
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2010; 22:831–871
Published online 23 July 2009 inWiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe.1465

A flexible content repository to
enable a peer-to-peer-based
wiki

Udo Bartlang1,∗,† and Jörg P. Müller2

1Siemens AG, Corporate Technology, Information and Communications,
Otto-Hahn-Ring 6, D-81739 Munich, Germany
2Clausthal University of Technology, Department of Informatics,
Julius-Albert-Str.4, D-38678 Clausthal-Zellerfeld, Germany

SUMMARY

Wikis—being major applications of the Web 2.0—are used for a large number of purposes, such as
encyclopedias, project documentation, and coordination, both in open communities and in enterprises.
At the application level, users are targeted as both consumers and producers of dynamic content. Yet,
this kind of peer-to-peer (P2P) principle is not used at the technical level being still dominated by
traditional client–server architectures. What lacks is a generic platform that combines the scalability of
the P2P approach with, for example, a wiki’s requirements for consistent content management in a highly
concurrent environment. This paper presents a flexible content repository system that is intended to close
the gap by using a hybrid P2P overlay to support scalable, fault-tolerant, consistent, and efficient data
operations for the dynamic content of wikis. On the one hand, this paper introduces the generic, overall
architecture of the content repository. On the other hand, it describes the major building blocks to enable
P2P data management at the system’s persistent storage layer, and how these may be used to implement
a P2P-based wiki application: (i) a P2P back-end administrates a wiki’s actual content resources. (ii) On
top, P2P service groups act as indexing groups to implement a wiki’s search index. Copyright © 2009
John Wiley & Sons, Ltd.

Received 15 January 2009; Accepted 29 April 2009

KEY WORDS: P2P; content repository; wiki; web 2.0; web 3.0

INTRODUCTION

Gartner [1] among others has observed converging key trends that drive the need for distributed
management of content. For example, the increase in working over the Internet and the distributed

∗Correspondence to: Udo Bartlang, Siemens AG, Corporate Technology, Information and Communications, Otto-Hahn-Ring
6, D-81739 Munich, Germany.

†E-mail: research@bartlang.de, udo.bartlang.ext@siemens.com

Copyright q 2009 John Wiley & Sons, Ltd.

832 U. BARTLANG AND J. P. MÜLLER

collaboration within enterprises requires the sharing of produced data. But especially the explosion
of unstructured content data that complicates filtering, administration, and controlled exchange.
For example, intra-enterprise knowledge management aims to facilitate and optimize the retrieval,

transfer, and storage of knowledge content. However, the sole exchange of such content is difficult:
inconsistencies between redundant content may lead to problems and additional efforts [2]. The
common practice in enterprises to employ various storage locations, for instance, an employee’s
local workstation, group storage devices, or intranet servers demands for knowledge content consol-
idation.
The latest developments [3] recommend the usage of specialized content repositories to enable

the management of both structured and unstructured content. Typically, these systems act as a
meta layer on top of traditional persistent data stores, such as database management systems,
providing additional capabilities. Regarding the design and implementation, however, a state-of-
the-art approach of a content repository is primarily based on a centralized architecture.
For instance, distributed database systems as an example for hierarchical client–server systems

may split large content data sets to different physically distributed network nodes to establish
more efficient data querying through parallelism [4]. However, if replication strategies are applied
in distributed systems, the consistency of data needs to be ensured. Therefore, these techniques
usually employ a point of central coordination. Such flat client–server architectures are well suited
for static networks and computing infrastructures, where the need for hardware resources can be
predetermined quite well. Considering, however, the availability of crucial content, if the single
server fails, the whole system service is no longer available, which is known as a the single point
of failure.
In contrast, the peer-to-peer (P2P) paradigm offers a more flexible communication pattern

migrating to more and more application domains. For instance, there has been a significant increase
of P2P-based systems regarding their popularity and their employment for content distribution on
the Internet [5]. The increase in storage capacities, processor power of commodity hardware, and
technological improvements to network bandwidth—accompanied by the reduction of its costs—
foster decentralized solutions by pushing computer power to the edge of networks. For instance,
today even commodity desktop machines are able to store huge amounts of content data and to act
as the basis for building sophisticated computing infrastructures [6].
Employing dedicated content repositories is a change in the perspective of content life cycle

management [7]. Even with evolving efforts to facilitate this shift of content management perspec-
tive, however, today’s content repositories are less flexible regarding the support of different content
models, offered functionality as dynamic runtime reconfiguration, or distributed system models.
For example, despite the cognition to distinguish between different types of content, explicitly
known semantic of content data (as the degree of importance) is neglected. But semantics of such
knowledge regarding certain content types may be exploited, for instance, to optimize the overall
system performance supporting a policy-based approach.
This paper presents the method of using a flexible content repository system to implement a

P2P-based wiki engine to achieve a more decentralized vision of a dynamic environment for the
future Web 3.0. Wikis [8] are popular applications of the so-called Web 2.0 [9], for example, the
WWW-based collaborative encyclopedia Wikipedia [10] is based on such an application.
The P2P-based content repository system enables building the vision of an enterprise-wide wiki

as a shared knowledge space and a shared structure of the content organization. It is both scalable

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:831–871
DOI: 10.1002/cpe

A FLEXIBLE CONTENT REPOSITORY TO ENABLE A P2P-BASED WIKI 833

and shows good performance—its major functions are reconfigurable to enable a policy-based
approach for the content management. However, the most important feature of the system is that it
supports fault-tolerant and consistent content management: as, once content is stored in the system,
it shall not be lost. This raises the challenge to coordinate concurrent activity in a dynamic P2P
environment and to protect the consistency of created artefacts to keep content up-to-date across
geographically distributed locations.
The remainder of this paper is structured as follows. First, the scenario of a P2P-based wiki is

described. Next, the background and related work of the approach are given. Subsequently, the
system’s overall architecture is shown. Thereafter, the major P2P building blocks are introduced.
Finally , the approach is evaluated to conclude the paper.

SCENARIO: A P2P-BASED WIKI FOR INTRA-ENTERPRISE KNOWLEDGE
MANAGEMENT

As it is common today for enterprises to be present at various globally distributed locations, the
need for a shared platform arises to support the collaborative knowledge management. A P2P-based
wiki may improve intra-enterprise content management.
Corporations with their organization in many different units show complex structures regarding

the number of domains or management of knowledge content. For example, each of the partici-
pating departments may maintain its own view of the enterprise world. Usually, a unit represents
an organizational-related or product-related task, as accounting or marketing. In different units,
however, different content vocabulary may be used.
The usage of a wiki promises to combine the sharing of inter-enterprise knowledge with low

administration efforts. From a technical perspective, a wiki basically represents a network-based
information collection. Awiki’s visual representation shall be designed using some template scheme,
which defines place holders for the actual content. The actual content shall be selected according
to some rules on-demand and it shall be integrated within the relevant part of a corresponding wiki
page dynamically at runtime.
Figure 1 illustrates the basic architecture of a centralized wiki system. It is the challenge for a P2P-

based system to distribute content management functions and storage but to preserve consistency
in the face of concurrent requests.
The scenario assumes that more and more projects require collaboration of geographically

distributed persons to exchange content data, or rather knowledge; these persons may belong to
different departments, which demands for collaboration across hierarchical boundaries—a drawback
of centralized client–server-based systems [2]. P2P content management shall simplify knowledge
cooperation by administrating content in one virtual place. This way, it shall facilitate the dissemi-
nation of content to all the interested parties. Thereby, the inherent degree of distribution shall be
transparent to users.

Technical requirements

In the following, the scenario is analysed regarding requirements at (i) content support, (ii) system
function support, and (iii) P2P support.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:831–871
DOI: 10.1002/cpe

834 U. BARTLANG AND J. P. MÜLLER

Read
Functionality

Update
Functionality

Query
Functionality

Database
(Content)

Search
Index

Page Management
Centralised

Content
Management

Index Creation

Query
Requests

Update
Requests

Read
Requests

Peer-to-Peer
Content

Management

Figure 1. Towards a P2P-based wiki architecture.

At content level, administration of the content shall support the dealing with huge amounts of
wiki pages and potentially large media files. For example, a wiki page shall be composed of human-
readable, simplified markup syntax. In addition to its textual information, it shall be able to embed
files, for example, static content like pictures or streaming multimedia. It shall also enable the
usage of flexible storage policies for coping with different types of content: for example, different
methods may be used to store small-sized, text-based content or large-sized, multimedia content.
Each wiki page shall have a unique identifier and may have cross-references to other pages

building a tree-like content structure to allow basic navigation. Hereby, a single page may be
divided into several sections to store its current content information and links. A page may be even
configured as a kind of symbolic link to redirect all of its read requests to another page. In addition,
content may be decorated with meta information such as keywords or tags representing authors
and other categories. For example, a tag as some freely chosen user-generated metadata refers to a
certain aspect of a content object. Multiple tags shall allow some content to belong to more than
one category—which is a limitation of the traditional hierarchical organized content.
At the functional level, the life cycle of wiki pages is assumed to be characterized by continuous

modifications: new pages may be created, existing pages may be read or updated. The corresponding
tags may be dynamically created and may change over time. The scenario assumes that users
are required to see an ever-processing view of the shared content, even if high-level conflicts

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:831–871
DOI: 10.1002/cpe

A FLEXIBLE CONTENT REPOSITORY TO ENABLE A P2P-BASED WIKI 835

occur: versioning shall be enabled to provide mechanisms to detect such conflicts and to support
their resolution. Hence, the update of a page shall result in the creation of a new page succeeding the
previous version. Once created, a certain version never changes. For each page, some history struc-
ture shall exist to link all the versions together to allow the tracking of changes. Change tracking
shall support push-based notifications, if changes apply to content of interest. The employment
of an access control mechanism shall allow for user authentication to support the enterprise-wide
or department-wide modification of content. While a single version never changes, the editing of
shared content may result in concurrent modification requests: a locking primitive shall enable
the exclusively blocking of content against undesirable update access. Query functionality shall
support the passing of tags or keywords to search for pages. Thereby, the query part of the archi-
tecture shall be separated: it shall use a separate search index generated from the text of pages
periodically.
At P2P level, the system shall be self-organizing to handle continuous arrivals and departures of

peers; for example, as a result of failures. It needs to provide a decentralized method to determine
the placement of content, as the physical location of content may change regularly.

Business benefits

From a social point of view, a wiki is formed by a community, which wants to share its knowledge.
The scenario claims that it is a great opportunity for an enterprise to employ the wiki concept as a
shared intra-enterprise method to exchange and to manage knowledge: the effective management
of available knowledge is a deciding competitive factor for enterprises [2]. Access to the relevant
knowledge and its utilization are especially desired with respect to shorter product design and
development cycles.
However, the scenario identifies the problem to provide access to distributedly stored content and

to issue such content in a network of geographically distributed locations with even mobile users.
The usage of collaborative tagging [9] may help to facilitate and to augment searching for content;
it may even increase the possibility of content discovery from the so-called long tail [11]. For
example, different departments may tag the same content with different keywords—suited for their
own working domain. It is assumed that important content will be usually more often cross-linked
with the effect that it is easier to find.
In contrast, a state-of-the-art strategy of intra-enterprise knowledge management may show

several drawbacks: the usage of separate knowledge management per department may result in
incomplete, inconsistent, and outdated content. Reorganization of department structures may even
complicate the conflation of content. From bad to worse, experts who leave the enterprise may leave
its often high-value content orphaned: for example, if content is only locally available, it cannot be
reused in an efficient way.
The scenario assumes that the amount of the available knowledge content in an enterprise

is growing permanently. This growth complicates the management and maintenance of content.
A state-of-the-art approach uses a centralized architecture to implement the application logic of a
wiki and to administrate its content. For example, the usage of geographically distributed cache
servers for content distribution may benefit read requests. However, update requests target the
central database. The centralized architecture raises both technical and financial issues for its
operator.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:831–871
DOI: 10.1002/cpe

836 U. BARTLANG AND J. P. MÜLLER

• From a technical point of view, a central wiki architecture shows modest scaling, because of
employed static, central components. This is especially the case in the face of large media data
or the great amount of abrupt content requests, so-called flash crowds [12]. Thus, employing
a single site would be a bottleneck for the system.

