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ABSTRACT
We consider an integrated decision making process of au-
tonomous vehicles in agent-oriented simulation of urban traf-
fic systems. In our approach, the planning process for a ve-
hicle agent is separated into two stages: strategic planning
and tactical planning. During the strategic planning stage
the vehicle agents constructs the optimal route from source
to destination; during the tactical planning stage the opera-
tive decisions such as speed regulation and lane change are
considered. For strategic planning we modify the stochas-
tic shortest path algorithm with imperfect knowledge about
network conditions. For tactical planning we apply dis-
tributed multiagent reinforcement learning with other ve-
hicles at the same edge. We present planning algorithms
for both stages and demonstrate interconnections between
them; an example illustrates how the proposed approach
may reduce travel time of vehicle agents in urban traffic.
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1. INTRODUCTION
Today, software is playing a pervasive role in complex

systems with a growing tendency. A big emerging chal-
lenge is to reconcile the autonomy of software subsystems
and components (agents) with the system-level requirements
of efficiency, robustness and dependability. While the de-
centralization of control, decisions and actions among semi-
autonomous computational agents creates opportunities in
terms of scalability and local efficiency, it creates large chal-
lenges in terms of overall coherence. For example, the inte-
gration of car navigation with intelligent assistance functions
and car-to-car communication enables a new generation of
software-based driving assistants that not only assist the
driver but make decisions, take actions and communicate
with other vehicles and traffic control devices autonomously,
i.e. without explicit commands by the driver or traffic man-
ager.

The application of multi-agent modeling and simulation
[17], [18] to traffic simulation and control problems becomes
more relevant as intelligent assistant functions and car-to-X
communication pave the way to a new generation of intelli-
gent networked traffic infrastructure.

Traffic systems consist of large numbers of autonomous
participants (vehicles), which intend to reach their goals
(destinations) as quickly as possible and in most cases act
rationally according to their own individual interests. Also
traffic environments are typically regulated in a centralized
manner by traffic management centers using traffic lights,
traffic signs and other control elements. Such important
characteristics of agents as autonomy, local views (no agent
has a full global view of the system) and decentralization
(agents make their decisions themselves) make the multi-
agent technology very relevant for traffic system modeling.

Previous research in this area has mostly concentrated on
traffic lights regulation methods, traffic lights agent architec-
ture, coordination and decision making mechanisms. A very
good overview of agent-oriented decision making for traffic
lights is given by Bazzan ([5]). The UK-based Thales group
used an agent-oriented approach for traffic lights coordina-
tion based on genetic algorithms (see, e.g. [12]). Multi-agent
reinforcement learning (MARL) for coordination of traffic
lights was applied by Bazzan, Lauer and others ([6], [11]).

In contrast, there is less research on individual driver be-



havior and architectures of ”intelligent vehicle” agents: ex-
isting research is mostly focused on mesascopic models for
travel demand planning [4] or adaptive cruise control for au-
tonomous driving [13]. For intelligent vehicle agent models
we refer to the works of Adler [1].
The contribution of this paper is to provide an integrated

model of decision making of individual vehicles, which inte-
grates strategic decisions with tactical planning. This is very
important for simulation of realistic traffic scenarios and for
better understanding how different factors influence traffic
situations. To our knowledge, this is the first paper, which
provides such an approach in an agent-based context.
The integrated decision making process, described in this

paper, consists of two stages: strategical decision performing
for choosing the optimal route, and tactical decision making
for choosing the speed and lane.
For strategic planning, we modify the algorithm for stochas-

tic shortest path calculation R-SSPPR ([3], [14]) by using
Bayes posterior probabilities for historical information as
well as performing resampling ([2]) to forecast unknown travel
times. For tactical planning we use distributed multi-agent
reinforcement learning (DEC-MARL, [8],[11]) to learn the
optimal cooperative actions of agents.
The paper is organized as follows. In Section 2 we present

general definitions and problem formulations for decision
making process of a vehicle in urban traffic. In Section 3
we consider underlying planning algorithms: Section 3.1 de-
scribes strategic planning, Section 3.2 contains tactical plan-
ning. In Section 4 we provide first experimental results.
Section 5 concludes the paper and suggests future work di-
rections.

