webcitation.org/6lfbNP7nX

LIGHTJASON - A BDI FRAMEWORK INSPIRED BY JASON 4

4. AgentSpeak(L++) Language Definition

We regard an agent as a hybrid system, which combines different programming
language paradigms, allowing programmers to describe complex behaviour. This
abstract point of view allows a flexible structure — also for non-computer scientists
— to parameterise or specify a software system. The whole syntax was designed as a
logic programming language, by which all elements could be reduced to termsﬂ and
literald’] defining a symbolic representation of behaviour and (environment) data.
This allows modelling a generalised multi-agent system, which can later be concre-
tised for different applications, i.e. scenarios and supports the agent programmer
to design the behaviour by scripting beliefs, rules, plans and actions. Our first
contribution is the definition of a scripting language based on a modified and ex-
tended AgentSpeak(L) grammar. We modularised the grammar into subgrammars
to obtain a more abstract structure of the agent programming language. The main
grammar definition of LightJason is hierarchically structured into the modules de-
picted in Figure [l and is explained in detail in [AKM16] p. 7f.]. This allowed us

(logical language (agent language (collection of

elements,e.qg. literals)] elements, e.g. plans)| all elements)

Terminal Symbols
(keywords e.g. <-)

Complex Type AgentSpeak(L++) |[Agent
s)

FIGURE 1. Modular Grammar Structure
to get a more flexible parsing component, which could be split up into a layer-based

structure.

Built-in Actions The language structure and the underlying architecture of our
implementation allows to create a flexible action interface. In comparison to Jason,
we can detect the agent is running, if the agent source code is syntactically correct
and all actions can be executed. If the action does not exist, the parsing process will
fail. The built-in actions are organised in packages. In our framework we support
actions related to various types of computation. For a complete overview of these
actions and how they can be implemented, we refer to [AKM16l p. 14] and our
example agent{’} published in the appendix of [AKM16].

5. Evaluation and Discussion

Evacuation scenario. In this section we illustrate the capabilities of Light-
Jason on a grid-based evacuation scenario, where agents needed to reach an exit to
leave the grid. The AgentSpeak(L++) code for the corresponding walking agent is
displayed in the listing below. For finding a route to the exit the agent used the
Jump Point Search (JPS+) with Goal Bounding [RS16] algorithm, which, after
an initial O(n?) preprocessing of the grid, outperforms A* by two to three orders
of magnitude in speed. To demonstrate the clarity of LightJason’s grammar, we
grouped all plans and respectively actions describing a moving behaviour, e.g.

+!movement/walk/forward <- +!movement/walk/right <-
move/forward () ; move/right () ;
!movement/walk/forward. !movement/walk/forward.

The concrete agent with its source code is available in [AKM16].

Shttps://agentspeak-java.lightjason.org/rrd-output/html/org/lightjason/
agentspeak/grammar/Agent .g4/index.htm#b4dadOfe5fbef2c0e24d9dblcc69e5a2

“https://agentspeak-java.lightjason.org/rrd-output/html/org/lightjason/
agentspeak/grammar/Agent.g4/index.htm#f0d674f1e0ed4292267f149c5983db02

‘https://github.com/LightJason/AgentSpeak-Java/tree/master/src/test/resources/
agent

https://agentspeak-java.lightjason.org/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#b4dad0fe5fbef2c0e24d9db1cc69e5a2
https://agentspeak-java.lightjason.org/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#b4dad0fe5fbef2c0e24d9db1cc69e5a2
https://agentspeak-java.lightjason.org/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#f0d674f1e0ed4292267f149c5983db02
https://agentspeak-java.lightjason.org/rrd-output/html/org/lightjason/agentspeak/grammar/Agent.g4/index.htm#f0d674f1e0ed4292267f149c5983db02
https://github.com/LightJason/AgentSpeak-Java/tree/master/src/test/resources/agent
https://github.com/LightJason/AgentSpeak-Java/tree/master/src/test/resources/agent