• From an economic point of view, a complete replication of all content at each department site
is often neither practical nor cost-effective. However, centralized components would typically
constitute the majority of the costs of such system. This raises the question of spreading the
infrastructure costs in a fair manner among the departments. In addition, power consumption
may impose a restriction as to how large the central location is able to grow in size.

This paper takes the position that the issues described above can be solved by using a P2P-based
content repository to implement a wiki application.

BACKGROUND AND RELATED WORK

To our knowledge, no content repository system has been proposed that is flexible enough to
implement a P2P-based wiki combining the scalability of the approach with fault-tolerance and
consistency properties.
Considering the related work for future Web 3.0, for example, Urdaneta et al. [13] indicated

a proprietary architecture of a decentralized wiki engine using a gossiping protocol for the data
management of dynamic content. However, their proposal is not evaluated and it does not support all
the functional properties (e.g. locking, observation) nor the non-functional properties (e.g. flexibility,
consistency) of our approach. In addition, there exist several P2P-based systems to enable the
collaborative content distribution (e.g. to cache Web pages) [14,15]. But, all these systems focus
only on static content and do not consider collaborative working on the dynamic content.
However, the presented system builds on the previous work in the area of content repositories,

P2P systems, and group communication, as described in the following.

Content repositories

There exists no uniform definition of a content repository. Bernstein [16] refers to a repository as
‘a shared database of information about engineered artefacts, such as software, documents, maps,
(. . .) and discrete manufactured components and systems (. . .). Designing such engineered artefacts
requires using software tools. The goal of a repository is to store models and contents of these
artefacts to support these tools.’ Following Bernstein, a repository is similar to an object-oriented
database (OODB), as repository systems enable applications ‘to store, access, and manipulate
objects, rather than records, rows, or entities’ [16].
An additional characteristic is that both repository systems and OODB systems have evolved

from the trend to drive application functions into the underlying storage system. However, Bernstein
identified the differences between the two systems [16]: one major one is the information model of
a repository system. In database terms, the information model is comparable with a schema for the
repository, as it defines a model of the structure and the semantics of the entities that are stored in
the repository. The applications that use a repository utilizes its information model to interpret the

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:831–871
DOI: 10.1002/cpe

A FLEXIBLE CONTENT REPOSITORY TO ENABLE A P2P-BASED WIKI 837

Data Hierarchy

Access Control

Hard/Soft Links

Binary Data

Read

Write

Structured Data

Data Integrity

Querying

Transactions

Locking Observation Versioning Full-Text Search

File Systems Database Systems

Content Repository

Figure 2. Context of a content repository in relation to file systems and database systems.

repository’s contents. This is a difference to database systems, where developers usually assume the
information model to be part of the application level. Thus, a repository would support higher-level
semantics than OODB systems [16].
A content repository can be described as a generic application data store that is able to handle

both small- and large-scale data interactions and to deal with structured and unstructured content
[17], text and binary data. This way, a repository can be assumed as some high-level information
management system that is a superset of the traditional data repositories.
Figure 2 illustrates the potential scope of a content repository. The basic task of a content reposi-

tory is the providing of content storage. Usually, a content repository combines the basic features of
file systems and database systems [18]. For example, file systems typically support hierarchical file
storage of binary data and several access control concepts. In contrast, databases enable typically the
storage of structured data, provide integrity control, querying functions, and support transactions.
Generally, a content repository integrates, in addition to basic storage capabilities, value-added
services commonly required by content-centric applications like locking, versioning, or observation.

P2P systems

The P2P model is an alternative to the traditional centralized, client–server computing model: in
its purest incarnation, the P2P model treats all of its participants as equal peers and has no concept
of a dedicated server entity. There exist several efforts to define the essential characteristics of P2P
systems. Milojicic et al. refer to the term P2P as a class of systems and applications that employ
distributed resources to perform a critical function in a decentralized manner [19]. These resources
may encompass computing power, data, network bandwidth, and presence. The critical function may
be distributed computing, data sharing, communication, or platform services. Decentralization may
apply to employed algorithms, data, metadata, or all of them. However, requirements may demand
to retain centralization in parts of the system or applications.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:831–871
DOI: 10.1002/cpe

838 U. BARTLANG AND J. P. MÜLLER

Table I. Scalability and lookup performance of different P2P overlay graphs.

Reliability Scalability Lookup performance

Centralized overlays Single point of failure O(#peers) Constant
Unstructured overlays Redundant lookup paths approx .3–7 No guarantee
Structured overlays Redundant lookup paths O(log#peers) O(log#peers)
Hybrid overlays Redundant index groups O(#peers/#parti tions) Constant

A core task of P2P systems is the support for searching of data, more precisely, to assign and to
locate data resources among peers. Such mechanism depends on two factors: (i) how the data, and
(ii) how the network are organized. The search mechanisms of P2P systems are rather data-oriented,
in contrast to the host-oriented ones for traditional networks [20].
P2P search employs P2P overlays, which are logical graphs among the peers. From a logical

view, the P2P overlay is situated above the physical network. Data within a P2P system are
identified by using indexing methods. There exist different overlays regarding their character-
istic topology showing different non-functional properties: for example, Napster’s [21] centralized
overlay, Gnutella’s [22] unstructured overlay, or Chord’s [23] structured overlay.
A structured overlay topology enforces a decentralized indexing structure among the peers to

enable a deterministic lookup. All peers share the same namespace, especially, each peer’s physical
address is mapped to some logical identifier in the namespace using some consistent hash function
[24]. Each peer is addressable by such unique identifier and maintains a set of routing information
about other peers, for example, its neighbours.
A popular application of such overlay is a distributed hash table (DHT). A DHT supports a

key-based placement of data objects offering a hash-table interface: in analogy to a hash table’s
buckets, each peer is responsible for a certain part of the key space; the mapping of data objects
to the peers’ namespace is done applying the structured overlay’s hashing method. However, a
drawback of DHTs is their typical focus on immutable data resources when using replication.
Another inherent property of the key value-based mapping is the support of a single characteristic
per data object. Thus, such mapping does not directly support arbitrary queries as range queries.
In addition, the keyword-oriented approach fosters hotspot issues for popular areas, and the tight
coupling between the overlay structure and the rigid mapping function may cause some overhead
concerning the insertion and deletion of data objects, which may be non-trivial under churn [20].
Thus, most DHT-like systems either avoid the difficulty and typically focus on immutable data
resources when using replication strategies [25,26], or rather limit the concurrent data resource
modifications allowing only one dedicated modifier, the resource’s owner [27]. Those rare P2P
systems that allow concurrent atomic data operations [28–30] are usually monolithic reinventing the
wheel for their storage needs with a focus on their specific application domain, overlay, and strictly
on mutable data resources. However, these systems address only part of a content repository’s
functions, for example, they usually neglect locking or complex querying.
To cope with these issues, the approach of this paper is to use a hybrid P2P overlay, which is char-

acterized by combining centralized and structured P2P overlays: (i) the structured overlay represents
the basic scope of all peers in the system, that is, the back-end. (ii) The central structure of such
overlay is represented by well-defined groups of tightly interconnected peers, that is, P2P service
groups. Table I investigates the suitability of different overlays, which motivates the taken approach.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:831–871
DOI: 10.1002/cpe

A FLEXIBLE CONTENT REPOSITORY TO ENABLE A P2P-BASED WIKI 839

One of the major drawbacks of centralized overlays is their reliance on a single index. The hybrid
overlay overcomes this limitation by distributing routing functionality on groups of indexing peers
residing in a structured overlay back-end. Thus, if the lookup schema can be partitioned among
several index groups, the routing state for each one shrinks. Regarding the lookup performance,
only the corresponding index group needs to be addressed to obtain a data object’s location. Then,
the data object’s host can be contacted using the structured overlay. At its back-end, the structured
overlay introduces a consistent mapping between a data object’s identifier and the hosting peer.
Thus, data load can be distributed across the participating peers. The advantage of such overlay is
that each peer is responsible for a certain region in the overlay and that joining or leaving of peers
only affects neighbouring peers, immediately. The logical topology of a structured overlay provides
some guarantees on the overlay lookup costs achieving high routing efficiency [19].

Group communication

This paper introduces P2P service groups as clusters in the structured overlay back-end. Such groups
use group communication for implementing a intra-groupmessage exchange. Group communication
has been addressed by many researches for over two decades. The ISIS project initiated the basic
work on the group communication paradigm [31,32]. The survey of Défago et al. [33] gives an
extensive overview of about around 60 known group communication systems.
However, if existing P2P systems like JXTA [34] support the syndication of peers to peer groups

no group communication semantic is provided preventing consistent message exchange, on the one
hand. On the other hand, group communication systems are usually not integrated to P2P systems
as they do not focus on issues of flexible fault-tolerance in such dynamic environments. In contrast,
we present a consensus-based group communication stack for P2P service groups to implement
replicated index data structures.

GENERIC SYSTEM ARCHITECTURE

This section introduces (i) the logical view of the content repository system, (ii) its functions, and
(iii) its software architecture to typify the substantial assignment of functional responsibilities.

Content repository model

The repository model defines the meta model to identify and structure content data within a repos-
itory on a logical level from a user’s point of view; it supports to express functional operations
on content data. The concrete implementation translates these operations into actual corresponding
actions—affecting its used (P2P) storage subsystems. The repository model adopts the Content
Repository API for Java (JCR) [7,35], which is defined as the open standard to improve the appli-
cation interoperability [3].

Workspaces and items

The repository model offers a generic, hierarchical content data model, and several levels of func-
tionality for content services on a logical level: a repository consists of an unlimited set of named

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:831–871
DOI: 10.1002/cpe

840 U. BARTLANG AND J. P. MÜLLER

workspaces; each workspace establishes a single-rooted, virtually hierarchical, n-ary tree-based
view of content items.
Content items are divided into nodes and properties. Nodes basically provide names and structure

to content, which is actually stored in a node’s properties. Regarding the content classification,
there is no explicit distinction made between real content or meta content. A node may have zero
or more child nodes, and perhaps zero or more associated properties. Properties themselves cannot
have children and are always leaves in the logical tree of aworkspace.

Namespaces and item types

The repository model is generic to support the different types of content items. For their distinction,
(i) a namespace concept and (ii) an item-type concept are used. Adopting the concept used in
XML [36], namespaces may prevent naming collisions between item-type names.
Each node is typecasted using namespaced, potentially extensible, names. Node types allow the

establishment of standardized data-type constraints—for instance, which child nodes and properties
a node is allowed or required to have. A node is classified by exactly one primary node type.
In addition, a node may be equipped with multiple extra node types. An extra node type acts as a
decorator to add or enforce additional characteristics to those of a primary node type, for example,
to mark a node as versionable.
A property must have a certain type to define its expected content format. For example, this

allows the explicit distinction of binary or string values.
To support the building of many orthogonal hierarchical views of the same underlying workspace

content special property types of weak and strong references are used. Their support shall abstract
from a single canonical hierarchy and shall benefit flexible content design strategies.

Variations on item access

Items can be accessed using either direct or traversal access. In order to uniquely identify each node
and ease direct access, it is always referenceable through a UUID, which is unique per workspace.
Consequently, a node is independently addressable from its position within the workspace hierarchy.
The traversal item accesses targets on walking through the content tree of a workspace, step by
step, using (relative) paths.

Content repository functions

In addition to the basic repository model, a content repository is constituted by a set of essential
functional building blocks, as illustrated in Figure 3.

