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Abstract 

The paper addresses intelligent data processing and mining in distributed multi-agent networks. We 

consider a distributed traffic network represented as a multi-agent system, where each agent-vehicle 

autonomously forecasts its travelling time. We propose a structure for such agents and their 

corresponding distributed data processing and mining modules. We use distributed linear and kernel-

based regression models for travelling time forecasting on the basis of available values of affecting 

factors. To improve the forecasting quality, the agents exchange information (model parameters or 

observations) with other traffic participants. We describe forecasting methods, paying special attention 

to their implementation for streaming data. We propose a cooperative learning algorithm based on the 

construction of confidence limits for estimates. Simple examples of each method illustrate their 

application principles. A case study using real-world data from Hanover (Germany) illustrates a 

practical application of these methods. We propose a structure for linear and kernel-based regression 

models, which we implement for different multi-agent system architectures (centralised, 

coordinated/uncoordinated). We analyse the efficiency of linear, kernel-based and aggregated 

regression estimates in different architectures on the basis of their relative forecasting errors and a 

goodness-of-fit measure. The results demonstrate that a suitable coordination schema in a distributed 

architecture provides almost the same accuracy as a centralised architecture. 

 

1. Introduction 

The problems in distributed networks, which often appear in complex applications, such as sensor, 

traffic, or logistics networks, can be solved using multi-agent system (MAS) architectures. At present, 

research on MAS and distributed networks is focused mainly on decision-making, whereas little 

attention is paid to the problems of data processing and mining. However, adequate decision-making 

requires appropriate analysis and processing of input data. In this context, the development of methods 

for intelligent data analysis and mining of distributed sources is a very timely. 

 

In MAS, the individual and collective behaviours of the agents depend on the observed data from 

distributed sources. In a typical distributed environment, analysing distributed data is a non-trivial 

problem because of several constraints such as limited bandwidth (in wireless networks), privacy-

sensitive data, distributed computing nodes, etc. 
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Traditional centralised data processing and mining typically requires central aggregation of distributed 

data, which may not always be feasible because of the limited network bandwidth, security concerns, 

scalability problems, and other practical issues. Distributed data processing and mining (DDPM) 

carries out communication and computation by analysing data in a distributed fashion [1]. The DDPM 

technology offers more efficient solutions in such applications. DDPM field deals with these 

challenges by analysing distributed data and offers many algorithmic solutions for data analysis, 

processing, and mining using different tools in a fundamentally distributed manner that pays careful 

attention to the resource constraints [2]. 

 

In this study we focus on the urban traffic domain, where many traffic characteristics such as 

travelling time, travelling speed, congestion probability, etc. can be evaluated by autonomous agent 

vehicles in a distributed manner. Numerous data processing and mining techniques were suggested for 

forecasting travelling time in a centralised and distributed manner. Statistical methods, such as 

regression and time series, and artificial intelligence methods, such as neural networks, are 

successfully implemented for similar problems. However, travelling time is affected by a range of 

different factors. Thus, its accurate forecasting is difficult and needs considerable amount of traffic 

data. Understanding the factors affecting travelling time is essential for improving forecasting 

accuracy [3]. 

 

We focus on regression analysis, which is a powerful statistical tool for solving forecasting problems. 

We compare the well-known multivariate linear regression technique with modern non-parametric 

computationally intensive kernel-based regression.  

 

We propose two distributed algorithms based on multivariate linear and kernel-based regression for 

forecasting the travelling time using real-world data from southern Hanover. We assume that each 

agent autonomously estimates the parameters of its local multivariate linear and kernel-based 

regression models, paying special attention to the implementation of these models for real-time 

streaming data.  If an agent cannot estimate the travelling time accurately due to a lack of data, i.e., if 

there is no data near the point of interest (because kernel-based estimation uses approximations), it 

cooperates with other agents. We suggest two algorithms for multi-agent cooperative learning based 

on the transmission of the observations (kernel regression) or parameters (linear regression) in 

response to requests from agents experiencing difficulties. After obtaining the necessary data from 

other agents, the agent can forecast the travelling time autonomously. We also propose the use of a 

combination of the estimates to achieve more accurate forecasting. The travelling time estimated 

during the DDPM stage can be the input for the next stage of distributed decision-making by 

intelligent agents [4], [5]. 
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The study contributes to the following: 1) the development of the structure of a DDPM module for an 

autonomous agent, which allows travelling time forecasting and cooperation with other agents; 2) the 

development of a distributed regression-based (kernel and linear) multi-agent cooperative learning 

algorithm for real-time streaming data; 3) the development of the structure of a regression model for 

travelling time forecasting on the basis of available real-world observations; 4) the experimental 

comparison of different MAS architectures and forecasting methods, including a combination of linear 

and kernel-based estimates on the basis of real-world data. 

 

The remainder of this chapter is organised as follows. Section 2 describes previous work related to 

MAS applications for solving problems in distributed networks, the DDPM field in MASs, travelling 

time forecasting models, and formulates the research question. In section 3, we present a distributed 

cooperative recursive forecasting algorithm based on multivariate linear regression. This section 

concludes with a simple tutorial example to illustrate the proposed technique. Section 4 presents the 

multivariate kernel-based regression model used for streaming data and proposes a cooperative 

learning algorithm for optimal forecasting in a distributed MAS architecture. This section also 

concludes with a simple tutorial study. Section 5 presents case studies using data from Hanover 

(Germany) and it provides a comparison of different MAS architectures and forecasting methods using 

real-world data. Section 6 presents the discussions of the results and the final section contains the 

conclusions and perspectives on future work. 

