Density-Based Clustering in Cloud-Oriented
Collaborative Multi-Agent Systems

Jelena Fiosina and Maksims Fiosins *

Clausthal University of Technology,
Institute of Informatics,
Julius-Albert Str. 4, D-38678, Clausthal-Zellerfeld, Germany

{Jelena.Fiosina,Maksims.Fiosins}@gmail.com

Abstract. The development of new reliable data processing and min-
ing methods based on the synergy between cloud computing and the
multi-agent paradigm is of great importance for contemporary and fu-
ture software systems. Cloud computing provides huge volumes of data
and computational resources, whereas the agents make the system com-
ponents more autonomous, cooperative, and intelligent. This creates the
need and gives a very good basis for the development of data analysis,
processing, and mining methods to enhance the new agent-based cloud
computing (ABCC) architecture. Ad-hoc networks of virtual agents are
created in the ABCC architecture to support the dynamic functionality
of provided services, and data processing methods are very important
at the input data processing and network parameter estimation stage.
In this study, we present a decentralized kernel-density-based clustering
algorithm that fits with the general architecture of ABCC systems. We
conduct several experiments to demonstrate the capabilities of the new
approach and analyse its efficiency.

Keywords: Cloud computing architecture, distributed data processing
and mining, multiagent systems, decentralized clustering, kernel density
estimation

1 Introduction

Cloud computing (CC) is developing rapidly due to new communication and
mobile technologies, and it has been introduced recently as a new model for
delivering computational resources over a network. Motivated by future Internet
technologies such as the Internet of Things, it provides end users with simple on-
demand access to services, such as applications or databases, through lightweight
mobile applications. Simultaneously, the complexity of the infrastructure is hid-
den in the cloud, which allows users to focus on their goals instead of the infras-
tructure complexity [11].

*The research leading to these results has received funding from the EU 7th Frame-
work Programme (FP7/2007-2013) under grant agreement No. PIEF-GA-2010-274881.

It should be noted that cloud-based systems are complex systems, distributed
by regions, services, and providers. A popular paradigm for modelling complex
distributed systems is the multi-agent system (MAS). Agents in an MAS are
autonomous and intelligent, and capable of cooperating with each other and
interacting with the environment.

The synergy between MAS and CC models (Fig. 1) reveals new perspec-
tives for developing future intelligent information and management systems. CC
provides elastic services, high performance, and scalable data storage to a large
and increasing number of users [9]. MAS provides intelligent system behaviour
and adaptive mechanisms for data processing, decision-making, and learning to
better satisfy user needs as well as intelligent interaction and cooperation mech-
anisms for dealing with system distribution. In other words, MAS makes CC
more intelligent, and CC makes MAS more powerful and accessible.

Agent-based cloud computing (ABCC) [4],[11] is a new research direction
that enhances existing complex systems modelled using MASs with new modern
technologies from communication and data analysis fields to make correspond-
ing applications more intelligent. Talia [11] considered the implementation of
CC with software agents to create intelligent cloud services. CC can offer a very
powerful, reliable, predictable, and scalable computing infrastructure for the exe-
cution of an MAS implementing complex agent-based applications for modelling
and simulation. On the other hand, software agents can be used as the basic
components for implementing intelligence in clouds, making them more adap-
tive, flexible, and autonomic in resource management, service provisioning, and
running large-scale applications.

The high availability of mobile devices with sensors and permanent Internet
connections means that huge amounts of data are available on CC systems. The
appropriate use of such data can create a complete picture of the environment
for agents in an MAS, enabling optimal decisions. Hence, the novel mechanisms
and algorithms for data processing and mining in ABCC are of high importance
[8], [5]. Large amounts of data must be found, collected, aggregated, processed,
and analysed for optimal decision-making and behaviour strategy determination.
Although information is virtually centralized by cloud technologies, it should be
managed in a decentralized fashion, creating challenges for research in this area.

In our previous work, we considered decentralized data processing models,
such as regression forecasting and change-point analysis, and applied them for
optimal decision making in an MAS, such as optimal route selection [3] or
lane/speed adaption [5] in traffic. We demonstrated that appropriate data co-
ordination mechanisms can provide almost the same forecasting accuracy as a
model with central authority [2].

In this study, we focus on decentralized data clustering, which is an important
data pre-processing step in cloud data repositories. By grouping similar data
together, it is possible to construct more precise forecasting models as well as use
only typical data representatives in the decision-making process. Complex forms
of clusters require non-parametric, computationally intensive approaches such
as kernel-density (KD) [6] clustering (Fig. 1). Fast KD clustering was described

by Hinnenburg and Gabriel [7]. The distributed (with central authority) version
of KD clustering (KDEC scheme) was considered in [8]. Another graph-oriented
decentralized clustering method not based on KD was presented in [10].