2. STRUCTURE OF THE PLANNING PRO-
CESS FOR THE URBAN TRAFFIC VE-
HICLES

We consider a structure of decision making of a vehicle
agent in an urban traffic environment. A vehicle environ-
ment is presented as a directed graph G = (V,E), where
nodes and edges represent intersections and streets corre-
spondingly. Each edge ei ∈ E consists of l(ei) lanes and has
an associated length d(ei), ne = |E|, i = 1 . . . ne.
Our model supposes the discrete linear time. Thus with-

out loss of generality we suppose that the model time t takes
non-negative integer values, t ∈ 0, 1, 2, . . ..
We suppose that each vehicle is always located on some

edge ei; let e
j(t) ∈ E be an edge, where vehicle j is located

at time t. To identify this edge in the set E we introduce
νj(t) as an index referring to the considered edge ej(t) =
eνj(t). A relative position of the vehicle j on the edge ej(t)
at time t is defined as a distance to the end of the edge
xj(t) ∈ 0, . . . , d(ej(t)) − 1. Let lj(t) ∈ 1, . . . , l(ej(t)) be a
lane, vj(t) be a speed of the vehicle j at time t.
We introduce some notations for traffic light: let Li be a

cycle length of the traffic light at the end of the edge ei (the
time period when the traffic light signals start to repeat),
and LG

i (eu) be the time period inside the cycle Li, in which
the vehicle goes from ei to eu. (green light from ei to eu).
Let uj(t) ∈ {0, . . . , Li − 1} be the time passed from the last
traffic light cycle repeat. These definitions are illustrated in
the Figure 1.
The complete state of the vehicle is given by a tuple, con-

sisting of edge, relative position on the edge, lane, speed and

re
d

gr
ee

n

Cycle length,Li

gr
ee

n

re
d

re
d

100/0 20 40 60 80 100/0 20 40 60 80 100/0

12:40:00 12:41:40 12:43:20t

u
j(t)

Green signal

Traffic light time, sec

Model time

period,LG
i (eu)

Figure 1: Traffic light related definitions

the time from the last traffic light repeat:

sj(t) =< ej(t), xj(t), lj(t), vj(t), uj(t) > . (1)

Each vehicle agent j starts its travel at time τ j
s from the

beginning of the edge ej(τ j
s ) ∈ E at the lane

lj(τ j
s ) ∈ 1, . . . , l(ej(τ j

s )) with initial speed vj(τ j
s ). By us-

ing (1) we have the following initial state:

sj(τ j
s ) =< ej(τ j

s ), d(e
j(τ j

s ))−1, l
j(τ j

s ), v
j(τ j

s ), u
j(τs) >, (2)

and ends at the end of the destination edge ej(τ j
d ) ∈ E at

time τ j
d having the final position

sj(τ j
d ) =< ej(τ j

d ), 0, l
j(τ j

d ), v
j(τ j

d ), u
j(τ j

d ) > . (3)

The purpose of the vehicle is to reach its destination as
quickly as possible, which means reaching the state (3) from
the state (2) and minimizing τ j

d − τ j
s the travel time from

the source to the destination.
For this purpose, the planning process is separated into

two stages:

• Strategic planning. This is a planning of the sequence
of edges (route) from origin to destination;

• Tactical planning. This is a planning of speed and lane
inside the current edge.

The structural schema of the planning process is presented
in Figure 2.
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Figure 2: Structure of vehicle planning process



Let T j
i be dependent random variables and denote the

travel times of the vehicle j through the edges ei. Vehi-
cles plan their routes individually, based on two kinds of
travel times information: available samples of previous his-
toric trips and actual realizations of travel times, which de-
notes the distribution over historical samples bj(t) for the
vehicle j.
Denote by N(ei) ⊂ E a set of successor edges of the edge

ei.
The problem of strategic planning is considered as a Stochas-

tic Shortest Path problem with the purpose to obtain the
optimal policy

π∗j
str(e

j(t), bj(t)) ∈ N(ej(t)), (4)

which returns the next edge in the fastest path for the vehicle
j after the edge ej(t). This problem is considered in Section
3.1.
During tactical planning, a vehicle plans its operative de-