 

2. Data Processing and Mining in Distributed Traffic Networks 

In this section, we provide some theoretical background and discuss work related to the problems of 

distributed data processing and mining when making forecasts about traffic flows. 

 

2.1. Multi-agent System Architectures for Distributed Networks  

Complex modern information systems are usually characterised by a large number of relatively 

autonomous components with a large number of interactions [6]. System designers can usually 

identify three aspects related to these components: behaviour, environment, and interactions. In most 

cases, the components act and interact in flexible ways in specific environments to achieve their 

objectives. The representation of a complex system in this manner means demands the adoption of a 

multi-agent approach during its engineering [7]. 

 

MASs are one of the most popular paradigms for modelling these types of complex systems. MASs 

contain a set of autonomous intelligent components (agents) with the following important properties 

[8]. 

(i) Autonomy. An agent makes its decision itself, without external influences. During decision-

making it considers its goals and its knowledge about the current status in the environment. 
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(ii) Local views. An agent stores information about current state of the environment, although its 

knowledge may be partial because it lacks global knowledge of in the overall system. Agents 

may cooperate to exchange available information to produce a more complete picture so they 

have sufficient information for decision-making. 

(iii) Decentralisation. A ‘central’ agent does not control the overall system. There can be a central 

authority, but it does not control the overall system and it does not store information in a 

centralised manner. Thus, agents make their own decisions, and cooperate and coordinate their 

actions when necessary. 

 

When considering multi-agent representations of complex systems it is important to distinguish 

between distributed and decentralised systems. In a distributed system, a central authority provides 

services or performs system management, which involves autonomous components. This central 

authority can be virtual or distributed among several components. However, system-wide datasets or 

decisions are modelled by the distributed systems. By contrast, a distributed system does not assume 

any type of centralised regulation (even virtual). The fully autonomous components of decentralised 

systems act to achieve their goals and cooperate when necessary.  

 

Distributed systems are usually more expensive because they require additional costs for a central 

authority. However, decentralised systems experience more problems with work organisation and 

system goal achievement. In our study, we compared distributed approach with a central authority 

(called ‘centralised’) and decentralised coordinated/uncoordinated approach to travelling time 

forecasting and we reached conclusions about the effect of a central authority and coordination in 

different situations. 

 

The agents in MAS usually have two important modules: a DDPM module and a distributed decision 

support (DDS) module [4], [5], [9]. DDPM module is responsible for receiving observations of the 

environment and discovering patterns or dependencies that may facilitate the decision-making process. 

DDS module is responsible for making decisions on the basis of the information received from DDPM 

module and executing appropriate actions in the environment. The general structure of an agent is 

shown in Figure 1. 

 

The agent acts in the environment and makes observations, which contain data and rewards (measures 

of the agent efficiency from the environmental perspective). DDPM module pre-processes incoming 

data using filtering/aggregating data streams and, if necessary, it stores the data for the agent. The 

necessary information is used to estimate the parameters of data models, which are essential, but not 

obvious, characteristics of the environment. At this stage, information can be exchanged with other 

agents (or central authority) to improve the quality of estimation. 
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Finally, these parameters are used to form the state of the agent. The decision-making is based on the 

current state, which contains information about different system features (usually a vector). The state, 

the rewards, and other essential information are transferred to DDS module. 

 

The DDS module formulates a plan for goal achievement from the current state. Each plan is evaluated 

with respect to the goals and capabilities of the agent to check whether it allows an agent to achieve its 

goal in a realistic manner. This is usually achieved based on efficiency functions, which can be fixed 

or improved (‘learned’) during the planning process and the agent’s operations. The plan or a set of 

alternative plans can be coordinated with other agents (or central authority). The learning results are 

also stored in the experience storage. Based on the actual plan, an action is selected and it is executed 

in the environment. This affects the environment (and other agents) and its results can be observed by 

the DDPM module. 

 

A road traffic system is a typical complex system, which involves self-interested autonomous 

participants. Information transfer and action/plan coordination between traffic participants can 

significantly increase the safety and quality of a traffic system. This is why many researchers have 

recently applied MAS architectures for modelling different services in traffic networks. In these 

architectures, the active components (e.g., vehicles, pedestrians, and traffic lights) are modelled as 

interacting autonomous agents [10], [11], [12]. 

 

The following example illustrates an application of multi-agent technology to the design of an 

intelligent routing support system. 

DDS Module 

  

 

 

 

 Input pre-processing 

 Maintaining of data history 

 Data model estimation 

 

DDPM Module 

Agent 

 Planning/Learning 

 State/Plan evaluation 

 Maintaining of learning 

experience 

 Action selection 

Environment Other agents 
State, parameters 

of the eff. functions 

Information 

exchange/ 

parameter 

adjustment 

Plan/action 

coordination 

Observations/rewards 

Action execution 

Figure 1. Structure of DDPM and DDS modules in an autonomous agent. 
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Example: Intelligent routing support 

We describe the general structure of an advanced driver support system. This device supports vehicle’s 

driver during the selection of an optimal route in a street network and has the ability to collect actual 

information and communicate with other vehicles or a central authority if available.  

 

The traffic system is modelled as a MAS. We model the vehicles (more precisely: intelligent devices 

in the vehicles) as agents, which corresponds to the architecture shown in Figure 1. The architecture of 

an intelligent routing device is shown in Figure 2. 