Modular decomposition

The modular content repository approach (see Figure 4) considers the horizontal and vertical system
decomposition: for instance, horizontally, the distribution degree of content repository functionality
regarding the persistent storage support may vary—for example, the storage management for local

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:831–871
DOI: 10.1002/cpe

A FLEXIBLE CONTENT REPOSITORY TO ENABLE A P2P-BASED WIKI 841

Access Control
to Content Items

Locking
of Content Items

Query Access
to Content Items

Observation
of Content Items

Versioning
of Content Items

Sharing
of Content Items

Read Access
to Content Items

Write Access
to Content Items

Typecast
of Content Items

Content Repository
Functions

Content
Functionality
Processing

Content
Oriented

Processing

Content
Item Dependent

Functionality

Content
Item

Functionality

Figure 3. Functional components of a content repository.

or distributed workspaces. Vertically, different modules, for instance, are responsible for different
management tasks (as common to horizontal repository functionality).
Each of the architecture’s layers is briefly introduced and discussed in the following; whereas,

the persistent storage layer being a major topic is presented in more detail by the subsequent
section reflecting its interaction with transient storage in more detail. Different layers correspond
to different major system tasks. This is a novel approach, as usually systems do not distinguish
between these layers [3].
Content application layer: Content applications like a wiki interact through the content repository

API with the content repository system. That is, the layers below the content repository layer may
be transparent for it: it does not need to deal with peculiarities of the content storage.
Content repository layer: This layer represents the mapping of the logical repository model to

corresponding system modules. For instance, a handle to a workspace can be provided via a session,
received from the repository through login to some user credentials—these typically consist of a
username and a password to determine the user’s access rights. A session represents a long-term
connection between a content application and the content repository system; it basically acts as
a container to record content item modifications to transient, in-memory storage. In contrast, a
workspace represents the persistent storage layer.
At its core, the repository subsystem implements several registries and managers, which are

further organized in different subsystems:

• The nodetype registry is responsible for the storage and retrieval according to typecasting of
content items.

• The namespace registry deals with the support for the namespace concept.
• The session subsystem basically uses a transient item state manager to cope with an item’s

transient state per session. Once a content item is read by a session, it is cached by its transient
item state manager. Thus, modified items are only visible to the same session, that is, in its
transient storage. In addition, such item state manager is responsible to interpret and resolve a
path to an item, or to automatically expand a namespace prefix and to store the full namespace
in the repository.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:831–871
DOI: 10.1002/cpe

842 U. BARTLANG AND J. P. MÜLLER

• The workspace subsystem uses several managers to deal with the repositories’ functional
building blocks. It depends on the nodetype registry and the namespace registry to create
consistent items in persistent storage. It uses (i) a query manager to support query access to
content items, (ii) a version manager to support versioning of content items, (iii) an observa-
tion manager to support observations of content item changes, and (iv) a sharing manager to
support sharing of content items. All these managers use the persistent item state manager to
actually obtain read and write access to a workspace’s content items—that is, to get an actual

Content Application Layer

NodeType
Registry

Namespace
Registry

Version
Manager

Persistent Item
State Manager

Query
Manager

Observation
Manager

Sharing
Manager

Locking
Manager

Content
Repository

Layer

Transient Item
State Manager

Session

Workspace

Repository

Content Repository API

Item Access
Manager

Policy
Layer

Persistent
Storage

Layer
Local/Distributed Back-End

Local/Distributed Back-End

Filesystem
Policy Manager

Database
Access Manager

P2P
Policy Manager

Filesystem
Access Manager

Database
Policy Manager

P2P
Access Manager

Persistent Storage Policy Management Interface

Persistent Storage Access Management Interface

Figure 4. Layered architecture of the modular content repository decomposition.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:831–871
DOI: 10.1002/cpe

A FLEXIBLE CONTENT REPOSITORY TO ENABLE A P2P-BASED WIKI 843

content item view of persisted data; the persistent item state manager plays a central role in this
subsystem. It represents the connection between the workspace scope and the used persistent
storage back-end subsystem; it encapsulates the logic to actually store and retrieve content-item
data using path-base or UUID-based addressing—always using corresponding policy managers
of the policy layer. A persistent item state manager is statically configured per workspace;
it is able to distinguish between metadata and content data management. A persistent item
state manager shall trigger the observation mechanism, if interests in the corresponding item
changes exist—usually reflected by some access manager of the persistent storage layer. This
shall enable an observation manager to asynchronously subscribe for changes in a workspace.
A locking manager and an item access manager use a persistent item state manager to enforce
their functions, that is, the support of locking and of access control for content items. Accord-
ingly, the persistent item state manager needs to obey such enforced restrictions.

If changes made in a certain session shall be persisted to a workspace, there may be different
storage access managers available, for example, a P2P access manager; however, a policy layermay
be installed above the persistent storage layer to enable the additional configuration management.
Policy layer: The policy layer comprises a subsystem to deal with local and distributed persistent

storage back-ends; such a subsystem administrates the scope of different storage policies that may
be used by the content repository layer to actually access the persistent storage layer. Therefore,
it uses policy managers matching corresponding access managers of the persistent storage layer.
There exists a one-to-one relationship between a policy manager and an access manager.
As illustration, the usage of a P2P policy manager enables the definition of potentially fine-

granular policies at P2P-data level—rather than on item level. Thus, each type of content or rather
content instance may have its own policy; some examples of storage policies in P2P-case may
include (i) the life of content, that is, if content shall be stored infinitely or temporarily; (ii) the
actual storage location of content, that is, if content shall be stored at a specific peer or if content
shall be dynamically moved to another peer if some dedicated peer has not enough storage space
left, and (iii), the replication factor of content data resources.
Persistent storage layer: The persistent storage layer defines the subsystem to deal with local

or distributed persistent storage at data level. It is indirectly usable by the persistent item state
manager of the content repository layer by exposing a generic persistent storage access management
interface. Using this interface, several access managers for persistent storage may be used, for
example, the P2P access manager.
Such P2P access manager supports a mapping between a workspace view of content at item

level and a raw data view at back-end storage level; thus, it is necessary to use some interpreter to
recognize raw data as content items, that is, to retrieve item semantic from raw data resources.
The following section focuses on the system modules, which mainly interact with and are affected

by persistent storage management.

Persistent storage management

The modules of the workspace subsystem of the content repository layer interact with the persis-
tent storage layer by the usage of the generic persistent storage access management interface—
neglecting the policy layer for the moment. Together, the subsystems are able to support lookup,

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:831–871
DOI: 10.1002/cpe

844 U. BARTLANG AND J. P. MÜLLER

Table II. Workspace-supporting operations of the persistent storage access management interface.

StateI tem load (UU I DI tem)
Void store (StateI tem1, StateI tem1,..

StateI temn)
Boolean exists (UU I DI tem)
Void delete (UU I DI tem1, UU I DI tem2,..

UU I DI temn)

StateI tem1, StateI tem1,.. StateI temn query+ (language, statement)

Void registerObserver+ (Listener, Path I tem, T ypeEvent,
Scope)

search, and modification of the persistent content items using some (distributed) access structures.
They represent the content repository’s major internal components to deal with the persistent storage
of content items.
Regarding the persistent storage management, an important goal is the support of flex-

ible fault-tolerance strategies. Accordingly, suited modules of the policy layer may be added
on the top of storage access managers to support various levels of data replication, for
example.
Considering the functional scope of the persistent storage layer, Table II states the major

operations of the persistent storage access management interface regarding the linking of the
workspace subsystem. The operations basically reflect raw data processing at system level.
However, the support of two additional operations is defined as optional: (i) query and (ii)
registerObserver. Supporting these two optional operations shall enable to increase the
overall system performance by pulling functionality down to tailored methods as offered by the
hybrid P2P back-end.
The interface relies on the concept of an item state (stateItem) to act as container for content

items: that is, workspace modules use such states to persist essential information of its functionality
as metadata. For example, a query manager is able to annotate certain keywords to support full-
text search; a version manager is able to annotate the version information, or a locking manager
annotates locking information, for example, the existence of a valid lock.
Considering the persistent item state manager, an item state shall reflect the item’s workspace

name (path) and it’s UUID:

• As every item is addressable by a UUID, the load operation is responsible to read an item’s
state from the persistent storage.

• Accordingly, the store operation is responsible to persist a set of one or multiple item states.
Such item states may reflect the corresponding item-lock or rather item-unlock efforts; in
addition, it shall be assumed, that (i) during the processing of an item’s state corresponding
observation events may be triggered asynchronously; and (ii) item states may be analysed and
be indexed for query purposes according to their type.

• The exists operation basically verifies the existence of a certain item in the persistent
storage.

• The delete operation is responsible to remove a certain set of items from the persistent
storage.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:831–871
DOI: 10.1002/cpe

A FLEXIBLE CONTENT REPOSITORY TO ENABLE A P2P-BASED WIKI 845

• The optional query operation enables a more sophisticated access to persistent storage and
provides a generic search interface: it expects the denoting of the used query language and
the actual query statement. If successful, the operation shall deliver all item states that match
a query.

• The optional registerObserver operation supports a workspace’s observation manager
and allows to register a certain listener for a certain path—being notified if a certain event
occurs in shallow or deep workspace scope.

Usually, an access manager of the persistent storage layer conceptually consists of two functional
modules: a metadata manager and a data manager.
Metadata management: Ametadata manager represents the logical level to deal with the metadata

information. It is responsible to administrate all of an item’s meta information that is relevant to
workspace functionality, such as lookup support, query support, observation support, or locking
support. It stores a path to UUID and a UUID to path two-directional mapping to support the
lookup of items, or some kind of index data structure [37] to support rich queries. Thus, such
metadata reflects the system’s item structure, but potentially excludes actual data (or the item
contents), which are administrated by a data manager, respectively. For example, the P2P back-end
system supports full-text search by delegating metadata management to special P2P service groups
(indexing groups).
Data management: A data manager shall persist content data (blocks) for given addresses:

it basically controls I/O operations for a given data store. Thus, a data manager may be
used to implement some raw content data (blob) storage. Such manager operates at a very
low level and does not need to understand all the complexities of the repository’s operations,
but essentially just needs to be able to persist and retrieve a given datum based on its identi-
fier. For example, the P2P back-end implements data management on the top of its structured
overlay.

Flexible content item policies

The content repository system is intended to support different content storage policies in a flex-
ible manner. For example, such policies may reflect how content may be actually persisted and
accessed. It supports different granularity level hierarchies to be built by grouping aggregations
of objects to represent larger objects (collections); regarding the granularity level, data objects
may be restructured and build from atomic values on demand. Thus, content data must adhere to
some global uniform semantics to deal with and to ease content integration—specified by storage
policies.
Therefore, an item type concept serves to formulate content item policies in a flexible manner.

More precisely, a workspace’s policy manager may interpret a node’s extra types to select and
apply the suited policy per back-end storage. The policy is accordingly annotated to the item’s
representing data resource. An extra type allows an item to be marked as a kind of special—for
example, to mark it as being versionable or more precious—at content application layer. However,
the applied policy may be transparent, as it is applied at policy layer. Thus, the node types may be
used to annotate contents with type information and to enable their individual storage. Such policy
support enables the flexible adjustment of its parameters to implement the different design goals.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:831–871
DOI: 10.1002/cpe

846 U. BARTLANG AND J. P. MÜLLER

In the following, some examples of semantics that may be settled by a policy are given:

• A node resource enables to actually embed property resources—thus, their values, too. This
facilitates flexible policies, which may actually embed property resources containing small
values, but place external links for property resources containing large values. The policy may
state a certain threshold value per corresponding storage access manager. This may even allow
a storage access manager to split up such item unit if the limit is exceeded dynamically at
runtime.