cisions together with other agents by forming groups and
cooperating with group members to reach the goal. In other
words vehicles on one edge plan their actions
a =< ∆vj ,∆lj >∈ A, where ∆vj is a speed change, ∆lj ∈
{−1, 0, 1} is a lane change, A is a set of all possible actions of
the vehicle. The goal of the planning process is to minimize
travel time of the whole group.
The problem of tactical planning is considered as Dis-

tributed Multi-Agent Reinforcement Learning with the pur-
pose to learn the individual state-action value function
Qj(sgi(t), aj), which depends on the states sgi(t) of the ve-
hicles in a group gi(t) located at the edge ei (”joint state”)
and an action aj of agent j.
As a result, the optimal policy π∗j

tact(s
gi(t)) ∈ A, which

gives an action for j-th agent being at the joint state sgi(t),
which ensures the optimal travel time for the whole group.
This problem is considered in Section 3.2.
The integrated policy of the vehicle j consists of strategic

and tactical policy

π∗j =< π∗j
str, π

∗j
tact > . (5)

3. PLANNING FOR THE VEHICLE AGENT

3.1 Strategic Planning
In this section we present the method for strategic plan-

ning of a vehicle agent. We modify the algorithm R-SSPPR
([3],[14]) for calculation of the Stochastic Shortest Path with
imperfect information.
The idea of the R-SSPPR algorithm is to pre-calculate

the shortest paths for all possible realizations of edge travel
times, which are taken from historical realizations. We mod-
ify this algorithm by allowing arbitrary values of travel times
for the case, when all possible realizations of edge travel
times are unknown.
The idea of our algorithm is that the actual values of travel

times may differ from historical realizations, and this differ-
ence has a normal distribution. The actual realization of
edge travel time corrects the probabilities of the historical
samples, obtaining posterior probabilities given actual travel
times. For each edge, we pre-calculate an optimal route for
every possible probability distribution of historical samples
(it is clear that for practical realization we perform a dis-
cretization of probabilities by taking them with some small
step, say ǫ).

The strategic planning process is illustrated in Figure 3.
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Figure 3: Structure of vehicle planning process

We recall that the strategic planning problem for vehicle j
is to construct a path from the beginning of the edge ejs ∈ E
to the end of the edge ejd ∈ E with minimal travel time.
Agents solve their strategic planning tasks individually.

On each edge, the agent j makes its decision about the
next edge in its route. We call this decision rule a strate-
gic policy πj

str. The arguments of the strategic policy are
current edge ej(t) as well as current probability distribution
bj(t) over historical samples. So πj

str(e
j(t), bj(t)) ∈ N(ej(t))

defines the next edge after ej(t) in the j-th agent’s path.
Next we explain how the probability distribution bj(t) is
formed and corrected.

Let T j = {T j
1 , T

j
2 , . . . , T

j
ne
} be a set of travel times, which

are random variables, for the agent j trough all edges of the
graph. Note that it is more convenient to define for each
agent its own travel time, because they travel at the same
edge in different conditions (time, speed, type of vehicle,
etc.). We also assume, that for the given agent the infor-
mation in historical samples is also selected for the same
conditions of driving (time, day, season, etc.).

We suppose that elements of T j are dependent, because
traffic conditions on one node have an influence on the con-
ditions of another node. We assume that travel times T j

have the following, independent on the model time joint dis-
tribution function

FT (x1, x2, . . . , xne) = P{T j
i ≤ x1, T

j
2 ≤ x2, . . . , T

j
ne
≤ xne}.

However, the general form of the distribution FT (·) is un-
known, but only samples of historical realizations are avail-
able. We suppose that a sample of travel time realiza-
tions xj = {xj

1,x
j
2, . . . ,x

j
k} is available to agent j, where

xj
q = {xj

q,u}, is a set, containing values of travel times for
all edges of the q-th historical realization, q = 1, 2, . . . , k,
u = 1, 2, . . . , ne.

A (prior) distribution bj(τ j
s ) = {p

j
i (τ

j
s )} of historical sam-

ples is available to the agent j at the beginning of its trip,
where pjq(τ

j
s ) is a probability that the actual travel times

tju will be approximately equal to the q-th historical realiza-



tion. Let us define the event Aj
q: ”the sample xq contains

approximate travel times for the agent j”. Then

pjq(t) = P{Aj
q}.