Multi-agent systems (MAS) Cloud computing (CC)

Decentralised coordinated
kernel-density (KD) clustering
for agent-based CC

Complex stochastic Distributed data processing
application and mining

Fig. 1. Synergy of cloud computing and multiagent systems to meet decentralized
density-based clustering for some application

The decentralised KD clustering algorithm was motivated by and developed
for use in ABCC. The developed algorithm is an extension of the approach [7]
for the multivariate case and developing a data coordination scheme based on
the transmission of the number of nearest data points from the same cluster.

The remainder of this paper is organized as follows. Section 2 introduces KD
clustering. In Section 3, we develop the decentralised cooperative KD clustering
algorithm. In Section 4, we conduct several experiments and analyse the effi-
ciency of the suggested approach. The last section presents the conclusion and
discusses the opportunities for future work.

2 Kernel Density (KD) Clustering

Now let us formulate the clustering problem and describe the KD clustering
algorithm. Let X = {x1,%a,...,%n}, X; € R? be a dataset to be clustered into
k non-overlapping subsets S1,5s, ..., Sk.

Non-parametric clustering methods are well suited for exploring clusters
without building a generative model of the data. KD clustering consists of a
two-step procedure: estimation and optimisation. During the estimation step, the
probability density of the data space is directly estimated from data instances.
During the optimisation step, a search is performed for densely populated regions
in the estimated probability density function.

Let us formalize the estimation step. The density function is estimated by
defining the density at any data object as being proportional to a weighted sum
of all objects in the data-set, where the weights are defined by an appropriately
chosen kernel function [8].

A KD estimator is

- 1 _ _ 1
X (x) = N d MK (H ' x-xi) = N Y Ku(lx—xl), (1)
x;€X x;€X

where ||x — x;|| is a distance between x; and x, H is a bandwidth matrix, K (x)
is a kernel function, Ky (e) = [H|7'K (H™'e) [6].

K (x) is a real-valued, non-negative function on R? and has finite integral
over RY. We use the multivariate Gaussian function in our study: K(x) =
(2m)~%2exp (—3xTx). The bandwidth matrix H is a d x d positive-definite
matrix that controls the influence of data objects and smoothness of the esti-
mate. If no information is available with regard to correlation between factors,
a diagonal matrix H = diag(hq, ..., hq) can be used.

Let us now formalize the optimisation step. This step detects maxima of KD
and groups all of the data objects in their neighbourhood into corresponding
clusters. We use a hill climbing method for KD maxima estimation with Gaus-
sian kernels (DENCLUE2) [7] and modify the technique for the multivariate
case. This method converges towards a local maximum and adjusts the step size
automatically at no additional costs. Other optimization methods (DENCLUE)
[7] require more steps and additional computations for step size detection.

Each KD maximum can be considered as the centre of a point cluster. With
centre-defined clusters, every local maximum of !f/() corresponds to a cluster
that includes all data objects that can be connected to the maximum by a
continuous, uphill path in the function of ¥(-). Such centre-defined clusters allows
for arbitrary-shaped clusters to be detected, including non-linear clusters. An
arbitrary-shape cluster is the union of centre-defined clusters that have maxima
that can be connected by a continuous, uphill path.

The goal of the hill climbing procedure is to maximize the KD ¥Xl(x). By
setting the gradient V&X](x) of KD to zero and solving the equation V¥X(x) =
0 for x, we get:

X(l-‘rl) _ ZXiEX Ku (Hx(l) — XZH) Xi. (2)
Poeiex K ([[x0 = xi])

The formula (2) can be interpreted as a normalized and weighted average
of the data points. The weights for each data point depend on the influence of
the corresponding kernels on x(). Hill climbing is initiated at each data point
x; € X and is iterated until the density does not change, i.e. [#[X] (xgl)) -
@1X] (xgl_l))]/ﬁ[x} (xgl)) < ¢, where € is a small constant. The end point of the hill
O]

%

climbing algorithm is denoted by x} = x
of KD.

Now we should determine a cluster for x;. Let X¢ = {x§,x§,...} be an
ordered set of already identified cluster centres (initially, we suppose X°¢ = ().
First we find an index of the nearest cluster centre from x} in the set X“:

, corresponding to a local maximum

*\ : c *
ne(x}) = arg min || x§ — x;
j:x;:EXC

If the nearest cluster centre is close to x}, then the point x; is included in
this cluster; otherwise, the point is used as a cluster centre to form a new cluster

Ax;) ¢ ne(xq) if ‘Hxnc{,j;f)ixt <4,
|X€| 4+ 1 otherwise.

where ¢ is a small constant and A(z) is a class labeling function. In the second
case, we also create a new cluster centre: X¢ «+ XU {x}}.