 

 

The inputs used in this device (agent) are sensor data that indicate the current situation on a road (e.g., 

the position, speed, and distances to other vehicles). The user input includes the destination and 

driving preferences. A digital map contains an underlying road map in the form of a graph.  

 

This data is pre-processed to determine average values for important characteristics, which are stored 

in the travel log and transferred to the data model for future analysis. The most important task of the 

DDPM module is travelling time forecasting. An appropriate data model (e.g., regression, neural 

network, time series, and probabilistic forecasting) is used for this purpose.  

 

The state of the agent includes its current position on the map. The agent produces a set of alternative 

plans (paths) to travel from the current position to the destination. The travelling times estimated by 

the DDPM module are used as parameters by the efficiency functions and, together with preferences 

and learning experience, they are used to evaluate each plan. The plans can be coordinated with other 

DDPM module 

 Pre-processing of input data 

 Maintaining travel logs 

 Forecasting of the travel time 

 Checking a position with 

respect to a destination 

 Route planning/experience 

update 

 Select a set of next turns 

DDS module 

Sensors 

GPS, weather, speed, 

lane, distances etc. 

Communication 

Next turn recommendation to driver (user interface) 

User input 

destination, 

preferences, etc. 

Digital map 

road network, distances 

Intelligent driver support device 

Figure 2. Structure of an Intelligent Driver Support Device that provides route recommendations. 
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agents during cooperative driving or when driving in convoys. The best possible plan (route) is 

recommended to the driver. 

 

2.2. Distributed Data Processing and Mining 

Recent progress in automated data collection and transmission has created a need for better 

interpretation and exploitation of vast data sources. Thus, the IT society requires the development of 

new methods, models, and tools to extract useful information from data. It should also be taken into 

account that data sources and data processing are distributed, which is problematic for DDPM. 

 

DDPM provides algorithmic solutions for data analysis in a distributed manner to detect hidden 

patterns in data and extract the knowledge necessary for decentralised decision-making [13], [14]. A 

promising research area is currently investigating the possibility of coupling MAS with DDPM, by 

exploiting DDPM methods to improve agent intelligence and MAS performance [2]. This will 

facilitate highly scalable data architectures, online data processing, hidden data pattern interpretation 

and analysis, and information extraction from distributed environments. Furthermore, the coupling of 

MAS with DDPM may be described in terms of ubiquitous intelligence [15], with the aim of fully 

embedding information processing into everyday life. This concept is very similar to the architecture 

of data clouds, where data and services are virtualised and provided on demand. 

 

A strong motivation for implementing DDPM for MAS is given by Da Silva et al. [2], where authors 

argue that DDPM in MAS deals with pro-active and autonomous agents that perceive their 

environment, dynamically reason out actions on the basis of the environment, and interact with each 

other. In many complex domains, the knowledge of agents is a result of the outcome of empirical data 

analysis in addition to the pre-existing domain knowledge. DDPM of agents often involves detecting 

hidden patterns, constructing predictive and clustering models, identifying outliers, etc. In MAS, this 

knowledge is usually collective. This collective ’intelligence’ of MAS must be developed by 

distributed domain knowledge and analysis of the distributed data observed by different agents. Such 

distributed data analysis may be a non-trivial problem when the underlying task is not completely 

decomposable and computational resources are constrained by several factors such as limited power 

supply, poor bandwidth connection, privacy-sensitive multi-party data, etc. 

 

Klusch at al. [16] concludes that autonomous data mining agents, as a special type of information 

agents, may perform various kinds of mining operations on behalf of their user(s) or in collaboration 

with other agents. Systems of cooperative information agents for data mining in distributed, 

heterogeneous, or homogeneous, and massive data environments appear to be quite a natural 

progression for the current systems to be realised in the near future. 
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A common characteristic of all approaches is that they aim at integrating the knowledge that is 

extracted from data at different geographically distributed network nodes with minimum network 

communication and maximum local computations [2]. 

 

Local computation is carried out on each node, and either a central node communicates with each 

distributed node to compute the global models or a peer-to-peer architecture is used. In the case of the 

peer-to-peer architecture, individual nodes might communicate with a resource-rich centralised node, 

but they perform most tasks by communicating with neighbouring nodes through message passing 

over an asynchronous network [2]. 

 

According to da Silva et. al [2], a distributed system should have the following features for the 

efficient implementation of DDPM: 

(i) The system consists of multiple independent data sources, which communicate only through 

message passing; 

(ii) Communication between peers is expensive; 

(iii) Peers have resource constraints (e. g. battery power); 

(iv) Peers have privacy concerns. 

 

Typically, communication involves bottlenecks. Since communication is assumed to be carried out 

exclusively by message passing, the primary goal of several DDPM methods, as mentioned in the 

literature, is to minimise the number of messages sent. Building a monolithic database in order to 

perform non-distributed data processing and mining may be infeasible or simply impossible in many 

applications. The costs of transferring large blocks of data may be very expensive and result in very 

inefficient implementations [1]. 

 

Moreover, sensors must process continuous (possibly fast) streams of data. The resource-constrained 

distributed environments of sensor networks and the need for a collaborative approach to solve many 

problems in this domain make MAS architecture an ideal candidate for application development. 

 

In our study we deal with homogeneous data. However, a promising approach to agent-based 

parameter estimation for partially heterogeneous data in sensor networks was suggested in [17]. 