• Replication control allows for the determination of the degree of replication and of the place-
ment of replicas. Regarding the level of fault-tolerance per item resource, the said policy
may determine the number of replicas per storage back-end. Under certain circumstances it
is desirable to expose these details to the content application layer; for example, to allow
administrators to control such replication scheme.

Internal peer architecture

A peer’s internal structure is represented by a generic peer service architecture, as depicted in
Figure 5.
A peer’s service architecture basically consists of two major components, a local host abstraction

and a local service container [38]. Hence, a peer is made up of hardware and software resources.

Local host abstraction

The local host abstraction serves as design element to represent the local system view of a peer.
However, a general classification of a peer is difficult, as there exists a wide variety of resources
that may be aggregated across peers. For instance, one approach to classify these, is in terms of
resources offered by some physical peer device, as CPU processing power, bandwidth constrained
network connections, energy consumption, or primary and secondary storage. In addition, each peer
usually shows a certain probability to be on line and available to the system. Each peer, however,
provides a limited number of local hardware resources; and in contrast to software services, these
resources cannot be copied or transferred over a network.

Local service container

The local service container follows a service-oriented system design approach to support the
dynamic service deployment. Every peer is modelled as a service providing access to the different
computational resources of its host. Similarly, each peer provides a container to host other services.
This motivates a flexible service model optimized for the dynamic domain of P2P systems. Services
may be dynamically integrated into a peer’s local service container using a mechanism for dynamic
service integration [39]. The services can be divided into three different layers—according to their
functional scope:
Local service layer: This layer provides services with some kind of local functional scope. A

local storage access service offers access to a peer’s local storage (devices); for example, some
key-based storage. A local network access service provides messaging on the top of a peer’s

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:831–871
DOI: 10.1002/cpe

A FLEXIBLE CONTENT REPOSITORY TO ENABLE A P2P-BASED WIKI 847

Figure 5. Peer service architecture.

local connections to physical networks; for example, the support of message-communication using
TCP/IP or UPD/IP. As mentioned, the dynamic code loading service is a facility to integrate
additional services to a peer’s local container dynamically at runtime.
P2P service layer: This layer provides services with some kind of distributed functional scope—

the services shall enable to build a P2P-based communication network. In order to interact with
each other, a peer needs to offer a set of such essential P2P service functionality and common
interfaces. For example, a peer ID service assigns some unique identifier per peer instance. Such
service is required by a peer membership service, which manages the joining and leaving of peers,
or the transparent updating of its physical network address. Both of these services are used by a
peer overlay routing service, which implements a certain P2P overlay routing algorithm to create
a distributed overlay routing structure using the assigned peer identifiers. The peer communication
service uses such routing service to enable peer messaging independent from an underlying physical
network—with the help of the assigned peer identifiers. A peer group communication service
enables peers to syndicate into groups, and send and receive group messages—similar to group
communication. The aim of syndicating peers into groups is to enable services that are collectively

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:831–871
DOI: 10.1002/cpe

848 U. BARTLANG AND J. P. MÜLLER

provided by such groups as a whole (group services), rather than provided by individual peers
(peer services). Peers may join or leave a group considering some access policies. However, the
internal group management should not be visible to the outside, as well as the internal of services.
For instance, the implementation of fault-tolerant group services may enable to tolerate crashes of
group members.
P2P application layer: This layer contains the various P2P applications that may be implemented

on top of the other layers. The peer architecture enables choices of multiple service implementations
for each layer, and P2P applications may be combined with various P2P overlays without any
modification. For example, a replicated indexing service enables a fault-tolerant storage of an index
data structure to implement the metadata management part of a storage access manager for a content
repository—tailored for hybrid P2P overlays.

P2P BUILDING BLOCKS

This section presents the major building blocks of a P2P access manager. It explains (i) the hybrid
overlay structure, (ii) P2P service groups, and (iii) the used method to achieve flexible atomic data
management for the P2P back-end.

Hybrid system structure

Figure 6 shows the layered architecture of the hybrid approach offering a two-tier hierarchy: (i)
generally, each computer node is represented by a peer in the DHT layer of the system, the latter
being the structured aspect of the system’s overlay. (ii) The P2P service group layer enables different
peers to syndicate into groups, which form the central aspects of the system’s overlay.
This basic concept of a hybrid overlay is the basis to use P2P service groups as building blocks to

implement a persistent content storage back-end using the decoupling of metadata management and
data management; as already mentioned, P2P service groups are introduced as concepts to support
implementing a replicated index to administrate the metadata of a content repository’s workspace.

p
1

p
2

p
3

p
8 p

7

p
5

p
6

p
4

p
2

DHT Layer

P2P Service Group Layer

p
4

p
3

p
6

Figure 6. Hybrid overlay architecture.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:831–871
DOI: 10.1002/cpe

A FLEXIBLE CONTENT REPOSITORY TO ENABLE A P2P-BASED WIKI 849

Regarding this implementation, there exist two different roles of system peers: indexing peers
and storage peers. As already indicated, the reason lies in the nature of DHTs: DHTs provide
a simplified put–get interface to efficiently store and retrieve content resources by keywords, for
instance, UUIDs; unfortunately, their support for more sophisticated queries, such as range queries
and semantic queries over large data sets, for example, a workspace’s distributed item tree is difficult
concerning certain non-functional requirements [38].
Storage peers enable the key value-based storage of a workspace’s content resources. Basically,

every system peer not acting as an indexing peer is considered a storage peer. Therefore, each
storage peer offers local storage capacity to store the actual content data of the repository; that is,
the data management part is delegated to the DHT layer. Each peer hosts a service container with
a set of standard services to manage the service execution and to integrate services dynamically at
runtime; this mechanism enables equipping regular storage peers with indexing service capabilities
to act as indexing peers or to remove these capabilities again.
The major metadata of each workspace is, however, concentrated by corresponding indexing

peers, which are implemented by a P2P service group. Indexing peers may provide an advanced
querying interface for sophisticated queries, as required by the support of the persistent storage
access management interface. To enhance their internal communication latencies, indexing peers
use the mentioned group communication module to maintain a separate pool of connections to
other indexing peers—in addition to normal DHT connections. In the following, the set of indexing
peers is referred to as indexing group. A workspace’s metadata may be injected at an arbitrary peer
of the indexing group. Afterwards, it is internally disseminated through a (group) communication
protocol. Thus, an indexing group acts as a kind of an island within the DHT layer to support
certain operations more efficiently: a workspace index may be distributed or shared among those
peers and involves all system peers—a policy may be used to determine the size of such indexing
group. Using such policy, an indexing group is able to adapt its size and to integrate new peers
to support the resilience and load sharing. However, the integration of new peers may require the
assistance of consistent migration decisions of a workspace index; that is, which information should
be transferred to a new member.

Reconfigurable P2P service groups

P2P service groups provide a manner to break the symmetry of peers and to exploit their diversity.
Intuitively, a peer group represents some kind of central component in the P2P overlay by concen-
trating a certain service to a certain set of selected peers. Hence, it basically represents a group
of peers dedicated to execute a common group service. A P2P service group may be constructed
ad hoc, as soon as a group service is ready to be deployed in the system. Thereby, such P2P
service group is reconfigurable: (i) peer group memberships can change dynamically at runtime;
in addition, the offered service can be (ii) deployed and (iii) reconfigured dynamically at runtime
applying some policy. The life cycle management of these groups includes the discovery of suitable
peers. Hence, a P2P service group represents some kind of partitioning scheme of the world of
peers; for example, to foster the performance, communication, or logical locality. In addition, the
cooperation of peers may provide reliability of the service execution. However, peers of a service
group may take certain roles identifying their responsibility regarding the group formation and the
execution.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:831–871
DOI: 10.1002/cpe

850 U. BARTLANG AND J. P. MÜLLER

As hybrid-overlay aspect, P2P service groups are designed to run on the top of a structured P2P
overlay. P2P service groups serve as the method to implement a distributed, replicated, and fault-
tolerant repository index. An important aspect of the concept is the establishment of a consistent
inner-group communication mechanism. Therefore, such service group uses a generic consensus
module as an inner-group communication component [40] to support the building of replicated state
machines. The special aim of replicated P2P state machines is to benefit repository functions working
at deep operational scope of a workspace’s distributed content tree: the replication of relevant
content item metadata on different peers is a useful redundancy for improving the availability. But
such multi-peer replication has the potential to foster the performance, too; on the one hand, the
selecting of a nearby group peer to serve a query request may result in shorter service time. On the
other hand, fewer peers and communication messages may be involved in such query process within
a group; for example, no overlay lookup costs may be required to send messages between replicas.
The challenges for such P2P group communication system comprise: (i) the consistent adapting

of a group to dynamically changing members, (ii) the support of service-specific ordering semantics
on the order of delivery of messages, and (iii) the providing of several fault-tolerance semantics
applying some policy. The usage of distributed consensus algorithms is an established way to imple-
ment a common group communication system, which supports total message ordering. However, the
system additionally provides mechanisms supporting its (re)configurability. Unlike other systems, a
P2P service group communication instance can be configured to work with different failure models
and low-level communication protocols without changing the service part. In addition, different
failure models, protocols, and their runtime parameters (for example, time-out limits) can even
be reconfigured dynamically at runtime without losing consistency, especially in case of failures.
Reconfiguration at runtime promises for a service to adapt to access patterns and environment
conditions for gaining the optimal performance and fault-tolerance at the same time. As the recon-
figuration method is transparent to the service logic, it may be even initiated automatically by the
underlying system.
For the implementation of an infrastructure for fault-tolerance, this has two important impacts:

first, best service quality will only be obtained if the infrastructure is flexible to allow service-
and environment-specific tailoring—depending on the requirements of a certain service and the
properties of the environment. Second, the infrastructure has to support flexible runtime adaptation,
as both the needs of the service and the properties of the environment may change dynamically
at runtime. Faced with the need of an adequate support for tailoring and runtime adaptation at the
P2P group-communication level, existing systems for group communication could not meet the
requirements regarding these issues. Active replication requires totally ordered multicast semantics
within various models of fault (for example, crash-stop, crash-recovery, or Byzantine), which are
optimized for the specific service requirements and environment properties. The proposed P2P
group communication system uses an encapsulated consensus module to obtain total order. Many
specializations of this generic module exist and thus provide an ideal basis for application-specific
tailoring. These specializations include the seminal Paxos algorithm [41] and existing variants for
low latency as well as for fail-stop, crash-recovery, and malicious failure models. Group members
may transparently decide to replace the instantiation of the consensus module with another one to
tolerate different kind of faults or to adjust parameters that influence the performance. In addition, the
low-level communication mechanisms may also be dynamically configured, for example, applying
TCP, SOAP, or TLS.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:831–871
DOI: 10.1002/cpe

A FLEXIBLE CONTENT REPOSITORY TO ENABLE A P2P-BASED WIKI 851

Fault-Tolerant Index

Data Structures of
Fault-Tolerant Index

Communication
System

File Transfer Protocol
for Checkpoint Exchange

Consensus-Based P2P
Group Communication

I/ O

Local Storage

Network

Figure 7. Two dimensions of a fault-tolerant workspace index.