LIGHTJASON - A BDI FRAMEWORK INSPIRED BY JASON 5

Preliminary validation. To validate our results, we conducted first tests with
LightJason implementation of the evacuation scenario. The goal was to investigate
whether the design and implementation of LightJason leads to good scalability and
cycle consistency regarding the routing model, and number of concurrent running
agents. We chose a grid-based scenario with 250 x 250 cells on an iMac with
an Intel® Core™ i7-3770 and 16 GB RAM. Each agent received the same exit
destination (140, 140); it disappeared once it reached the approximate destination
(£10 cells). Figure |2 illustrates the run-time behaviour of the agents. It (not
surprisingly) shows that with an increasing number of agents, each agent needs
more cycles to complete its task. This can be attributed to additional invocations

—_
o
S

T
|agents|steps|agents steps| agents|steps
15| 169 120| 207 750| 258
30| 209| 150/ 186| 1050 429
45| 169] 225 210 1500, 449
60| 194| 300| 223| 2250 826
75| 206| 450| 241| 3000 1334
90 197 600] 376] 6000| 2588

15000| 5638

simulation steps
=
o
w

—_
(=)
o

102 10° 10°
number of agents

FI1GURE 2. Number of agents plotted against cycles until all agents
left the scenario.

of repair plans when an agent’s path got obstructed by other agents. This scales sub-
linearly up to roughly 1000 agents. After that point, the mainly egoistic approach
of each agent prevents them to find a free path to the exit, resulting in plan-failures
and necessary re-routing. From a technical perspective we also observed that the
CPU utilisation is constantly at around 70% for 15000 agents (for detailed plots we
refer to [AKM16]). The constant CPU load shows that the workload induced by
agents is distributed fairly and evenly, avoiding spikes and idle times. Furthermore
we observed a low utilisation of the JVM’s survivor space (roughly 3.5 MB after
the initialisation spike), reflecting the design in relying on lazy bindings and Light-
Jason’s ability to share references to concurrently used data structures, e.g. plans,
which only differ in their context and parameters.

Discussion. In this paper we presented our design and implementation of an

agent framework, introducing LightJason, an AgentSpeak(L) variant. The key as-
pects we focused on were modularity, flexibility, scalability and deterministic execu-
tion behaviour. The AgentSpeak(L++) language supported by LightJason reflects
AgentSpeak(L) as implemented by [BHWO7], we differ on a number of aspects,
in terms of the language features and — to a larger extent — in the software archi-
tecture underlying the implementation. Among others the most notable additions
to AgentSpeak(L) are lambda-expressions, multi-plan definitions, explicit repair-
planning, multi-variable assignments, parallel execution and thread-safe variables.
When considering to port an existing Jason code to LightJason it is important to
understand, that by design in LightJason all plans which conditions evaluate to true
get instantiated. Here we argue, that in comparison to Jason, a non-synchronised
system’s behaviour results in a considerably more plausible multi-agent system,
considering the requirements formulated by [Woo09].
Additional Features Most of the AgentSpeak(L) expressions find their equivalents
in LightJason’s AgentSpeak(L++). Major additions are expressions for parallel
execution and unification (@). As it is in general possible to design an agent to run
plans sequentially, we argue, that for performance reasons it is sensible to make use
of parallel execution whenever possible.

LIGHTJASON - A BDI FRAMEWORK INSPIRED BY JASON 6

Jason 2.0 With the quite recent release of Jason 2.0, there now exist new featuresﬁ
in Jason which are similar, but independently developed, to some of our own. Ja-
son 2.0 introduces modules and namespaces to modularise beliefs, goals and plans.
In our approach we go even further by integrating those concepts deeply into the
fundamental agent grammar. Thus it is possible for us to, for example, modularise
actions, functions or beliefs by building hierarchical structures in arbitrary depth
allowing greater flexibility than in Jason. Another new feature of Jason 2.0 are
concurrent courses of actions [ZH16]. As parallel execution is a fundamental as-
pect of scalability, we made this an integral part of LightJason’s architecture by
mainly using state-of-the-art Java 1.8 developing techniques and features to enable
concurrency at a very fine granularity.