An approximate equality of historical sample q and ac-
tual travel time tju for edge eu means that the difference
δju = |tvu − xq,u| is normally distributed with zero expec-
tation and variance σ2 j

q,u: δju ∼ N(0, σ2 j
q,u), q = 1, . . . , k,

u = 1, . . . , ne. We suppose that a sample of variances Ωj =
{Ωj

1,Ω
j
2, . . . ,Ω

j
k} is available to j-th agent, where Ωj

i = {σ2 j
q,u}

is a set, containing variances of differences between actual
travel times and historical realizations xq,u.
Later we update the distribution bj(t) based on knowledge

of the actual travel time tju on the edge eu, where the proba-
bility of difference with historical realizations are calculated
according to the normal distribution.
During its trip, the vehicle receives new information about

the realization of travel time. The vehicle j at time t can
split the set of edges E into two disjoint subsets: the subset
Ej

kn(t) ⊂ E of the edges, which travel times are known and

the subset Ej
rnd(t) ⊂ E of the edges, which travel times are

unknown Ej
kn(t) ∪ Ej

rnd(t) = E,Ej
kn(t) ∩ Ej

rnd(t) = ∅.
Let Ij(t) be the information, available to the vehicle j,

which consists of known travel times till time t; it is a set of
events, that random variables T j

u take their fixed values tju
correspondingly

Ij(t) =
⋃

eu∈E
j
kn

(t)

{T j
u = tju}. (6)

Let us suppose that the travel time at the edge eu ∈ E
becomes known to the vehicle at time τ . The vehicle now
updates the sets Ej

kn(τ), E
j
rnd(τ) as well as Ij(τ):

Ej
kn(τ) = Ej

kn(τ
′) ∪ {eu},

Ej
rnd(τ) = Ej

rnd(τ
′) \ {eu},

Ij(τ) = Ij(τ ′) ∪ {T j
u = tju},

(7)

where τ ′ is the time instant of previous update.
The information Ij(t) defines the posterior probabilities

bj(t). Given old posterior probability distribution bj(τ ′) and
actual travel time tju it is possible to calculate the posterior
distribution bj(τ) using Bayes’ formula:

pjq(τ) = P{Aj
q|I

j(τ ′), tju} =
pjq(τ

′)P{tju|A
j
q, I

j(τ ′)}

P{tju|Ij(τ ′)}
(8)

for all q = 1, 2, . . . , k.
In this formula, pjq(τ

′) = P{Aj
q|I

j(τ ′)} is the probability
that actual travel time will be approximately equal to the
historical sample xj

q without knowledge of tju. The probabil-

ity P{tju|A
j
q, I

j(τ ′)} is a probability to have an actual travel

time tju in the case if travel times are approximately equal
to q-th historical sample. This probability can be calculated
using normal distribution function

P{tju|A
j
q, I

j(τ ′)} = Φ

(

|tju − xj
q,u|

σ2 j
q,u

)

, (9)

where Φ(x) is a distribution function of the standard normal
distribution with zero mean and 1 variance: N(0, 1).
Denominator of (8) may be simply calculated, ensuring

that the sum of all posterior probabilities is equal to 1.
Strategic planning process consists of two stages: pre-

planning and routing. During strategic pre-planning stage,

we pre-calculate the optimal routes for each edge and possi-
ble distribution of historical samples.

For pre-planning stage, it is convenient to represent the
problem in a form which enables dynamic programming in
stochastic case.

It is known ([7]) that the recurrent equation for the dy-
namic programming in stochastic case looks like

V (s) = min
a∈Γ(s)

{F (s, a) + EG[V (s′)|s, a]]}, (10)

where s is the state at the current step, s′ is the state at the
next step, Γ(s) is a set of possible actions from the state s, G
is a distribution of all possible next states given current state
s and action a, F (s, a) is a value, which depends on current
state and action and which sum should be minimized, V (s)
is an expected value, if one starts from the state s (value
function).

In our case the state consists of the current edge ei and
the distribution bj(t) over historical samples; the set of pos-
sible actions Γ(s) consists of the next edges N(ei); the value
F (ei) is a travel time trough the edge ei; and the distri-
bution G(ei, b

j(t), b′) is defined as a probability to get the
distribution b′ on the next step, if current edge is ei and cur-
rent distribution is bj(t). Thus we denote by V j

πstr
(ei, b

j(t))
an expected travel time of the vehicle j from the beginning
of the edge ei to the destination edge ejd under the decision
rule πstr.