Another decentralised approach for homogeneous data was suggested in [18] to estimate the 

parameters of a wireless network by using a parametric linear model and stochastic approximations. 

 

2.3. Travelling Time Forecasting Models 

Continuous traffic jams indicate that the maximum capacity of a road network is met or even 

exceeded. In such a situation, the modelling and forecasting of traffic flow is one of the important 
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techniques that need to be developed [19]. Nowadays, knowledge about travelling time plays an 

important role in transportation and logistics, and it can be applied in various fields and purposes. 

From travellers’ viewpoints, the knowledge about travelling time helps to reduce the travelling time 

and improves reliability through better selection of travelling routes. In logistics, accurate travelling 

time estimation could help to reduce transport delivery costs and to increase the service quality of 

commercial delivery by delivering goods within the required time window by avoiding congested 

sections. For traffic managers, travelling time is an important index for traffic system operation 

efficiency [3]. 

 

There are several studies in which a centralised approach is used to predict the travelling time. The 

approach was used in various intelligent transport systems, such as in-vehicle route guidance and 

advanced traffic management systems. A good overview is given in [3]. To make the approach 

effective, agents should cooperate with each other to achieve their common goal via so-called 

gossiping scenarios. The estimation of the actual travelling time using vehicle-to-vehicle 

communication without MAS architecture was described in [20].  

 

On the other hand, a multi-agent architecture is better suited for distributed traffic networks, which are 

complex stochastic systems.  

 

Further, by using centralised approaches the system cannot adapt quickly to situations in real time, and 

it is very difficult to transmit a large amount of information over the network. In centralised 

approaches, it is difficult or simply physically impossible to store and process large data sets in one 

location. In addition, it is known from practice that the most drivers rely mostly on their own 

experience; they use their historical data to forecast the travelling time [4], [5]. 

 

Thus, decentralised MASs are fundamentally important for the representation of these networks [19]. 

We model our system with autonomous agents to allow vehicles to make decisions autonomously 

using not only the centrally processed available information, but also their historical data. 

 

Traffic information generally goes through the following three stages: data collection and cleansing, 

data fusion and integration, and data distribution. The system presented in [21] consists on three 

components, namely a Smart Traffic Agent, the Real-time Traffic Information Exchange Protocol and 

a centralised Traffic Information Centre (TIC) that acts as the backend. A similar architecture is used 

in this study, but the forecasting module, incorporated into Start Traffic Agent (vehicle agent), is 

different.  
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In our study we do not focus on the transmission protocol describing only the information, which 

should be sent from one node to another, without the descriptions of protocol packets. The centralised 

TIC in our model is used only for storing system information. A combination of centralized and 

decentralized agent-based approaches to the traffic control was presented in [22]. In this approach, the 

agents maintain and share the ‘local weights’ for each link and turn, exchanging this information with 

a centralized TIC. The decentralised MAS approach for urban traffic network was considered in [23] 

also, where the authors forecast the traversal time for each link of the network separately. Two types 

of agents were used for vehicles and links, and a neural network was used as the forecasting model. 

 

Travelling time forecasting for the similar decentralised urban traffic network based on local linear 

regression model was presented in [24] and based on kernel regression model was presented in [25]. 

The comparison of parametric and non-parametric approaches for traffic-flow forecasting was made in 

[26], which shows the efficiency of the non-parametric kernel-based regression approach. 

 

2.4. Problem Formulation 

We consider a traffic network with several vehicles, represented as autonomous agents, which predict 

their travelling time on the basis of their current observations and history. Each agent estimates locally 

the parameters of the same traffic network. In order to make a forecast, each agent constructs a local 

regression model, which explains the manner in which different explanatory variables (factors) 

influence the travelling time (local initial forecasting). A detailed overview of such factors is provided 

in [3]. The following information is important for predicting the travelling time [27]: average speed 

before the current segment, number of stops, number of left turns, number of traffic light, average 

travelling time estimated by TIC. We should also take into account the possibility of an accident, 

network overload (rush hour) and the weather conditions. 

 

In the case when the vehicle has no or little experience of driving in specific conditions, its local 

forecasting will be inaccurate. For more accurate travelling time estimation, the vehicle needs 

adjustment of its models (demand for adjustment). It contacts other traffic participants, which share 

their experience in the requested conditions. In this step, the focal agent that experiences difficulties 

with an initial forecast sends the description of the requested conditions to other traffic participants in 

the transmission radius. Each of neighbour agents tries to make a forecast itself. In the case of a 

successful forecast, it shares its experience by sending its parameter estimates (parametric linear 

regression) or observations that are nearest to the requested point (nonparametric kernel-based 

regression). After receiving the data from the other agents, the focal agent aggregates the obtained 

results, adjusting the model and increasing its experience, and makes a forecast autonomously (final 

forecasting). The forecasting procedure of one such vehicle is shown in Figure 3. 
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Figure 3. Algorithm for local travelling time forecasting by an individual agent. 

In short, decentralised travelling time forecasting consists of four steps: 1) local initial forecasting; 2) 

in the case of unsuccessful initial forecasting: sending the requested conditions to the neighbour 

agents; 3) local forecasting by neighbour agents and sending answers; 4) aggregation of the answers 

and final forecasting. 

 

3. Distributed Cooperative Recursive Forecasting Based on Linear 

Regression 

3.1. Forecasting with Multivariate Linear Regression 

Regression analysis constitutes several methods widely employed for modelling the dependency 

between the dependent variable (usually denoted by  ) and independent variables (factors, usually 

denoted by  ). It describes the dependence of conditional expectation      ] on the values of several 

independent variables (factors)  . 