6. Conclusion & Outlook

The contribution of this paper is a flexible agent programming framework Light-
Jason, which can be easily integrated into existing systems. The key features of
LightJason are the simplification of the agent’s reasoning cycle and the support of
some important requirements including modularity, maintainability, and scalability,
combined with state-of-the-art techniques in software development. At the core of
LightJason is AgentSpeak(L++), a declarative agent scripting language extending
Jason. We provide a formal grammar definition describing the features of Agent-
Speak(L++). For the sake of usability, LightJason supports many built-in actions
and a structure to load actions in a pre-processing step of the parser. Thus, by
parsing the agent’s source code it is possible to check that the agent is syntactically
correct and can be executed. We further provide generator structures that enable
automated creation of large numbers of agents which can be further customised by
the user. We also support a fully concurrent and parallel agent execution model of
an agent. This paper describes ongoing work. Our next steps will involve a formal
definition of the semantics of AgentSpeak(L++). The reader will have noticed
that AgentSpeak(L++) does not contain language elements for communication.
This is intentional, because in our view, communication is a matter of the runtime
system rather than of the compilation mechanism. Yet, agent communication is
one of the next features to be added to LightJason. Also, while we performed an
initial qualitative comparison with Jason, a thorough experimental benchmarking
remains to be performed. Our project can be found under https://lightjason.
org providing further documentation] and source codd™}

References

[ADK*16] T. Ahlbrecht, J. Dix, M. Késter, P. Kraus, and J. P. Miiller, An architecture for
scalable simulation of systems of cognitive agents, International Journal of Agent-
Oriented Software Engineering (2016), To appear.

[AKM16] Malte Aschermann, Philipp Kraus, and Jorg P. Miller, LightJason: A BDI Frame-
work Inspired by Jason, Ifl Technical Report Series IfI-16-04, Department of Infor-
matics, Clausthal University of Technology, 2016.

[BBAOJ102] Rafael H Bordini, Ana LC Bazzan, Rafael de O Jannone, Daniel M Basso, Rosa M
Vicari, and Victor R Lesser, AgentSpeak(XL): Efficient intention selection in BDI
agents via decision-theoretic task scheduling, Proc. 1st Int. Joint Conf. on Au-
tonomous Agents and Multiagent Systems: part 3, ACM, 2002, pp. 1294-1302.

[BHWO07] Rafael H. Bordini, Jomi F. Hiibner, and Michael Wooldridge, Programming multi-
agent systems in AgentSpeak using Jason, Wiley & Sons, 2007.

8https ://github.com/jason-lang/jason/blob/bd090fe9e16£55194b4ae86ac0850bca6506a19f/
release-notes.adoc#version-2-0

Yhttps://agentspeak-java.lightjason.org

Whttps://github.com/LightJason/AgentSpeak-Java

https://lightjason.org
https://lightjason.org
https://github.com/jason-lang/jason/blob/bd090fe9e16f55194b4ae86ac0850bca6506a19f/release-notes.adoc#version-2-0
https://github.com/jason-lang/jason/blob/bd090fe9e16f55194b4ae86ac0850bca6506a19f/release-notes.adoc#version-2-0
https://agentspeak-java.lightjason.org
https://github.com/LightJason/AgentSpeak-Java

[dLGT04]

[DM16]

[GLS6]

[GL87]

[LS95]
[MDAO5]

[MF14]

[Miil96]
[Pop]

[Rao96]

[Red]

[RG5]

[RS16]

[Sho93)]
[TB15]
[TIO]

[Woo09]
[ZH16]

LIGHTJASON - A BDI FRAMEWORK INSPIRED BY JASON 7

Mark d’Inverno, Michael Luck, Michael Georgeff, David Kinny, and Michael
Wooldridge, The dMARS architecture: A specification of the distributed multi-agent
reasoning system, Autonomous Agents and Multi-Agent Systems 9 (2004), no. 1/2,
5-53.

S. Dennisen and J. P. Miiller, Iterative committee elections for collective decision-
making in a ride-sharing application, Proc. 9th International Workshop on Agents
in Traffic and Transport (ATT 2016) at IJCAI 2016 (New York, USA) (A. L. C.
Bazzan, F Kliigl, S. Ossowski, and G. Vizzari, eds.), CEUR, July 2016, Electronic
proceedings, pp. 1-8.

M.P. Georgeff and A.L. Lansky, Procedural knowledge, Proceedings of the IEEE 74
(1986), no. 10, 1383-1398.