The following recurrent equation is true for V j
π (ei, b

j(t)):

V j
πstr

(ei, b
j(t)) =











































∑

v

pjv(t)x
j
v,i, if ei = edj ,

∑

v

pjv(t)x
j
v,i+

+
∑

b′

G(ei, b
j(t), b′)·

·V j
πstr

(πstr(ei, b
j(t)), b′)

otherwise,

(11)

where the sum is taken over all possible distributions of his-
torical samples on the next edge.

In order to find the optimal strategic policy π∗j
str(ei, b

j(t)),
we need to minimize (11) over all possible next edges:

V ∗j(ei, b
j(t)) =



































∑

v

pjv(t)x
j
v,i, if ei = edj ,

∑

v

pjv(t)x
j
v,i+

+ min
eu∈N(ei)

∑

b′

G(ei, b
j(t), b′)·

·V ∗j(eu, b
′) otherwise.

(12)

The optimal policy corresponds to the edge, chosen for
V ∗j(ei, b

j(t))

π∗j
str(ei, b

j(t)) =















none if ei = edj ,

argmin
eu∈N(ei)

∑

b′

G(ei, b
j(t), b′)·

·V ∗j(eu, b
′j(t′)) otherwise.

(13)

The implementation of (12) supposes calculation of the
optimal route for each pair of edge and each possible dis-
tribution vector. In practice, we perform a discretization
of distributions and generate a set of distribution vectors B
with step ǫ on every component, where ǫ is taken sufficiently
small.



During the routing phase, the closest vector b̃j(t) ∈ B to
the actual probability distribution bj(t) is selected

b̃j(t) = argmin
b∈B

[D(bj(t)||b)], (14)

where the divergence between distributions D(P||Q) may be
calculated using Kullback-Leibler divergence [9]

D(P ||Q) =
∑

i

P (i) log
P (i)

Q(i)
. (15)

However, there is some difficulty in calculation of the pos-
sible distributions G(ei, b

j(t), bj(t′)) for the next edges. For
this purpose, we need to consider all possible travel times of
the edge ei, which are not necessary equal to one of values
in historical realizations.
In order to avoid this difficulty, we use the resampling

of current edge travel times ([2]). We repeat r times the
following resampling procedure. For the fixed distribution b
we extract one value of travel times xv,i and add a random
value n∗η

i , distributed with an expectation 0 and variance

σ2 j
v,i , obtaining an η-th resampling realization of the travel

time t∗ηi :

t∗ηi = xv,i + n∗η
i . (16)

The value t∗ηi (16) allows us to calculate the posterior dis-
tribution bj∗η(t′) using (8). We find the closest distribution

b̃j∗η(t′) using (14) and (15) from available distributions.
Then we take each edge eu ∈ N(ei) and calculate

V (eu, b̃
j∗η(t′)). Their average over all r resampling real-

izations gives an expected value function for the next edge
eu

Ṽ ∗(eu) = 1/r
r

∑

η=1

[

t∗ηi + V (eu, b̃
j∗η(t′))

]

. (17)

Note that a number of resamples r can be taken suffi-
ciently big, it is bounded by the computational resources
only. As we will see later, complexity of the algorithm lin-
early depends on r.
Then (17) is minimized over all next edges eu ∈ N(ei),

obtaining the optimal value function V ∗j(ei, b
j(t)) (12).

Now we describe the mentioned procedure in the form
of algorithms. First, Algorithm 1 presents the resampling
procedure.

Algorithm 1 Function RESAMPLE

1: function RESAMPLE(ei, eu, b, r,X,Ω)
2: for all ν ∈ {1, . . . , r} do
3: v ← random(b) ⊲ selects one historical sample
4: n∗η

i ← Normal(0, σ2
v,i) ⊲ random difference

5: t∗ηi ← xv,i + n∗η
i ⊲ calculates the travel time

6: ⊲ calculates the posterior distribution
7: b′∗η ← UpdateDistr(b, t∗ηi )
8: ⊲ takes closest available distribution
9: b̃∗η ← FindClosest(b′, B)
10: end for
11: ⊲ returns an average over all generated distributions
12: return 1/r

∑r

η=1[t
∗η
i + V ∗j(eu, b̃

∗η)]
13: end function

Now we present a pre-planning stage of strategic planning
in Algorithm 2.