Figure 7 shows the two dimensions of a fault-tolerant workspace index: (i) a local dimension and
(ii) a network dimension.
Locally, each indexing peer maintains a view of the fault-tolerant index itself and the data

structures to actually create it. For the latter, an indexing peer is intended to administrate different
types of metadata; for example, the item namespaces, the mapping from paths to UUIDs, or relevant
inverted indices. All such data structures are kept in an indexing peer’s transient local memory and
persistent local storage. The usage of such replicated index enables a reliable update of an indexing
peer’s state without the risking of inconsistencies in case of peer failures: therefore, the generic
consensus module is used—accessed by the P2P group communication system.
An indexing peer’s local data structures of the fault-tolerant index shall reflect a historical record

of critical metadata changes. Modifications of the data structures need to be made persistently,
however, before being exposed to external peer requests. In order to increase the availability and
fault-tolerance, such workspace index is replicated among multiple indexing peers and a client’s
request is served only after flushing the corresponding record to disk, both locally and remotely—
using the consensus protocol instance. In order to increase system throughput, several operations
may be batched together. An indexing peer is able to restore its state by replaying the relevant data
structures. In order to keep their history small, however, a checkpointing mechanism may be used,
if the size reaches a certain limit. Thus, by restoring the latest checkpoint from local disk may only
require a limited number of index records. Outdated peers may access up-to-date information by
using some file transfer protocol for checkpoint exchange.
To sum up things, the described architecture is quite flexible as different overlay protocols may

be used at the first tier as well as at the second tier. Especially at the intra-group level, P2P service
groups may use different ways to establish the group communication. For example, if the size of
a group is quite small (less than 20 members), each member could track all other group peers and
may use group communication mechanisms to implement the intra-group communication. If the
group was larger (about 100 members), selected group members may be used to track all other
group members. Finally, if a group is large (about 1000 members), structured overlays may be used

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:831–871
DOI: 10.1002/cpe

852 U. BARTLANG AND J. P. MÜLLER

to implement the tracking and intra-group communication. In the context of this paper, however,
only quite small groups are assumed.

Interface

Considering the persistent storage management, the relevant workspace-supporting operations of
the persistent storage access management interface are supported by the system.
The Group component is the principal module of an instance of the P2P group communication

system: it shows the interface that is visible to a (peer) service. The interface offers, for example,
operations (i) to join, (ii) to leave, and (iii) to reconfigure a P2P service group by adjusting group
policies. Concerning policy changes, all reconfiguration actions are subject to the group’s consensus
and are delivered to all group members in total order. To support communication between group
members, the component offers methods to send and to receive (group) messages.

Modular group communication structure

Themodular design of the internal architecture of the consensus-based reconfigurable group commu-
nication system is outlined in Figure 8 [40]. The Group component represents the core of any
P2P service group. It implements the external interface that is visible to a service application and

Consensus

Group

Group Policy

Service

1 1 11

1

uses

Consensus-Based Group Communication System

...
BFT Paxos
Consensus

Classic Paxos
Consensus

Communication System

Figure 8. Modular structure of the reconfigurable consensus-based group communication system.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:831–871
DOI: 10.1002/cpe

A FLEXIBLE CONTENT REPOSITORY TO ENABLE A P2P-BASED WIKI 853

internally uses the Consensus component to obtain the total order of all group messages between
its members. The generic design of the Consensus component supports a variety of implemen-
tations, each with different quality-of-service properties. Both the Group and the Consensus
component use an instance of the Communication System, which provides low-levelmessaging
between participating peers. The configuration of all the three main components is described by
a given Group Policy. This policy, internally represented as a list of key-value pairs, is defined
at group creation time and may be changed at runtime by a dynamic reconfiguration process. For
example, a policy may define which peers are allowed to interact with a certain P2P service group.
The Communication System component encapsulates the specific low-level mechanisms

that are used for communication: it provides network independent addressing between group
members using peer IDswithout requiring an actual P2P lookup, handles message queueing, and re-
establishes connections after failures. This component represents a communication abstraction and
fully supports reconfigurability; depending on the available network abilities, different variants like
plain TCP/IP or UDP/IP connections, tunnelling via SOAP/HTML, encrypted TLS channels, or
the use of existing hardware multicast mechanisms can be supported [40]. The Communication
System offers an asynchronous (non-blocking) sending primitive to the using components: each
message is tagged with a message type to allow a direct delivery to the appropriate entity. The
group policy defines the instantiation to be used as well as corresponding parameters, like time-outs
for connection re-establishment.

Flexible atomic data management for the P2P back-end

As already mentioned, the hybrid overlay uses a DHT back-end. Combined with additional repli-
cation strategies such systems promise high availability for published data resources. A common
approach to enhance fault-tolerance in P2P systems is to store a certain data resource instance
replicated at different physically located peers, called its replication group. However, regarding the
support for atomic data operations replication comes at the cost of maintaining data consistency:
an atomic data operation on a certain resource has to be consistently applied to all of its replicas.
In this case, the existence of several replicas is crucial and raises the challenge if a data resource
could be modified concurrently.
The system uses DhtFlex [42] to enable flexible atomic data operations for replicated data; that

is, a distributed algorithm that is trimmed for such a highly concurrent and fluctuating environment,
where peers may fail with high rate, so-called churn [43]. DhtFlex bridges the gap between the
mentioned requirements of a DHT service and the benefits offered by a structured key-based routing
overlay. DhtFlex acts as a generic building block in a modular environment, as illustrated in Figure 9
[42], which is responsible for the complete data management including replication handling.
The query model of DhtFlex supports simple read and write operations for data items that are

uniquely identified by some key (UUID). It uses techniques that extend a DHT in order to deal
with the requirements emerging of supporting the content repository functionality. Hereby, DhtFlex
supports both immutable as well as mutable data resources and offers flexible consistency strategies
for atomic data operations. For example, once a certain version of a wiki page is defined, it remains
forever unchanged within the corresponding version chain.
DhtFlex imposes an annotates data resource concept to typify replicated data. This allows the

differentiation between data items and the efficient dealing with both immutable, as well as mutable

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:831–871
DOI: 10.1002/cpe

854 U. BARTLANG AND J. P. MÜLLER

Figure 9. Interactions of the major building blocks of DhtFlex’s system environment.

data resources. Especially for the latter, DhtFlex is able to provide strong consistency guarantees
enabling atomic DHT put and get operations. Therefore, it exploits techniques of Leslie Lamport’s
famous Paxos algorithm to coordinate the recast process of a data resource’s replication group.
DhtFlex serializes concurrent put and get requests over the master of a replication group in order to
accelerate these operations. It allows system growths to large scales and updates to be made from
anywhere in the system.

Interface

The DhtFlex algorithm associates each data item with a unique key or id; it offers the two common
DHT operations: put(id, value) and get(id). The put(id, value) tries to commit a value for a certain
id to the system: DhtFlex locates the peer that is responsible to host the id and publishes the value,
if successful. Considering the underlying structured P2P overlay, a hash function is applied on the
id to generate a fixed size identifier; this identifier is used to determine the peers that should be
responsible for serving the id. The get(id) operation tries to determine the id’s responsible peer in
the P2P overlay and returns the corresponding current valid value, if successful.

Partitioning strategy

DhtFlex employs the structured overlay part for the data resource placement. The content item view
of the DhtFlex approach is to regard these as uniquely addressable, single uniform objects. It is
easy to see that this model naturally maps to the used key-based routing overlays.
Thereby, DhtFlex offers a DHT abstraction from the routing of messages between peers: for

example, a peer that sends a message usually does not know the destination peer a priori; a key is
used to identify the target peer rather than an explicit destination address. This is a great difference
in comparison with the traditional routing mechanisms, for instance, as used in IP routing. The
abstraction layer is responsible to forward a message msg that carries key towards the corresponding
root peer of this key in the P2P overlay. For the common overlay protocols, the root is that peer,
which possesses the numerically closest matching identifier in comparison with the key.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:831–871
DOI: 10.1002/cpe

A FLEXIBLE CONTENT REPOSITORY TO ENABLE A P2P-BASED WIKI 855

However, as a dynamic peer environment is assumed, network conditions can change over time.
As a result, a key’s corresponding root may vary. Peers that enter or leave the network demand
the used overlay protocol to adjust responsibilities for affected key ranges; for instance, gaps in
the overlay resulting from down peers need to be closed. As DhtFlex does support crash-recovery,
as well as crash-stop failure models, it is able to exploit positive dynamics of a structured P2P
overlay, where peers may take over the key range of a failed one. The worst-case scenario of such
maintenance operations occurs if the overlay cannot be repaired resulting in the overlay breakup.
For example, network partitioning may lead to such islanding problem, where an overlay splits
into independent sub-overlays not interlinked with each other. DhtFlex may be able to detect such
failure situations in order to thus support the consistency of affected data operations.

Replication strategy

As shown in the previous section, the exposed DHT abstraction basically maps keys to values;
thereby, a value may be an arbitrary object or an item represented as data resource, which may
be replicated and persistently stored. An object is retrieved by using the key under which it was
published. DhtFlex uses replication in order to ensure the high availability and durability of admin-
istrated data resources. Thereby, it supports a flexible degree of replication that allows an adjustment
per data resource type.
However, if a peer leaves the system, for example, by crashing, its administrated data resources

become unavailable. A replication mechanism increases the data availability by storing data at
several peers. But, in the face of concurrent modifications mutual consistency of replicated data
resources may be violated, some replicas may not be up-to-date. The requirements of content
repository functionality demands for DhtFlex to be able to get the current valid replica.
A replicated data item is independent of the peer on which it resides and may be regarded

as virtual. This applied virtualization enables DhtFlex to employ structured overlay routing as
partitioning strategy. Thereby, DhtFlex manages all replication functions; the overlay is accessed
only to conduct the necessary information to construct a replication group. A replication group
configuration is a set of peers that are responsible to administrate a certain replicated data resource.
The size of such a set is defined by the resource’s replication degree. A replication group of size n
consists of one master and n−1 replicas.
Regarding the replication model, DhtFlex implements a primary-copy replication pattern [44]

per replication group: a replication group’s master is used to serialize and apply all updates to a
mutable data object.
In order to benefit the partitioning strategy, DhtFlex uses the unique key of a data resource to

configure the corresponding root in the overlay as master. Accordingly, DhtFlex targets to fill the
replication group set with the available n−1 peers succeeding a root in the overlay, the n−1 root
successors. Hence, a replication group of size n shall contain those n−1 peers that are relevant
to become a root for the key after network conditions change. Regarding fault-tolerance aspects,
these n−1 peers are ideal candidates to place the replicas of a given data object.
The master of a replication group is responsible to ensure the replication factor for the data

resources that fall within its key range. That is, in addition to their conservation in local storage,
the master needs to replicate the resources to the remaining replicas. This implies, that changes on
resources have to be propagated to all replicas in order to ensure the consistency.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:831–871
DOI: 10.1002/cpe

856 U. BARTLANG AND J. P. MÜLLER

p
6

p
5

p
1

p
4

p
3

p
2

key x

Figure 10. Combination of replication strategy and partitioning strategy.

The replication strategy in combination with the used partitioning strategy is exemplified in
Figure 10. It shows a replication group consisting of one master peer p3 and three additional replica
peers: the master p3 replicates the data object for key x at peer p4, p5, and p6. Hence, p6 stores
values that fall into the ranges (p2, p3], (p3, p4], (p4, p5], (p5, p6]. As explained, the employed
structured P2P overlay allows each peer to determine, which peers should be contained in the
replication group for a certain key.

FLEXIBLE CONTENT REPOSITORY FUNCTIONS

This section illustrates how the introduced P2P building blocks are used to implement the flexible
content data functions. Therefore, (i) an appropriate content mapping is indicated, and (ii) it is
shown how the functionality of the content repository layer can be implemented using the P2P
system at policy layer and persistent storage layer.

Content mapping

As explained, the introduced mapping between content items and data resources is flexible to benefit
the separation between metadata management and data management. The mapping enables to use
P2P service groups to implement a metadata manager for persistent workspace storage, and the
DHT layer to implement a data manager. In addition, the approach supports fine-grained data
resource replication for both layers.
As already indicated, the P2P service group method enables to implement an indexing group to

administrate the metadata structures (index). Accordingly, a corresponding manager of the policy
layer is able to use the (re)configurability features to enforce policy requirements for an indexing
group—for instance, to determine the amount of replicas for a replicated workspace index, or the
size of a property value’s replication group in the structured overlay back-end. To ensure robust
execution of the system functions in the case of peer failures, replication is used to allocate identical
data resources or data structures at different peers. Policy information can be used by an access
manager at the persistent storage level to process such resources accordingly.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:831–871
DOI: 10.1002/cpe

A FLEXIBLE CONTENT REPOSITORY TO ENABLE A P2P-BASED WIKI 857

item resource

Inverted Index Metadata Storage

idkeyword

Figure 11. Data structures of an indexing peer.