3 Decentralized KD Clustering

In this section, we describe the cooperation for sharing the clustering experience
among the agents in a network. While working with streaming data, one should
take into account two main facts. The nodes should coordinate their clustering
experience over some previous sampling period and adapt quickly to the changes
in the streaming data, without waiting for the next coordination action.

Let us first discuss the cooperation technique (Fig. 2). We introduce the
following definitions. Let A = {47 |1 < j < p} be a group of p agents. Each
AJ has a local dataset D7 = {x] |t = 1...., N7}, where x; € R%. In order to
underline the dependence of the KD function (1) on the local dataset of A7, we
denote the KD function by ¥P’](x).

Consider a case when some agent A’ is unable to classify (after optimisation
has formed a new or small cluster) some future data point x! because it does
not have sufficient data in the neighbourhood of this point. It sends the data
point x? to the other neighbouring agents. Each A7 that has received the request
classifies x! using its own KD function (D] (x%) and performs the optimisation
step to identify the cluster for this point. Let n;; be a number of points in the
cluster of x}, not including x; itself. In the case of successful clustering (n;; > 0),
A7 forms an answer D7 with ¢ nearest points to the requested data point from
the same cluster as x} (or all points from the cluster, if n;,; < c). Let ¢;; be a
number of points in the answer D7, The agent A7 sends D7 together with Cji
and n;; to A°.

After receiving all the answers, A’ forms a new dataset D7, The next prob-
lem is the updating of the KD function of A* with respect to the new knowledge
D7, Density estimates (1) of each agent are additive, i.e. the aggregated density
estimate ¥P’] (x) can be decomposed into the sum of the local density estimates,
one estimate for every dataset D7’

A - i 1— n a I,
P (x) = w; - wIPT(x) + (A —wi) Z njﬂw[D l(x), (3)
Z Nji Aiegs
Al eG?

where w; is a weight used for the agent’s own local observations.
After updating its KD function, A* can perform a hill-climbing optimisation
procedure to identify clusters in its local data space.

Agent 1 e o o

asks help for x!

Agenti o o o Agent p

T -
:| tonomous
clustering

:l unability no cluster

asks help for x!

cluster x!
with own KD function

sends ¢ nearest points
from the same cluster D

cluster x!
with own KD function

sends c nearest points
from the same cluster D”*

:| integrates received
information

autonomous
clustering

Fig. 2. Interaction between agents

To measure the clustering similarity [1] among the agents A® € A we use
the following representation of a class labeling by a matrix C' with components:

Ciﬁj = {

Let two labelings have matrix representations C") and C'®) respectively.
We define a dot product that computes the number of pairs clustered together
(cH,c@) =¥, > Cz-(ylj)C’i(?. The Jaccard’s similarity measure can be ex-
pressed as

1if z; and x; belong to the same cluster and ¢ # j,
0 otherwise.

(c), ¢@)

1) ~(2)y =
J(C,C) = <C(1>,O<1>>+<C(2>,C(2)>—(C(U,C(?))'

(4)

4 Experimental results

We consider a clustering model with decentralised coordinated architecture. The
agents made a local clustering of their observations and used cooperative mech-
anisms to adjust the cluster information according to those of other agents. The
amount of information transmitted was lower than that in the centralised model,
because it requires no transmission of all global data.

We simulate 10 agents with the initial experience, which varies in the range
from 10 to 100 observations. Most simulation experiments ran for 200 time units.
For our experiments we assume that all observations are homogeneous and the

agents try to estimate the same clusters. The initial global two-dimensional sam-
ple data are presented at Fig. 3, where one can see five clusters. The points are
located at the normally distributed distances from the cluster centres. Agents
take random subsets from this global dataset and try to estimate the clusters
by only part of observations. One data synchronization step is demonstrated at

® 7 ®
O.
Ay a ° e
LM A 2g® 08
+ A AL %n ©
+
+ IN A o)
© - +++#+ @A NS a, 60 ® o
+ A a o
+ ﬁjf*éf @M N) 0.0-6
A, o
An
o TH A &
+ A4
A ATX
< A % X X
> §&X '’
X, Xy XX
Xx?} x X <><> ©
oK X x X X oo
o~ X <><><><> Led
x o < @0
*X Sy &F
4 o °
go
<&
o - 00
(g
i
T T T T T
0 2 4 6 8

Fig. 3. All observations form clusters

Fig. 4. The agent that has difficulties with a point sends a help request. The
receiving agent clusters the point using its own data and detects corresponding
cluster. It sends an answer from three nearest points in the cluster back to the
requesting agent. The requesting agent adds received data to its own and makes
new clustering. This allows to improve clustering similarity of these two agents
from 0.011 to 0.037 as well as clustering similarity of the requesting agent with
the ’ideal’ clustering from 0.004 to 0.006.