Algorithm 2 Pre-planning stage of the strategic planning

1: ei ← ejd
2: B ← GenerateDistr(ǫ) ⊲ generates all distribution

vectors
3: while prev(ei) 6= ∅ do
4: for all b ∈ B do ⊲ for each distribution vector
5: for all eu ∈ N(ei) do ⊲ for each neighbor edge
6: ⊲ calculates an avegare reward
7: Ṽ ∗(eu)← RESAMPLE(ei, eu, b, r,X,Ω)
8: end for
9: ⊲ minimizes it by neighbor edges
10: V ∗j(ei, b)← min

eu∈N(ei)
Ṽ ∗(eu)

11: π∗j(ei, b)← argmin
eu∈N(ei)

Ṽ ∗(eu)

12: end for
13: ei ← prev(ei)
14: end while

This algorithm uses the function prev(ei) ∈ E, ei ∈ E.
This function corresponds to ordering of edges
{e(1), e(2), . . . , e(ne)} that for any pair (e(i), e(u)), i < j the
edge e(u) does not start at the edge, where e(i) starts. For
this purpose, the graph G should not contain loops. So the
vehicle uses only a part of roads in its route calculation pro-
cess such that the resulting graph does not contain loops.
The loops add more complexity to the algorithm, however
in our future research we plan to construct an algorithm
taking loops into account.

Now the function prev is simply defined as prev(e(i)) =
e(i−1) for i > 1.

Now let us analyze the complexity of the Algorithm 2. We
can easily see three loops here: outer loop over all edges,
second loop over the elements of B (possible distributions)
and inner loop over all possible neighbor edges, which also
is bounded by number of edges. It is easy to see that the
number of vectors in B is bounded by 1/ǫn

e

. Inside these
three loops there is a call of the resampling procedure, which
performs r steps, UpdateDistr and FindClosest procedures
require k steps (the number of historical realizations). So the
complexity of the proposed procedure is

T (ne, k, r, ǫ) = O

(

n2
er

ǫnek

)

. (18)

We conclude that this algorithm is polynomial by r and ǫ,
but exponential by ne and k. This does not allow to apply it
for very large networks; in our future research we will work
on reducing of the complexity of this algorithm.

3.2 Tactical Planning
According to strategic plan, a vehicle enters some edge

together with other vehicles. Its tactical plan allows sharing
an edge with other vehicles by choosing appropriate speed
and lane changes to pass through the edge as quickly as
possible.

We suppose that vehicles which are located on the same
edge can freely exchange their information such as states
and are fully collaborative, thus namely they follow the joint
policy, which is optimal for the whole group.

As it was introduced previously, a state of the vehicle sj(t)
is described by its edge, relative position at the edge, lane,
speed and traffic light time. We denote by S a set of all



possible states of an individual vehicle. Possible vehicle ac-
tions consist of pairs a =< ∆v,∆l >∈ A, which correspond
to speed and lane change. So state change is described as

sj(t+ 1) =































< ej(t), xj(t)− vj(t), lj(t) + ∆l,
vj(t) + ∆v, uj(t+ 1) >,
if xj(t)− vj(t) > 0,

< π∗j
str(e

j(t), ·), xj(t)− vj(t) + d(ej(t)),
lj(t) + ∆l, vj(t) + ∆v, uj(t+ 1) >

otherwise.

(19)

where the condition xj(t)−vj(t) > 0 checks if the edge does
not end at current step (here vj(t) is a distance, which a
vehicle passes on one time step).
Note that the second situation is only possible if the traffic

light signal for the desired direction is green, so uj(t) ∈
LG

i (π
∗j
str(e

j(t), ·)).
We assume that for each state sj(t) ∈ S a corresponding

reward r(sj) is available. We further assume that the reward
structure is fully additive:

r(sj(t)) = rx(xj(t)) + rl(lj(t))+
+rv(vj(t)) + ru(uj(t)).