 

In order to use a regression model, the following classical assumptions should be satisfied [28]: 

(i) the error is a random variable with zero expectation; 

(ii) the independent variables are linearly independent (no variable can be expressed as a 

linear combinations of others); 

(iii) the errors are uncorrelated; 

(iv) the variance of the errors is constant. 

 

A linear regression model supposes that the dependent variable   is a linear combination of the 

parameters  . The linear regression model in the matrix form can be expressed as 

 

        (3.1) 

Local initial forecasting 

Sending the requested conditions  

to the neighbour agents 

Receiving answers 

Final forecasting 

Demand for adjustment 

Actual and historical local observations 

Yes 

No 

Local forecasting by neighbour agents 
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where   is an     vector of dependent variables;   is an     matrix of explanatory (dependent) 

variables;  is an     vector of unknown coefficients, which are parameters of the system to be 

estimated;  is an     vector of random errors. The rows of the matrix   correspond to observations 

and the columns correspond to factors.  

 

The regression assumptions can be expressed in this case as follows. We suppose that the components 

{  } of the error vector    are mutually independent, have zero expectation,    ]   , zero covariances 

   [     ]         and equal variances,      ]     , where   is an     identity matrix. 

 

The well-known least square estimator (LSE)   of  is: 

 

  (   )     . (3.2) 

 

After the estimation of the parameters  , we make a forecast for a certain  -th future values of the 

factors   : 

    ]       (3.3) 

 

For quality estimation of a linear regression model, we separate the total sum of squares (   ) of the 

dependent variable    into two parts: the sum of squares explained by the regression (   ) and the 

sum of squares of errors (   ): 

    (    ̅) (    ̅)  

    (   ̅) (   ̅)  

             

An important measure of model quality is the coefficient of determination   , which is defined as a 

relative part of the sum of squares explained by the regression: 

 

   
   

   
 

(    ̅) (    ̅)

(   ̅) (   ̅)
 

∑ (     ̅)  
   

∑ (    ̅)  
   

  (3.4) 

 

where  ̅  ∑   
 
     when there is an intercept term and  ̅    when there is no intercept term in the 

model. 

 

Precision of the forecast of    can be measured by a confidence interval. The confidence interval with 

a confidence level       for the forecast of    is given by: 
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      (  )      (  )]  (3.5) 

 

where  (  ) is the width of the confidence interval with a confidence level      for a forecast at the 

point   . It can be calculated as 

 

 (  )   
  

 
 
      

√
   

     
(    ( 

  )    
 )  (3.6) 

 

where    
 

 
       is a    

 

 
 - level quantile of t-distribution with       degrees of freedom. 

 

We also use other measures of efficiency of the estimates denoted by the average forecasting error 

 

    
 

 
∑        

 

   

 (3.7) 

and the relative forecasting error for the point    

     
        

  
  (3.8) 

 

3.2. Local Recursive Parameter Estimation 

The described estimation procedure, (3.2), requires information about all observations, i.e., the 

complete matrix  . In practice, for real-time streaming data, the estimation is performed iteratively, 

being updated after each new observation. The recurrent iterative method for the LSE was suggested 

in [29], [30]. This method assumes the recalculation of system parameters for each new observation. 

 

Let us briefly describe the key aspects of this algorithm. Let    be the estimate after   first 

observations. After receiving the  +1-th observation, we recalculate the estimates of   (     - value of 

a dependent variable; and xt+1 - values of explanatory variables): 

 

               (            )              (3.9) 

 

where      is an     vector of proportionality, smoothness, or compensation. From (3.9), one can 

observe, that      is represented as a sum of the previous estimate    and the correction term 

    (            ). Formula (3.9) is based on exponential smoothness, an adaptive forecasting 

method [30]. 
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To calculate     , we need values of matrices    and    , obtained after the last  -th iteration.    and 

    are square     matrices.    is equal to (   )   if this matrix exists, else it is equal to a pseudo-

inverse matrix. Matrix    is a projection matrix, therefore, if      is the linear combination of the rows 

of matrix    its projection is equal to zero:          . Starting the algorithm we set the following 

initial values     ,     ,     . 

 

If the condition           is satisfied, then 

        (            
 )        

 (      
 )   

             (            
 )        

   

otherwise 

        (          
 )  ((      

 )(      
 )  (      

 )(      
 ) )   

 (          
 )  (            

 )(      
 )(      

 )   

        (          
 )        

 (      
 )   

     (          
 )        

   

 

3.3. Cooperative Linear Regression-Based Learning Algorithm  

Suppose we have an MAS consisting of   autonomous agents    {  ( )   ( )     ( )} , and 

each of them contains a local regression model, which is estimated on the basis of its experience. We 

now introduce a parameter adjustment algorithm, which allows the agents to exchange their model 

parameters in order to improve the forecasts. 

 

Let us introduce the following notations. We use superscript   for the variables in formula (3.1) to 

refer to the model of the agent   ( ): 

 

 ( )    ( )   ( )                    

 

(3.10) 

  ( ) calculates the estimates   
( )

 of  on the basis of its experience using (3.9). It predicts   [    
( )

] 

using (3.3) at a future time moment     for the values of factors      
( )

.  