We demonstrate now a system dynamics for a different number of transmitted
points (Fig. 5). Clustering similarity (right) increases faster for a bigger number
of the transmitted points, but the number of communication events (left) de-
creases faster. However, we note that one communication event is more expensive
for a bigger number of transmitted points, but supplies more information.

Quality of the agent models was also checked by a cross-validation technique
(Fig. 6) at the beginning (left) and at the end (right) of the simulation. These
histograms show a probability distribution of a similarity at the beginning and
at the end of the simulation process. One can see that the similarity peak moves
to bigger value during the coordination procedure.

Fig.4. A communication step between the requesting (top) and helping (bottom)
agents. The requesting agent asks for help for point A (top left), the helping agent
finds a corresponding cluster (bottom left), and sends the nearest three points B, C,
D to the helping agent (bottom right). The helping agent adds the points to its data
and makes new clustering (top right).

n + J
8 1 — ¢=10
% °er s | c=5
ERE 2z c=2
2 =
E s !
: Ze
1S » o
38 [=2)
o ™M+ E
s L
> 3 _
[] |
£ 52
2~
n
Q -
o
1 T T T T T T : ; :
0 50 100 150 200 0 50 100 150 200

Simulation time

Fig.5. A number of communication events
(right) over time

35

15
Frequency

Frequency

10
I

1 1 |

T T
0.10 0.15
Clustering similarity

Simulation time

(left) and similarity of agents’ clusters

12

]

} T T T T T T 1
0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
Clustering similarity

o

Fig. 6. Frequencies at the beginning (left) and at the end (right) of simulation

5

Future Work and Conclusions

We developed the coordinated decentralized kernel-density clustering approach
for agent-based cloud computing architecture. The data coordination scheme
is based on the transmission of a several nearest points from the same clus-
ter. An experimental validation of the developed algorithm was also performed.
Demonstrated algorithms of collaborative clustering can be applied in cloud-
based systems from various domains (e.g. traffic, logistics, energy). Our future
work is devoted to the development of new coordination schemes in proposed
decentralised clustering approach as well as the application of this algorithm to
real-world data.

References

10.

11.

Ben-Hur, A., Elisseeff, A., Guyon, I.: A stability based method for discovering
structure in clustered data. In: Pacific Sym. on Biocomputing 7, pp. 6-17 (2002)
Fiosina, J., Fiosins, M.: Chapter 1: Cooperative regression-based forecasting in dis-
tributed traffic networks. In: Q.A. Memon (ed.) Distributed Network Intelligence,
Security and Applications, pp. 3-37. CRC Press, Taylor and Francis Group (2013)
Fiosina, J., Fiosins, M.: Selecting the shortest itinerary in a cloud-based distributed
mobility network. In: S.O. et al. (ed.) Proc. of 10th Int. Conf. on Distributed
Computing and AT (DCAI 2013), Adv. in Int. Syst. and Comp., vol. 217, pp. 103~
110. Springer-Verlag, Berlin/Heidelberg (2013)

Fiosina, J., Fiosins, M., Miiller, J.P.: Mining the traffic cloud: Data analysis and
optimization strategies for cloud-based cooperative mobility management. In: Proc.
of Int. Sym. on Management Int. Systems, Adv. in Int. Syst. and Comp., vol. 220,
pp. 25-32. Springer-Verlag, Berlin/Heidelberg (2013)

Fiosins, M., Fiosina, J., Miiller, J., Gérmer, J.: Agent-based integrated decision
making for autonomous vehicles in urban traffic. Adv. in Int. and Soft Comp. 88,
173-178 (2011)

Hardle, W., Miiller, M., Sperlich, S., Werwatz, A.: Nonparametric and Semipara-
metric Models. Springer, Berlin/Heidelberg (2004)

Hinneburg, A., Gabriel, H.H.: Denclue 2.0: Fast clustering based on kernel density
estimation. Adv. in Intelligent Data Analysis VII, LNCS 4723, 70-80 (2007)
Klusch, M., Lodi, S., Moro, G.: Agent-based distributed data mining: The KDEC
scheme. In: AgentLink, pp. 104-122 (2003)

M. Armbrust, e.a.: A view of cloud computing. Communications of the ACM
53(4), 50-58 (2010)

Ogston, E., Overeinder, B., van Steen, M., Brazier, F.: A method for decentralized
clustering in large multi-agent systems. In: Proc. of 2nd Int. Conf. on Autonomous
Agents and Multiagent Systems, pp. 789-796 (2003)

Talia, D.: Cloud computing and software agents: Towards cloud intelligent services.
Proc. of the 12th Workshop on Objects and Agents 741, 2-6 (2011)