The system uses an item bundle concept to keep the content mapping manageable—that is,
to define which data resources may be bundled together to be effectively administrated by the
hybrid system. Considering node resources and property resources, the approach uses the following
scheme:

• The node resources and the property resources—representing the metadata information of a
workspace—are administrated as a kind of local bundle unit by each replica of the workspace’s
corresponding indexing group.

• The actual property value, however, is usually stored as remote data value administrated by the
structured overlay back-end. Therefore, such value is referenced via a remote storage location
in a property resource. That is, the location links to the affected peer(s) in the DHT layer.

A peer of the DHT layer needs to provide a local key value-based persistent storage as data
structure to support the data management. These structures represent the mapping of remote storage
location to actual data value.
A replica of an indexing group uses several additional local data structures—based on reverse

indexes—to benefit mechanisms for persistent metadata management, as depicted in Figure 11.
For example, each replica locally indexes a node resource by its id entry—as a node’s UUID

is sufficient to guarantee a unique addressing in the workspace context; as each property’s name
is unique per node, the combination of the parent node’s id and the property’s name allows a
non-ambiguous indexing of each property resource.
Thus, the logical tree structure of a workspace can be locally represented according to the admin-

istrated content items in metadata storage, which is replicated among the participating indexing
peers. To benefit a query-based lookup, an inverted index may be used to serve as a short-cut
between indexing information and item resources (see Figure 11). As illustration, an inverted index
can be used to match a certain keyword to a set of relevant items. For example, such data structure
benefits implementation of full-text searching for certain property values. These data structures
need to be, however, kept consistently to reflect the current logical tree structure. For example, as
child nodes or properties of a node changes, all affected entries of the inverted index would need
to be updated.

Persistent content storage

The imposed functional requirements on the system interface essentially require to deal with
the storage of item resources to support operations such as store, load, exist, delete, query, and
register some listener. The P2P system supports these operations for indexing groups using the

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:831–871
DOI: 10.1002/cpe

858 U. BARTLANG AND J. P. MÜLLER

message-based interface of the P2P service group layer. Additionally, the DHT layer provides a
basic put–get interface for key-value pairs.
Regarding the basic architecture of an indexing peer, at the bottom of its stack each replica

maintains a local copy of the replicated index data structures. On the top, the next layer repre-
sents the fault-tolerant replicated index. To establish such replicated index, replicas communicate
with each other using the concrete consensus protocol instance of the P2P group communication
system. A consensus instance is used to ensure consistency at the resource level; that is, the modi-
fications at data resource level are propagated as proposal values to establish a total ordering of
such operations—thus, these are exchanged between the members of such P2P service groups in
a consistent manner. The protocol instance ensures that each replica’s local data structures consist
of identical sequences of entries. The possibility of using an indexing peer’s local data structures
facilitates the task to implement the metadata management considering persistent storage opera-
tions.
If these operations need to be atomic, the consensus-based group communication system of an

indexing group is able to support this by submitting such operations as a single value. DhtFlex is
used to ensure consistency for the DHT layer. Thereby, the approach supports a consistency model
similar to the relaxed so-called close-to-open consistency model [45,46]. The major benefits that
such an approach provides is that temporarily made changes on local items need not be committed
to the network until the modifying operation is done and write access is closed. This implies, that
once an item has been locally accessed or opened, a peer need not remotely check with the network
if that item has been modified in the meantime by another peer. It is consistent to locally cache an
item as long as it is opened and until it is closed.
The indexing group approach can be used to support the close-to-open model by retrieving the

latest item resource via a retrieval operation once the item should be locally opened; then, such
item resource is kept as a cached copy by the content repository layer until access is closed. All
succeeding requests to an item’s potential properties or child nodes can be satisfied using information
from the cached copy.
Considering the reading or loading of an item, Figure 12 illustrates such retrieval process using the

hybrid architecture. (1) First, an access manager uses its local peer instance to pass a query or path
statement for one or multiple items to the corresponding indexing group—that is, to one member.

p1

p2
p3

p8 p7

p5

p6

p4

p2

Data Management

Metadata Management

p4
p3

p6

Access
Manager

Indexing Peer

foo 23
foobar 5,13

Workspace
Structure

Keyword / Item
Mapping

(1) Query

(2) Result

(3) Data Lookup

(4) Data Transfer

Control Message
Datal Message

Figure 12. Content data retrieval in case of a hybrid overlay.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:831–871
DOI: 10.1002/cpe

A FLEXIBLE CONTENT REPOSITORY TO ENABLE A P2P-BASED WIKI 859

If valid, this member promotes the request as consensus proposal to the group’s communication
system. Thus, the group is able to operate as a control instance regulating access policy; for example,
to control which peer is allowed to pass a request. (2) If the indexing peers eventually decide on
the query statement, the contacted member processes it against its local workspace structure and its
local keyword—item mapping—always respecting the total ordering of consensus decisions. The
result of the processed query—that is, the matching item resources—is returned to the requesting
peer. (3) In case of property resources being returned, they may contain links to data which is
actually stored by some peer in the DHT layer. Thus, the remote storage location may be contacted.
(4) The actual data transfer is handled by the requesting peer and the corresponding storage peer
of the DHT layer. It is worth mentioning, that only the last step involves transmitting of a larger
data message. The previous steps require only the exchange of smaller control messages. Thus, the
actual data transfer is decoupled.
If an item should be modified, a peer’s locally cached copy is updated—at content repository

level—to reflect the changes; hence, write efforts and corresponding changes are locally buffered
by a session before being stored to the network in order to minimize local write latencies. Finally,
once item access is closed, all cached changes are flushed to the hybrid network and tried to be
committed. Considering the support of write or store operations, valid type restrictions need to be
respected. Usually, all actions that may modify an item’s state are expected to load the according
item resource, first. Then, the item can be constructed and thus type consistency checks are enabled
at content repository level—at item state level. Generally, a writer peer is assumed not to fail during
its writing process to complete the corresponding actions.
Figure 13 shows the inner process of an access manager if an item should be stored. (1)

First, the item resources are constructed and passed to a member of the workspace’s indexing
group. Large property values are not transferred but kept at the local storage. It is the task of

p
1

p
2

p
3

p
8 p

7

p
5

p
6

p
4

p
2

Data Management

Metadata Management

p
4

p
3

p
6

Access
Manager

Indexing Peer

foo 23

foobar 5, 13

Workspace
Structure

Keyword / Item
Mapping

(1) Store (2) Result

Control Message

Datal Message

Figure 13. Content data storing in case of a hybrid overlay.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:831–871
DOI: 10.1002/cpe

860 U. BARTLANG AND J. P. MÜLLER

the access manager to specify a suitable remote storage location concerning the DHT layer and
apply policies, for example, demanding the replication of property values at the DHT layer. (2)
The indexing group tries to process the storage request. If successful, an acknowledgement is
returned.
As an additional step, that is, if large property values are involved, for example, an access manager

may either store such values using a specified remote storage location, or it may use DhtFlex—
utilizing the structured back-end as some kind of decoupled address space for target-oriented lookup
of data values; that is, the retrieval of such values is based on UUIDs (metadata) rather than on
concrete physical addresses.
Regarding the support of content repository functions, an indexing peer can use its local data

structures, however, to process shallow as well as deep operations. For example, the support of a
query operation and a locking operation requires to basically rely on a replicas local workspace
structure and local item mapping—always respecting the established total ordering among operation
requests. Accordingly, observations can be implemented by performing matching tests reacting
on the adding, removing, and modifying of affected item resources. This supports basic event
notification mechanisms that allow the triggering of a notification, if a suited node resource for a
certain path in the virtual tree of a workspace is stored. The subscriber of an observation event
may be known by every replica; however, only the contacted indexing peer may actually inform
the subscriber to prevent the unnecessary network traffic. Of course, if that replica fails, some kind
of a handover mechanism is needed. The support of versioning is kind of straightforward, using an
indexing group and the explained load and store primitives.

EVALUATION

This section evaluates the presented system considering (i) its overall architecture, (ii) reliability,
(iii) scalability, and (iv) performance properties.

Overall architecture

The architecture is evaluated considering the introduced wiki scenario.
The system enables (i) mapping wiki pages to its item concept, and (ii) different bundling of a

page’s data resources (as illustrated in Figure 14): for example, (small-sized) textual content may
be attached to a wiki page’s representing node resource as property resource, on the one hand. On
the other hand, different pages may share common (large-sized) multimedia contents, and different
transport protocols may be used to retrieve them on demand.
The repository model supports UUID-based addressing of wiki pages; basic navigation is

supported by the workspace tree. References support cross-linking to other pages and symbolic
linking for redirecting read requests. Tags may be modelled by extra node types to allow the
multiple classification of wiki pages.
The system supports flexible content repository functions in a P2P environment: for example,

DhtFlex enables to represent a wiki page as mutable data resource but to keep a single version
of it as immutable resource. Resources may be locked to prevent the undesirable update
access.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:831–871
DOI: 10.1002/cpe

A FLEXIBLE CONTENT REPOSITORY TO ENABLE A P2P-BASED WIKI 861

Textual Content

Graphical Content

Video Content

Wike Page Resource1

Graphic Resource

Video Resource

Textual Content

Graphical Content

Wike Page Resource2

Figure 14. Mapping a wiki page to the item bundle concept.

In addition, indexing peers may enable change tracking by supporting (deep) push-based notifica-
tions. As each indexing peer keeps a replica of its corresponding workspace’s metadata, querying
for content is supported too.
At the P2P level, the presented methods support self-organizing of peers at persistent storage

layer, for example, executing consistent movement of data resources as a result of failures. In
addition, the system enables dynamic integration of (heterogeneous) peers.

Reliability

The structured P2P back-end ensures reliability using replication as redundancy scheme: that is, a
certain number of identical copies are stored at different peers. For example, a certain version of a
wiki page is stored as immutable data resource. Thereby, a resource’s replication factor � influences
its availability—thus, the value of � should be set appropriately depending on the demanded degree
of availability.
The analysis assumes the worst case, that is, no reconfiguration actions occur intermediately. In

addition, it is assumed that a peer’s availability is independent—that is, peers fail independently—
and that all peers show an identical (average) availability �peer .
DhtFlex requires a single copy of the � replicated (immutable) data resources to be available for

progress successfully. Thus, the probability Pf ail—the failure of a data resource’s whole replication
group—is given by the following equation:

Pf ail = P(all � replica peers fail)= P(one replica peer fails)� =(1−�peer)
� (1)

A resource’s replication factor � can be adjusted depending on the desired availability aim, as
stated by the following formula: �= log(Pf ail)/log(1−�peer). Figure 15 depicts the probability
Pf ail to actually lose an immutable data resource—depending on different values for �peer and �:
one observation is that comparatively small values for the size of a replication group suffice to
reduce the probability of losing a certain data resource significantly—usually, reaching a certain
limit an additional increase of � does not significantly reduce Pf ail . Considering the scenario,
for example, if �peer =0.7 is assumed, good availability may be achieved by using four replicas
(Pf ail<0.01).

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:831–871
DOI: 10.1002/cpe

862 U. BARTLANG AND J. P. MÜLLER

 0

 0.2

 0.4

 0.6

 0.8

 1

1 3 5 7 9 11 13 15 17 19

Size ρ of Data Resource’s Replication Group

P
ro

ba
bi

lit
y

P
fa

il
of

 D
at

a
R

es
ou

rc
e

Lo
st

Peer Availability α = 0.9
Peer Availability α = 0.7
Peer Availability α = 0.5
Peer Availability α = 0.3
Peer Availability α = 0.1

Figure 15. Worst-case probability an immutable data resource is lost.