 

After forecasting,   ( ) checks if it needs to adjust its locally estimated parameters   
( )

 with other 

agents. This is done when the agent considers a forecast  [    
( )

)]  as not reliable. One possible 

approach is to compare the width of the confidence interval of the forecast with a forecast value. The 

forecast  [    
( )

] is considered to be not reliable if its value is sufficiently smaller than its confidence 

interval width: 
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 ( )(    
( )

)

    
( )

  
( )

    

 

where   is an agent’s parameter representing the maximal ratio of the confidence interval width to the 

forecast, after which a coordination takes place;  ( )( ) is the confidence interval for factors   based 

on the agent’s data. 

 

Now, let us describe the parameter adjustment procedure. First,   ( ) sends a request to other agents 

within its transmission radius; this request contains a set of factors     
( )

 as well as a threshold 

  ( ) (    
( )

), which is set equal to the confidence interval width:   ( ) (    
( )

)   ( )(    
( )

)  

 

Each agent   ( )  in the transmission radius calculates the confidence interval  ( )(    
( )

) for the 

requested values of factors     
( )

 on the basis of its data and compares it with the threshold. If this 

value is less than the threshold,  ( ) (    
( )

 )    ( ) (    
( )

 )    ( )  replies to   ( )  by sending its 

parameters   
( )

 . Let us define  ( )    , as a group of agents, who are able to reply to   ( ) by 

sending their parameters, including   ( ). 

 

Second,   ( ) receives replies from the group  ( )  It assigns weights to each    ( )   ( ) (including 

itself)  ( )={  
( )

}; these weights are time-varying and represent the reliability level of each   ( ) 

(including reliability of own experience). In our case, the agents’ weights depend on the forecasting 

experience.  

 

According to the logic of constructing discrete-time consensus, we assume that  ( ) is a stochastic 

vector for all t (the sum of its elements is equal to 1). Then an updated estimate  ̃   
( )

 is calculated as 

 

 ̃   
( )

 ∑   
( )

  ( )  ( )   
( )

. (3.11) 

 

This adjustment procedure aims to increase the reliability of the estimates, especially for insufficient 

or missing historical data, and to contribute to the overall estimation accuracy [18]. 

 

3.4. Numerical Example  

We illustrate the linear regression algorithm by providing a numerical example. First, let us consider a 

single agent that maintains a dataset of four observations, where variable   depends on three factors  . 

The corresponding matrices   and   are:  
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The agent uses formula (3.9):  
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We can see that the agent obtains the same estimate b as they did using formula (3.2): 

 

  (   )      (
    

     
    

)  
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Now, we consider the parameter adjustment algorithm. Let us denote the above considered agent as 

  ( ). Suppose it should make a forecast for a new point     
( )

  (         )   

 

  ( ) makes a forecast  [    
( )

] for the point     
( )

:  

 

    
( )

  
( )

 (         )(
    

     
    

)        

 

The corresponding confidence interval is: 

 

    (  ) (  )        

              

                 

 ( ) (    
( )

)       
 

      
√

   

     
(      

( ) (   )  (    
( )

)
 
)         

 

Let the maximal ratio  =1.5. The agent checks the ratio 

 

 ( ) (    
( )

)

    
( )

  
( )

 
     

    
          

 

and requests parameter adjustment, because it exceeds  . For this purpose, it sends a point     
( )

 

(         ) as well as the threshold    ( ) (    
( )

)   ( ) (    
( )

)          

  

Let there are agents   ( ) and   ( )  in the transmission radius with equal experience 4 and the 

following parameters:  

 

  
( )

 (
    
    
    

)    
( )

 (
    

      
    

)  

 

  ( ) and   ( ) calculate their confidence limits  ( ) (    
( )

)      ,  ( ) (    
( )

)        As both are 

less than the threshold, they send their parameters   
( )

 and   
( )

 as well as their experience 4. The 

group  ( )  {     }  
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  ( ) receives the answers and uses weights proportional to the experience of the agents, 

  ( )   
 

  
 

 

  
 

 

  
   

 

 
 
 

 
 
 

 
 . Now an updated estimate  ̃   

( )
 can be calculated according to (3.6): 

 ̃   
( )

 ∑   
( )

  
( )

      (   )

     (
    

     
    

)      (
    
    
    

)      (
    

      
    

)  (
    

     
    

)  

 

For a new point     
( )

 (         ) an estimate  [    
( )

] after adjustment is equal to 

 

    
( )

 ̃   
( )

 (         ) (
    

     
    

)        

 

Remind that the estimate without adjustment  [    
( )

]        For this data point the corresponding 

true value of         . We can see that the adjustment facilitates better estimate of        

 

4. Distributed Cooperative Forecasting based on Kernel Regression 

4.1. Kernel Density Estimation 

Kernel density estimation is a non-parametric approach for estimating the probability density function 

of a random variable. Kernel density estimation is a fundamental data-smoothing technique where 

inferences about the population are made on the basis of a finite data sample. A kernel is a weighting 

function used in non-parametric estimation techniques. 