(20)

The position part rx(·) has smaller values at the beginning
of the edge and bigger values at the end; the lane part rl(·)
has bigger values for the lane, which has a turn to the next
edge in the vehicle route; the speed part rv(·) has larger
values for larger speeds; the traffic light part ru(·) has a
big negative value for uj(t) /∈ LG

i (eu) and small xj(t); for
all other states it is equal to zero; as a result, vehicles will
regulate their speed to go to fit the green signal phase of the
traffic light.
In order to construct agent optimal tactical policy, we use

the reinforcement learning (RL) ([15]). This is a computa-
tional approach to learn from interaction with the environ-
ment, if supervision is not available. There are several types
of RL such as dynamic-programming based RL (for models
with perfect information), Monte Carlo Learning (MC) (if
the reward is available at the end of the episode only) and
Temporal Difference Learning (TD) (if reward is available
after each simulation step).
RL methods may be divided to on-policy methods (the

most popular is SARSA) and off-policy methods (the most
popular is Q-learning). The difference is that on-policy
methods work with one policy and the policy update is per-
formed after some time; off-policy methods perform the op-
timization on each learning step, so do not work with a fixed
policy. In our case we use Q-learning approach, because the
state space is large and the separate loop over all states for
policy optimization may be computationally expensive. In-
stead, we perform at each learning step maximization on all
actions.
We introduce a state-action value functionQj(sj , aj), which

represents an average reward for the j-th agent, which starts
from the state sj ∈ S and performs the action aj ∈ A. Then
for the state-action pair (sj , aj) and the next state s′j , there
exists the following recurrent equation:

Qj(sj , aj) = Qj(sj , aj)+
+α

[

r(s′j) + γmaxa′j Qj(s′j , a′j)−Qj(sj , aj)
]

,
(21)

where α is learning parameter, which represents an influence
of difference of two neighbor action-value functions and γ is
learning parameter, which represents an influence of the next
state-action value function.

Tactical policy πj
tact(s

j) ∈ A defines an agent action in
state sj . The optimal tactical policy π∗j

tact(s
j) guarantees

the maximal expected reward; it may be calculated by max-
imizingQj(sj , aj) with respect to all possible actions aj ∈ A:

π∗j
tact(s

j) = argmaxaj∈AQ
j(sj , aj). (22)

The single-agent learning procedure is presented in Algo-
rithm 3.

Algorithm 3 Single-agent tactical learning algorithm

1: initialize s←< x, l, v, u >
2: while x > 0 do
3: a← SEL A(s, ǫ)
4: take action a
5: observe next state s′

6: observe reward r(s′)

7:
Qj(s, a)← Qj(s, a) + α[r(s′)+
+γmaxa′ Qj(s′, a′)−Qj(s, a)]

8: π∗j
tact(s) = argmaxaQ

j(s, a)
9: s← s′

10: end while

The function SEL A in line 3 of this algorithm selects an
action depending on the state s. This can be done using
ǫ-greedy method

SEL A(s, ǫ) =

{

π∗j
tact(s) with prob. 1− ǫ+ ǫ/|A|

other a ∈ A with prob. ǫ/|A|,

where ǫ is sufficiently small. This ensures that the agent will
try all actions, not only the first which seems to be good.

Now let us consider a case of several agents, where we
apply the Distributed Multi-Agent Reinforcement Learning
algorithm ([8], [11]) for solving the cooperative task of mul-
tiple agents.

Let gi(t) be a set of agents (group), which are located at

edge ei ∈ E at time t. Let sgi(t) ∈ S|gi(t)| be a joint state,
which includes states of all agents in the group gi, where Sa

is a times cross product of the set S with itself.
A local state-action value function Q̃j(sgi(t), aj) depends

on the action of the j-th agent and the joint group state
sgi(t), j ∈ gi(t). By analog with (21) it represents an average
reward, which the agent j receives, performing the action aj

in the group state sgi(t).
The function Q̃j(sgri(t), aj) is updated in the following

manner, which ensures maximum of joint-actionQ-functions
[11]:

Q̃′
j
(sgi(t), aj) = max

{

Q̃j(sgri(t), aj),

rj(s′gi(t)) + γmax
a′j

Q̃j(s′gri(t), a′j)

}

,
(23)

where maximization is done with respect to all possible local
actions a′j . The optimal policy π̃∗j

tact(s
gi(t)) is being updated

only if function Q̃j(sgi(t), aj) was changed:

π̃∗j
tact(s

gi(t)) =























argmax
aj

Q̃′j(sgi(t), aj),

if max
aj

Q̃′j(sgi(t), aj) >

maxaj Q̃j(sgi(t), aj),

π̃∗j
tact(s

gi(t)) otherwise.