Scalability

This section discusses scalability for the P2P back-end and the P2P service groups. Indexing groups
represent critical parts in the hybrid overlay: that is, as these play a major role for supporting rich
queries, the system selects only peers showing good properties as group members; for example,
considering such peer’s hardware resources high processor throughput, and large primary and
secondary storage space is demanded. In addition, group members should communicate at the high
network connection speed to reduce message latencies (for example, by being located in physically
close distance).

P2P back-end

The total data load of a P2P system is defined as the sum of the data loads of all participating
peers. The data load of each peer refers to the amount of data resources a peer is responsible to
store locally. This section evaluates the distribution of content data using practical evaluation. It
investigates the distribution of 1000 data resources with varying replication factor � to a simulated
network of 1000 peers—using Chord as overlay protocol.
According to the wiki scenario, the data resources represent the 1000 most viewed arti-

cles of the English version of Wikipedia [10] in August 2008 to indicate if DhtFlex’s parti-
tioning strategy is suited:

• SHA-1 is used as hash function to create both peer identifiers and data resource identifiers.
• Each peer is responsible for a certain (key) segment of the overlay: thereby, although the hash

functions are used to achieve good distribution of peers in the overlay, the size of segments
may vary.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:831–871
DOI: 10.1002/cpe

A FLEXIBLE CONTENT REPOSITORY TO ENABLE A P2P-BASED WIKI 863

• The following schema is applied to create the unique name for an item resource representing
a certain Wikipedia page: en.wikipedia.org/wiki/

︸ ︷︷ ︸

namespace

.namearticle

Figure 16 shows the results of the experiments: in all cases, the theoretically expected value � is
achieved as a kind of centre of distribution: (i) �=1 in case of �=1 (1000 data resources), (ii) �=5
in case of �=5 (5000 data resources), and (iii) �=10 in case of �=10 (10 000 data resources). In
general, the data load on each peer scales well with the number data resources and varying values
of �: no hotspots are detected.
On the one hand, increasing the value of � seems to level data distribution; on the other

hand, the number of peers not storing a resource may be decreased. DhtFlex may ensure
load balancing by uniform distribution of peer identifiers and data resource identifiers, where
the number of data resources stored at each peer is roughly balanced. To deal with large
data files, special storage peers may be used and only metadata may be committed to the
system.

0

100

200

300

400

500

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

N
um

be
r

of
 P

ee
rs

Number of Data Resources per Peer

Replication Factor ρ = 1
Replication Factor ρ = 5
Replication Factor ρ = 10

Figure 16. Data distribution of 1000 wiki data resources on 1000 peers.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:831–871
DOI: 10.1002/cpe

864 U. BARTLANG AND J. P. MÜLLER

P2P service groups

The scalability for P2P service groups is indicated by a qualitative discussion of the applied data
querying strategy: indexing peers support querying for data resources by their materialized view of
workspace items: that is, each indexing peer may use its local view of the workspace tree to process
query requests.

• On the one hand, this may increase the lookup performance in comparison to using the struc-
tured overlay back-end, exclusively—especially, if the addressed search space (for example,
a workspace subtree) is large: for instance, the structured overlay back-end is only used to
retrieve the actual content data (the query results); that is, data transfer may be decoupled from
the metadata management.

• One the other hand, indexing peers are affected by more request load than usual peers (in
the structured overlay back-end) and need to ensure the consistency of their local workspace
view. For the latter case, the following section analyses the (traffic) costs for maintaining the
consistency.

Performance

This section discusses the performance properties for the P2P back-end and the P2P service groups.
Performance analysis for P2P service groups considers (i) local operations of a peer and (ii)
distributed operations between multiple peers.

P2P back-end

The performance evaluation of the P2P back-end uses simulation to determine the latency of its
operations, that is, to read (get) and to write (put) the contents of a wiki page. Considering experi-
mental setup, a King data set [47] is used to weight communication links between simulated peers.
This approach enables to gain estimations of communication costs based on the real measurement
data of thousands of Internet hosts‡.
Immutable data resources: Figure 17 depicts the latency of DhtFlex for operations on immutable

data resources, for example, representing different versions of a page. The latency of put operations
is greater than that of get operations. Both operations are strongly affected by the costs to perform the
P2P overlay routing, which increase with the number of peers—the operations introduce, however,
rather constant overhead by themselves. As the recast operation does not require overlay routing,
its latency is comparatively small.
Mutable data resources: Figure 18 gives the latency of DhtFlex for operations on mutable data

resources, for example, representing the current valid pages. Again, the latency of put operations
is greater than that of get operations, and both operations are strongly influenced by the costs to
perform the P2P overlay routing. However, both put and get operations add rather constant overhead

‡The simulation results neglect, however, messages of different sizes. All shown latencies represent the average value of ten
measurements per operation using random keys for put and get operations. Each data resource is allocated to a replication
group of six (different) peers.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:831–871
DOI: 10.1002/cpe

A FLEXIBLE CONTENT REPOSITORY TO ENABLE A P2P-BASED WIKI 865

 0

 500

 1000

 1500

 2000

 2500

50100 500 1000 1500

O
pe

ra
tio

n
La

te
nc

y
(m

s)

Number of Peers

Put Operation
Get Operation

Overlay Routing
Recast Operation

Figure 17. Latency of DhtFlex for immutable data resources.

 0

 500

 1000

 1500

 2000

 2500

50100 500 1000 1500

O
pe

ra
tio

n
La

te
nc

y
(m

s)

Number of Peers

Put Operation
Get Operation

Overlay Routing
Recast Operation

Figure 18. Latency of DhtFlex for mutable data resources.

by themselves. On the one hand, both operations require higher latencies in comparison to operations
on immutable data resources. On the other hand, the latencies for put and get operations do not
differ significantly in both cases. In contrast, recast operations (that is, to consistently reconfigure
a replication group) are more expensive for mutable data resources.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:831–871
DOI: 10.1002/cpe

866 U. BARTLANG AND J. P. MÜLLER

 0

 5000

 10000

 15000

 20000

0 100 200 300 400 500 600 700 800 900 1000

O
pe

ra
tio

n
La

te
nc

y
(m

s)

Number of Operations

Latency of Processed Operations

Figure 19. Latency of 1000 local indexing-storage operations.

Hence, DhtFlex is optimized for get, put and recast operations on mutable data resources, in
that sequence. These operations are even more efficiently supported for immutable data resources,
increasing the overall performance in an employed system.

P2P service groups: local case

Practical evaluation applying direct experiments is used to indicate an indexing peer’s local perfor-
mance: that is, to state the latency (i) to index (store) and (ii) to query workspace items. The
evaluation considers the processing of multiple item–property bundles representing wiki pages with
3141 mean bytes per article§ ’¶ .
The results of the experiments are given in the following:

• Figure 19 depicts the aggregated latency to locally store and index 1000 item bundles: it is
obvious, that the overall latency grows linearly with the number of processed item bundles.

• Using the inserted items, the average query latency (considering 100 executed queries) to
search one item is in the range of −2ms.

§http://stats.wikimedia.org/, retrieved on 2008/12/28.
¶The experiments are executed on an AMD Athlon XP 3000+ (2.09 GHz) machine with 1 GB main memory running
Windows XP Professional. The local access manager at the persistent storage layer uses a combination of Java-based
Lucene and Apache Derby for indexing and searching content items.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:831–871
DOI: 10.1002/cpe

A FLEXIBLE CONTENT REPOSITORY TO ENABLE A P2P-BASED WIKI 867

 0

 50

 100

 150

 200

 250

3 5 7 9 11 13 15

C
on

se
ns

us
 O

pe
ra

tio
ns

 p
er

 S
ec

on
d

Number of Peers

Classic Paxos (Fail-Stop)
Classic Paxos (Crash-Recovery)

Fast Paxos (Fail-Stop)
Fast Paxos (Crash-Recovery)
Byzantine Paxos (Public-Key)

Figure 20. Performance of different consensus algorithms.

P2P service groups: distributed case

Practical evaluation applying direct experiments is used to indicate the performance of intra group
communication as a crucial part of the hybrid approach (without considering the protocol for the
structured overlay back-end).
The processing of normal group messages is the dominant operation in an indexing group, while

reconfiguration actions will typically occur far less frequently. Therefore, the measurements focus
on the normal-case efficiency of the reconfigurable component applying different configurations.
The current implementation uses different variants of the Paxos algorithm for the consensus

module, which support different failure models and different parametrizations (to optimize latency
and message overhead). The analysis examines throughput and latency characteristics of different
configurations to illustrate their feasibility‖.
Performance using different consensus modules: Regarding the performance, the most important

factor of the consensus-based group communication system is the efficiency of consensus decisions.
Figure 20 [40] depicts the number of consensus decisions per second that the system achieves in
relation to the number of core group peers—for different consensus modules: the crash-recovery
variants use synchronous writes to the local hard-disk drive as stable storage; for all variants, the
parallelism of consensus decision was limited to five parallel instances. TCP channels were used
for low-level communication between peers.

‖In the following, all described direct experiments were executed on up to 15 Intel Pentium 4 (3.0GHz) machines running
Linux (kernel 2.4), connected via a switched 100 Base-T network; the system is implemented in Java (J2SE 1.4).

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:831–871
DOI: 10.1002/cpe

868 U. BARTLANG AND J. P. MÜLLER

 0

 10

 20

 30

 40

 50

 60

 70

 80

 3 5 7 9 11 13 15

M
es

sa
ge

 L
at

en
cy

 (
m

s)

Number of Peers

Classic Paxos (Fail-Stop)
Classic Paxos (Crash-Recovery)

Byzantine Paxos (Public Key)

Figure 21. Overall P2P group message latency with different consensus algorithms.

For all depicted algorithms, the system scales quite well with an increasing number of group
members. The limiting factor in the stable storage-based variants are the synchronous write
operations—all writes have to be flushed to disk immediately before a peer may proceed; that
is, as the peers are close in the network proximity delays for disk flush may influence the (even
dominate) overall latency.
Message latency using different consensus modules: From a persistent storage manager’s point

of view, an essential efficiency criteria is message latency: for example, the caused overhead to
ensure the consistency by synchronization efforts or to include a new group member.
Figure 21 [40] shows this latency for three different consensus variants—depending on an

indexing group’s size. In the process, all times for the depicted message latencies are averaged
over 100 messages sent to group to acquire a consensus decision; the latencies are measured at
persistent storage layer, that is, directly using the Group component’s interface. With each variant,
the message latency increases with a growing number of participating group peers.