 

Let            be an iid sample drawn from some distribution with an unknown density  ( ). We 

attempt to estimate the shape of  ( )  whose kernel density estimator is 

 

  ̂( )  
 

  
∑ (

    

 
)  

 

   

 (4.1) 

where kernel  ( )  is a non-negative real-valued integrable function satisfying the following two 

requirements: ∫  ( )    
 

  
 and  ( )   (  )  for all values of  ;     is a smoothing 

parameter called bandwidth. The first requirement to  ( ) ensures that the kernel density estimator is 

a probability density function. The second requirement to  ( )  ensures that the average of the 

corresponding distribution is equal to that of the sample used [31]. Different kernel functions are 

available: Uniform, Epanechnikov, Gausian, etc. They differ in the manner in which they take into 

account the vicinity observations to estimate the function from the given variables. 
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An important problem in kernel density estimation is selection of the appropriate bandwidth  . It has 

an influence to the structure of neighbourhood in (4.1): the bigger   is selected, the more points    

have significant influence to the estimator   ̂( ). In multi-dimensional case it regulates also a balance 

between factors. 

 

The most of the bandwidth selection methods are based on the minimization of the integrated squared 

error    ( ) (or similar asymptotic or averaged characteristics) with respect to the bandwidth  . The 

integrated squared error is defined as 

 

   ( )  ∫[  ̂( )   ( )]
 
    

However, the direct use of this formula is impossible due to involvement of unknown true 

density  ( ). So different heuristic approaches are used for this problem. 

 

The methods of bandwidth selection can be divided into two main groups [32]: 

(i) plug-in methods, 

(ii) resampling methods. 

 

The plug-in methods replace unknown terms in the expression for    ( )  by their heuristic 

approximations. One of the well known approaches is rule-of-thumb, proposed by Silvermann [33], 

which works for Gaussian kernels. In the case of no correlation between explanatory variables there is 

a simple and useful formula for bandwidth selection [34]: 

 

       (   )                 (4.2) 

where    is a variance of the  -th factor,   is a number of factors. 

The resampling methods include cross-validation and bootstrap approaches. They use available data in 

different combinations to obtain approximation of    ( ) . One of the most commonly used 

approaches is the minimisation of least squares cross-validation function     ( ) introduced in [35]: 

 

    ( )  ∫[  ̂( )]
 
   

 

 
∑     ̂(  ) 

 

   

 

where      ̂(  ) is a kernel density estimation calculated without the  -th observation. 

    ( ) is a  -dimentional function, which can be minimised with respect to  . 

 

A very suitable property of the kernel function is its additive nature. This property makes the kernel 

function easy to use for streaming and distributed data [31], [2], [17]. In [16], the distributed kernel-
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based clustering algorithm was suggested on the basis of the same property. In this study, kernel 

density is used for kernel regression to estimate the conditional expectation of a random variable. 

 

4.2 Kernel-based local regression model 

The non-parametric approach to estimating a regression curve has four main purposes. First, it 

provides a versatile method for exploring a general relationship between a dependent variable   and 

factors  . Second, it can predict observations yet to be made without reference to a fixed parametric 

model. Third, it provides a tool for finding spurious observations by studying the influence of isolated 

points. Fourth, it constitutes the flexible method of substitution or interpolating between adjacent   

values for missing observations [31]. 

 

Let us consider a non-parametric regression model [36] with a dependent variable   and a vector of   

regressors   

   ( )     (4.3) 

 

where   is a random error such that            ]      and              ]      ( )   and  ( )   

           ]. Further, let (     )   
 

 be the observations sampled from the distribution of (   ). Then 

the Nadaraya-Watson kernel estimator is 

 

 ̂ ( )  
∑  (

    
 

) 
     

∑  (
    

 
) 

   

 
  ( )

  ( )
  (4.4) 

 

where  ( )  is the kernel function of    and   is the bandwidth. Kernel functions satisfy the 

restrictions from (4.1). In our case we have a multi-dimentional kernel function 

 ( )     (            ) that can be easily presented with univariate kernel functions as:  ( )   

  (  )    (  )         (  ). We used the Gaussian kernel in our experiments.  

 

From formula (4.4), we can see that each value of the historical forecast    is taken with some weight 

of the corresponding independent variable value of the same observation   . Let us denote these 

weights in the following form: 

  ( )   (
    

 
)   ̂ ( )  

  ( )

∑   
 
   

  (4.5) 

 

where   ( ) are the weights of the historical observations in the forecast of     and  ̂ ( ) are the 

corresponding normalised weights. Then, formula (4.4) can be rewritten as: 
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 ̂ ( )  
∑  (

    
 

) 
     

∑  (
    

 
) 

   

 
∑   ( )

 
     

∑   
 
   

 ∑ ̂ ( )  

 

   

  (4.6) 

 

Standard statistical and data mining methods usually deal with a dataset of a fixed size   as well as 

corresponding algorithms are functions of  . However for streaming data there is no fixed  : data are 

continually captured and must be processed as they arrive. It is important to develop algorithms that 

work with non-stationary datasets, handle the streaming data directly, and update their models on the 

fly [37]. For the kernel density estimator it is possible to use a simple method that allows recursive 

estimation of   ̂ ( ): 

 

 ̂ ( )  
  ( )

  ( )
 

    ( )    ( )  

    ( )    ( )
  (4.7) 

 

The quality of the kernel-based regression model can be verified by calculating    as: 

 

   
 ∑ (    ̅)( ̂ (  )   ̅) 

   ] 

∑ (    ̅)  
   ∑ ( ̂ (  )   ̅)  

   

  (4.8) 

 

where  ̅  ∑   
 
     . It can be demonstrated that    is identical to the standard measure for the linear 

regression model (3.4), fitted with least squares, and includes an intercept term. 