Michael P. Georgeff and Amy L. Lansky, Reactive reasoning and planning, Proceed-
ings of the Sixth National Conference on Artificial Intelligence - Volume 2, AAAT’87,
AAATI Press, 1987, pp. 677-682.

Andreas Lux and Donald Steiner, Understanding cooperation: An agent’s perspec-
tive., ICMAS, 1995, pp. 261-268.

Viviana Mascardi, Daniela Demergasso, and Davide Ancona, Languages for pro-
gramming BDI-style agents: an overview., WOA, 2005, pp. 9-15.

Jorg P. Miiller and Klaus Fischer, Application impact of multi-agent systems and
technologies: A survey, Agent-Oriented Software Engineering: Reflections on Ar-
chitectures, Methodologies, Languages, and Frameworks (Onn Shehory and Arnon
Sturm, eds.), Springer, 2014, pp. 27-53.

Jorg P. Miiller, The design of intelligent agents, Lecture Notes in Artificial Intelli-
gence, vol. 1177, Springer-Verlag, 1996.

PopularitY, http://pypl.github.io/, accessed: 2016-06-27 (archived by Web-
Cite® at http://www.webcitation.org/6iZxjsbBs).

Anand S. Rao, AgentSpeak(L): BDI agents speak out in a logical computable lan-
guage, Proc. of MAAMAW ’96 (Secaucus, NJ, USA), Springer-Verlag New York,
Inc., 1996, pp. 42-55.

RedMonk, http://redmonk.com/sogrady/2016/02/19/1language-rankings, ac-
cessed: 2016-06-27 (archived by WebCite® at http://www.webcitation.org/
6iZXPEb9K).

Anand S. Rao and Michael P. Georgeff, BDI agents: From theory to practice,
Proc. 1st Int. Conf. on Multiagent Systems, June 12-14, 1995, San Francisco, Cali-
fornia, USA, 1995, pp. 312-319.

Steve Rabin and Nathan Sturtevant, Combining bounding boxes and jps to prune
grid pathfinding, AAAI Conference on Artificial Intelligence (2016).

Yoav Shoham, Agent-Oriented Programming, Artificial Intelligence 60 (1993), no. 1,
51-92.

A.S. Tanenbaum and H. Bos, Modern operating systems: Global edition, Pearson
Education Limited, 2015.

TIOBE, http://www.tiobe.com/tiobe_index, accessed: 2016-06-27 (archived by
WebCite®) at http://www.webcitation.org/6iZwpVq0y).

Michael J. Wooldridge, An introduction to multiagent systems, 2009, p. 461.
Alessandro Zatelli, Maicon R.and Ricci and Jomi F. Hiibner, A concurrent ar-
chitecture for agent reasoning cycle execution in jason, Multi-Agent Systems and
Agreement Technologies: 13th Europ. Conf., EUMAS 2015, and 3rd Int. Conf., AT
2015, Athens, Greece, 2015, Springer International Publishing, 2016, pp. 425-440.

DEPARTMENT OF INFORMATICS, CLAUSTHAL UNIVERSITY OF TECHNOLOGY, JULIUS-ALBERT-
STR. 4, D-38678 CLAUSTHAL-ZELLERFELD,GERMANY, {MALTE, PHILIPP}QLIGHTJASON.ORG, JOERG.
MUELLERQTU-CLAUSTHAL. DE, HTTP: //LIGHTJASON .ORG

http://pypl.github.io/
http://www.webcitation.org/6iZxjsbBs
http://redmonk.com/sogrady/2016/02/19/language-rankings
http://www.webcitation.org/6iZxPEb9K
http://www.webcitation.org/6iZxPEb9K
http://www.tiobe.com/tiobe_index
http://www.webcitation.org/6iZwpVq0y
http://lightjason.org

	1. Introduction
	2. Requirements and State of the Art
	Requirements
	Discussion of state of the art

	3. LightJason Architecture and Data Model
	4. AgentSpeak(L++) Language Definition
	5. Evaluation and Discussion
	Evacuation scenario
	Preliminary validation
	Discussion

	6. Conclusion & Outlook
	References