CONCLUSIONS AND OUTLOOK

This paper presented and evaluated the method to use a flexible P2P-based content repository to
implement a decentralized wiki reducing a wiki’s creation and maintenance costs: presentation of
content shall be decoupled from its background organization and storage location to support the
construction of web page incarnations on demand. The decoupling of design management, data
structures, and content shall support reuse of content.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:831–871
DOI: 10.1002/cpe

A FLEXIBLE CONTENT REPOSITORY TO ENABLE A P2P-BASED WIKI 869

The system operates different functions to remove central components avoiding single points
of failure. For example, it uses content replication strategies to be less vulnerable to the failure
of individual network nodes and network connections. The P2P system uses a hybrid overlay and
a flexible architecture to implement the required functions in the distributed environment. It is
self-organizing to reduce the administration and ad hoc integration efforts; it offers the potential
to reduce operating central resources like dedicated server hardware. In addition, the approach
promises to help distributing content and to reduce hosting costs at the same time: for example, by
employing and aggregating already available commodity computing resources, it offers the potential
to spread infrastructure costs in a fair manner.
The system ensures the reliability using replication as redundancy scheme—the introduced

storage redundancy shows linear growth. For example, in case of immutable data resources, only a
single available replica is sufficient to progress successfully. However, crash-recovery and recasting
are supported to additionally increase reliability. Regarding the P2P back-end, data load distribution
scales in logarithmic order with the number of peers. For P2P service groups, it is emphasized that
only good peers shall be selected to act as indexing peers.
Evaluation of the performance properties showed that the P2P back-end is optimized for get, put,

and recast operations on mutable data resources. However, these operations are even more efficiently
supported for immutable resources, increasing the overall performance in an employed system. As
a result, the communication costs of the back-end are comparable with that of non-atomic DHTs,
in most of the cases. Regarding the performance of P2P service groups: in the local case, a service
group peer’s overall operation latency grows linearly with the number of processed items. In the
distributed case, the performance properties scale quite well with an increasing number of group
members.
Regarding the future work, it would be interesting to integrate semantic technologies at the

application level, for example, SemanticWeb technologies. As a result, decentralized semantic wikis
would enable to establish a partnership between human and automated collaborators—a vision of
the future industry scenarios. For example, by easing the transfer of informal textual knowledge to
more formal structures both people and machines may use wiki content. This may benefit advanced
querying over a wiki’s distributed content set facilitating interlinking, (re)use, and extension.

REFERENCES

1. GartnerConsulting. The emergence of distributed content management and peer-to-peer content networks. Technical
Report, Gartner Group, January 2001.

2. Schmücker J, Müller W. Praxiserfahrungen bei der Einführung dezentraler Wissensmanagement-Lösungen.
Wirtschaftsinformatik 2003; 3:307–311.

3. Bartlang U, Stäber F, Müller JP. Introducing a JSR-170 standard-compliant peer-to-peer content repository to support
business collaboration. Expanding the Knowledge Economy: Issues, Applications and Case Studies, Information and
Communication Technologies and the Knowledge Economy, vol. 4, Cunnigham P, Cunnigham M (eds.). IIM, IOS Press:
Amsterdam, The Netherlands, 2007; 814–821. Proceedings of eChallenges e-2007 Conference.

4. Dustdar S, Gall H, Hauswirth M. Software-Architekturen für Verteilte Systeme: Prinzipien, Bausteine und
Standardarchitekturen für moderne Software. Springer: Berlin, 2003.

5. True picture of P2P filesharing. Technical Report, CacheLogic Research, 2004.
6. Ghemawat S, Gobioff H, Leung ST. The Google file system. SIGOPS Operating Systems Review 2003; 37(5):29–43.
7. Day Management AG. Content repository API for JavaTM technology specification May 2005. Java Specification Request

170, version 1.0, 2005.
8. Leuf B, Cunningham W. The Wiki Way: Quick Collaboration on the Web. Addison-Wesley Professional: Reading, MA,

2001.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:831–871
DOI: 10.1002/cpe

870 U. BARTLANG AND J. P. MÜLLER

9. O’Reilly T. What is Web 2.0: Design patterns and business models for the next generation of software. Technical Report,
September 2005.

10. Wikipedia, the free encyclopedia. Available at: http://www.wikipedia.org/ [15 January 2009].
11. Anderson C. The long tail. Wired Magazine 2004; 10:170–177.
12. Stading T, Maniatis P, Baker M. Peer-to-peer caching schemes to address flash crowds. Peer-to-Peer Systems 2002;

2429/2002:203–213.
13. Urdaneta G, Pierre G, van Steen M. A decentralized wiki engine for collaborative wikipedia hosting. Proceedings of the

3rd International Conference on Web Information Systems and Technologies, Barcelona, Spain, 2007.
14. Freedman MJ, Freudenthal E, Mazières D. Democratizing content publication with coral. NSDI’04: Proceedings of the

1st Conference on Symposium on Networked Systems Design and Implementation. USENIX Association: Berkeley, CA,
U.S.A., 2004; 18.

15. Wang L, Park KS, Pang R, Pai V, Peterson L. Reliability and security in the codeen content distribution network. ATEC ’04:
Proceedings of the Annual Conference on USENIX Annual Technical Conference. USENIX Association: Berkeley, CA,
U.S.A., 2004; 14.

16. Bernstein PA. Repositories and object oriented databases. SIGMOD Record 1998; 27(1):88–96.
17. Fielding RT. JSR170 overview: Standardizing the content repository interface. Technical Report, Day Management AG,

2005.
18. Jackrabbit ZC. die Referenzimplementierung des Java Content Repository. Linux-Magazin Sonderheft 2008; (3):18–21.
19. Milojicic DS, Kalogeraki V, Lukose R, Nagaraja K, Pruyne J, Richard B, Rollins S, Xu Z. Peer-to-peer computing.

Technical Report, Hewlett-Packard Company, March 2002.
20. Kshemkalyani AD, Singhal M. Distributed Computing: Principles, Algorithms, and Systems (1st edn). Cambridge

University Press: Cambridge, 2008.
21. Napster FS. Available at: http://www.napster.com [30 June 1999].
22. Clip2. The annotated Gnutella protocol specification v0.4 (document revision 1.6), 2001.
23. Stoica I, Morris R, Karger D, Kaashoek MF, Balakrishnan H. Chord: A scalable peer-to-peer lookup service for internet

applications. SIGCOMM ’01: Proceedings of the 2001 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications. ACM: New York, NY, U.S.A., 2001; 149–160.

24. Karger D, Lehman E, Leighton T, Panigrahy R, Levine M, Lewin D. Consistent hashing and random trees: Distributed
caching protocols for relieving hot spots on the world wide web. STOC ’97: Proceedings of the Twenty-Ninth Annual
ACM Symposium on Theory of Computing. ACM: New York, NY, U.S.A., 1997; 654–663.

25. Rowstron A, Druschel P. Storage management and caching in PAST, a large-scale, persistent peer-to-peer storage utility.
SOSP ’01: Proceedings of the Eighteenth ACM Symposium on Operating Systems Principles. ACM: New York, NY,
U.S.A., 2001; 188–201.

26. Dabek F, Kaashoek MF, Karger D, Morris R, Stoica I. Wide-area cooperative storage with CFS. SOSP ’01: Proceedings
of the Eighteenth ACM Symposium on Operating Systems Principles. ACM Press: New York, NY, U.S.A., 2001; 202–215.

27. Rusitschka S, Southall A. The resource management framework: A system for managing metadata in decentralized
networks using peer-to-peer technology. Agents and Peer-to-Peer Computing (Lecture Notes in Computer Science,
vol. 2530/2003). Springer: Berlin/Heidelberg, 2003; 144–149.

28. Bindel D, Chen Y, Eaton P, Geels D, Gummadi R, Rhea S, Weatherspoon H, Weimer W, Wells C, Zhao B, Kubiatowicz J.
Oceanstore: An extremely wide-area storage system. Technical Report UCB/CSD-00-1102, EECS Department, University
of California, Berkeley, 2000.

29. DeCandia G, Hastorun D, Jampani M, Kakulapati G, Lakshman A, Pilchin A, Sivasubramanian S, Vosshall P, Vogels W.
Dynamo: Amazon’s highly available key-value store. SOSP ’07: Proceedings of Twenty-First ACM SIGOPS Symposium
on Operating Systems Principles. ACM: New York, NY, U.S.A., 2007; 205–220.

30. Kubiatowicz J, Bindel D, Chen Y, Czerwinski S, Eaton P, Geels D, Gummadi R, Rhea S, Weatherspoon H, Wells
C, Zhao B. Oceanstore: An architecture for global-scale persistent storage. ASPLOS-IX: Proceedings of the Ninth
International Conference on Architectural Support for Programming Languages and Operating Systems. ACM: New
York, NY, U.S.A., 2000; 190–201.

31. Birman KP, Joseph TA. Reliable communication in the presence of failures. ACM Transactions on Computer Systems
1987; 5(1):47–76.

32. Schiper A, Birman K, Stephenson P. Lightweight causal and atomic group multicast. ACM Transactions on Computer
Systems 1991; 9(3):272–314.

33. Défago X, Schiper A, Urbán P. Total order broadcast and multicast algorithms: Taxonomy and survey. ACM Computing
Surveys 2004; 36(4):372–421.

34. Microsystems S. JXTA v2.3.x: Java programmer’s guide. Technical Report, 2005.
35. Day Management AG. Content repository API for JavaTM technology specification July 2007. Java Specification Request

283, version 2.0, 2007.
36. Bray T, Hollander D, Layman A, Tobin R. Namespaces in XML 1.0 (2nd edn), W3C Recommendation, August 2006.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:831–871
DOI: 10.1002/cpe

A FLEXIBLE CONTENT REPOSITORY TO ENABLE A P2P-BASED WIKI 871

37. Zobel J, Moffat A, Ramamohanarao K. Inverted files versus signature files for text indexing. ACM Transactions on
Database Systems 1998; 23(4):453–490.

38. Gerdes C, Bartlang U, Müller JP. Decentralised and reliable service infrastructure to enable corporate cloud computing.
Collaboration and the Knowledge Economy: Issues, Applications and Case Studies, Information and Communication
Technologies and the Knowledge Economy, vol. 5, Cunnigham P, Cunnigham M (eds.). IIM, IOS Press: Amsterdam,
The Netherlands, 2008; 683–690. Proceedings of eChallenges e-2008 Conference.

39. Kapitza R, Schmidt H, Bartlang U, Hauck FJ. A generic infrastructure for decentralised dynamic loading of platform-
specific code. Distributed Applications and Interoperable Systems (Lecture Notes in Computer Science, vol. 4531/2007),
Indulska J, Raymond K (eds.). Springer: Berlin/Heidelberg, 2007; 323–336. Proceedings of the 7th IFIP WG 6.1
International Conference, DAIS 2007, Paphos, Cyprus, 6–8 June 2007.

40. Reiser HP, Bartlang U, Hauck FJ. A reconfigurable system architecture for consensus-based group communication. Parallel
and Distributed Computing and Systems (PDCS 2005), Zheng SQ (ed.). ACTA Press, 2005; 680–686. Proceedings of
the 17th IASTED International Conference on Parallel and Distributed Computing and Systems PDCS, Phoenix, AZ,
14–16 November 2005.

41. Lamport L. The part-time parliament. ACM Transactions on Computer Systems 1998; 16(2):133–169.
42. Bartlang U, Müller JP. DhtFlex: A flexible approach to enable efficient atomic data management tailored for structured

peer-to-peer overlays. ICIW, vol. 3, Mellouk A, Bi J, Ortiz G, Chiu DKW, Popescu M (eds.). IEEE Computer Society
Press: Silver Spring, MD, 2008; 377–384. Proceedings of the Third International Conference on Internet and Web
Applications and Services.

43. Jinyang, Stribling J, Gil TM, Morris R, Kaashoek MF. Comparing the performance of distributed hash tables under
churn. Peer-to-Peer Systems (Lecture Notes in Computer Science, vol. 3). Springer: Berlin/Heidelberg, 2005; 87–99.

44. Gray J, Helland P, O’Neil P, Shasha D. The dangers of replication and a solution. SIGMOD ’96: Proceedings of the
1996 ACM SIGMOD International Conference on Management of Data. ACM: New York, NY, U.S.A., 1996; 173–182.

45. Howard JH, Kazar ML, Menees SG, Nichols DA, Satyanarayanan M, Sidebotham RN, West MJ. Scale and performance
in a distributed file system. ACM Transactions on Computer Systems 1988; 6(1):51–81.

46. Levy E, Silberschatz A. Distributed file systems: Concepts and examples. ACM Computing Surveys 1990; 22(4):321–374.
47. Gummadi KP, Saroiu S, Gribble SD. King: Estimating latency between arbitrary internet end hosts. Proceedings of the

SIGCOMM Internet Measurement Workshop (IMW 2002), Marseille, France, 2002.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2010; 22:831–871
DOI: 10.1002/cpe