(24)

A multi-agent learning procedure is given in the Algorithm
4.



Algorithm 4 Multi-agent tactical learning algorithm at the
edge ei ∈ E

1: while not end of the simulation do
2: for all j ∈ gi(t) do
3: ⊲ for all agents on the edge execute actions and observe

individual next states
4: aj ← SEL A(sgi(t), ǫ)
5: take action aj

6: observe next state s′j

7: end for
8: ⊲ collect group joint state
9: s′gi(t) ← {s′j}, j ∈ gi(t)
10: for all j ∈ gri(t) do

11: observe reward rj(s′gi(t))
12: ⊲ learn individual state-action functions
13: Q̃′

j
(sgi(t), aj) = max{Q̃j(sgi(t), aj), rj(s′gi(t))+

14: +γmaxa′j Q̃j(s′gi(t), a′j)}
15: ⊲ and update policy if necessary

16: if max
aj

Q̃′j(sgi(t), aj) > max
aj

Qj(sgi(t), aj) then

17: π̃∗j
tact(s

gi(t))← argmax
aj

Q̃′j(sgi(t), aj)

18: end if
19: Q(s, ai)← Q′(s, ai)
20: end for
21: end while

4. EXPERIMENTS AND RESULTS
We simulate a traffic network in Hanover, Germany, by

using AimSun, a specialized simulation software for traffic
applications. The road network is shown in the Fig. 4.

e

Figure 4: Road network of the south part of Hanover
city

All intersections are regulated by traffic lights with fixed
control plans, known to vehicles. We use the realistic traffic
flows, collected in given region of Hanover in morning rush
hours. There are traffic flows in all directions; we are in-
terested in the flow 1 → 11; these vehicles use the graph,
shown on the Fig. 5, for their decisions.
In our model, we divide each street to cells of 4 m length.

The possible speeds of vehicles are: {0,5,. . . ,50}km/h. One
simulation step corresponds to 1/2 sec.

10 11

8 9

6 7

4 5

1 2 3

Figure 5: Graph representation of the considered in
Figure 4 road network

Table 1: Travel times for the route 1 → 11 (sec.)
depending on the flows ratio

Flows ratio
Planning
usage

0.5 0.7 0.9 1.0 1.2

Without
planning

241.1 256.2 401.4 567.4 934.4

With strategic
planning

231.2 242.4 378.1 528.2 856.9

With tactical
planning

231.9 246.2 385.0 543.7 870.8

With strategic
and tactical
planning

225.7 236.1 367.7 518.6 818.5

Experimental results are summarized in Table 1. We cal-
culate travel times depending on the ratio to the flows in
Hanover in morning hours.

We conclude that the application of integrated planning
allows reducing the travel time of vehicles to about 10%;
this is more than SP or TP separately.

5. CONCLUSIONS
Planning for the vehicle agents in city traffic is very im-

portant task, because it allows vehicles to use an existing
information for decentralized planning and implies more ef-
fective infrastructure usage.

In this paper, we proposed an integrated planning process
for vehicle agents, which includes both strategic and tactical
planning.

For strategic planning, we showed how to apply existing
information for effective solving of routing problems under
imperfect information. The proposed algorithm allows work-
ing with posterior probabilities of historical samples and uses
resampling of future travel times.

For tactical planning we used a modification of Distributed
Multi-Agent Reinforcement Learning (DEC-MARL), which
allows vehicles to collaborate inside a road segment in order
to traverse it in the most quick way. The model reflects the
growing experience of vehicles in tactical decisions as well as
in cooperation processes. We used the resampling procedure
in order to reduce working time of the algorithm.

First experiments show that the demonstrated approach
allows reducing the travel time of vehicles. The integrated
nature of planning process allows improving strategic and



tactical decisions of vehicles.
In the future we will work on an integration of the ap-

proach with centralized regulations from traffic management
centers, as well as more dynamic agents group formation for
flexible cooperation in strategic and tactical planning. An-
other important direction of our research aims at the ap-
plication of computational statistics (e.g. resampling) for
reduction of algorithms complexity. We are going to avoid
as possible the exponential complexity of the algorithm and
take possible loops in the routing graph into account.
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