 

The corresponding confidence interval for the forecast  ̂ ( ) with a confidence level     is 

represented by: 

 

[ ̂ ( )   
  

 
 
√

 ̂ ( )‖ ‖ 
 

    ̂( )
  ̂ ( )   

  
 
 
√

 ̂ ( )‖ ‖ 
 

    ̂( )
]  

 

where ‖ ‖ 
   ∫  ( )  ] ,   ̂ ( )  

 

 
∑  ̂ ( )     ̂ ( )]  

    and    
 

 
 is a   

 

 
 - level 

quantile of a standard normal distribution.  

 

4.3 Cooperative Kernel-based Learning Algorithm  

In this section, we describe the cooperation for sharing the forecasting experience among the agents in 

a network. While working with streaming data, one should take into account two main aspects: 

(i) the nodes should coordinate their forecasting experience over some previous sampling period; 
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(ii) the nodes should adapt quickly to the changes in the streaming data, without waiting for the 

next coordination action. 

As in the case of section 3.3, we have an MAS consisting of   autonomous agents 

   {  ( )   ( )     ( )}, and each of them has a local kernel-based regression model, which is 

estimated on the basis of its experience.  

 

Now, we introduce the following notations. Let  ( )  {(  
( )

   
( )

)         ( )} denote a local 

dataset of   ( ), where   
( )

 is a  -dimensional vector of factors on the  -th observation. In order to 

highlight the dependence of the forecasting function (4.4) on the local dataset of   ( ), we denote the 

forecasting function by  ̂ 
( )

( ).  

 

Consider a case when some agent   ( ) wants to forecast for some  -dimensional future data point 

    
( )

. Denote the weights and the corresponding normalised weights of formula (4.5) of the  -th  

observation from  ( ) in the forecasting     
( )

 as   
( )

(    
( )

) and   ̂ 
( )

(    
( )

), respectively. 

We consider a forecast for     
( )

 as not reliable if only one of the observations is taken with a 

significant weight in this forecast:  

 

   ( ̂ 
( )

(    
( )

))      

 

where    is a is an agent’s parameter representing the maximal weight, after which a coordination 

takes place. 

 

In this case,   ( ) expects from other agents the points that are closer to the requested point than its 

ones points. For this purpose, it sends a request to other traffic participants within its transmission 

radius by sending the data point     
( )

 as well as the threshold for the observation weight. This 

threshold is set as the weight of the second best observation: 

 

  ( ) (    
( )

)   (   )
( )

(    
( )

)  

 

where  ( )
( )

(    
( )

)   ( )
( )

(    
( )

)     ( )
( )

(    
( )

) is an ordered sequence of  weights in the forecast 

for     
( )

. 
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Each   ( )  that receives the request calculates the weights   
( )

(    
( )

) on the basis of its own data. If 

there are observations with weights   
( )

(    
( )

)    ( ) (    
( )

) it forms a reply  ̂(   )  from these 

observations (maximum 2) and sends it to   ( )    

 

Let us define  ( )    , as a group of agents, who are able to reply to   ( ) by sending the requested 

data. All the data  ̂(   ),   ( )   ( ) received by   ( ) are verified and duplicated data are discarded. 

These new observations are added to the dataset of    ( )   ( )  ⋃  ̂(   )   ( )
  ( )  ( ) . Suppose 

that   ( ) received   observations. Then, the new kernel function of   ( ) is updated by considering  

the additive nature of this function: 

 

 ̃   
( ) ( )  

  
( )( )  ∑  (   )( )  ( )  ( )

  
( )( )  ∑  (   )( )  ( )  ( )

  (4.9) 

 

where  (   )( ) and  (   )( ) are the nominator and denominator of (4.4), respectively, calculated by 

 ̂(   ). 

 

Finally,   ( ) can autonomously make its forecast for     
( )

as  ̃   
( )

(    
( )

). 

 

4.4 Numerical example 

To illustrate the implementation of kernel-based regression we provide an example using the same 

data we used for the linear regression: 

 

  (

         
         
         
         

)    (

   
   
   
   

)  

 

Let us consider how an agent can calculate its forecasting function from formula (4.4). We take 

Gaussian kernel function and for a one-dimensional case,  ( ) is a density of the standard normal 

distribution  (   ) with the mean is 0 and the variance is equal to 1:  ( )  
 

√  
  

 

 
  

. 

 

In a multi-dimensional case, the kernel function is the product of one-dimensional kernels, as follows: 

 

 (            )   (  )   (  )     (  )  
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We calculate the bandwidth   = (            ) according to (4.2) and we want to make a 

forecast according to formula (4.6) for some new point    (         )  as:   

 

 ̂ (  )  
                           

           
  

 

    (
     

 
)   (

   (         )

 
)   (

       

    
) (

       

    
) (

       

    
)  

  (     ) (     ) (     )                        

 

    (
     

 
)   (

   (         )

 
)   (

       

    
) (

       

    
) (

       

    
)  

  (    ) (     ) (     )                            

 

    (
     

 
)   (

   (         )

 
)   (

       

    
) (

       

    
) (

       

    
)  

  (    ) (    ) (     )                       

 

    (
     

 
)   (

   (         )

 
)   (

       

    
) (

       

    
) (

       

    
)  

  (     ) (    ) (     )                        

 

 ̂ (  )  
                           

           
 

    

    
       

 

Next, we illustrate a cooperative learning algorithm. Let us denote the above considered agent as 

  ( ). Suppose that the focal agent needs to make a forecast for the point   
( )

 (         ). 

 

The weights of the observations and the corresponding normalised weights during forecasting are: 

(

  
 

  
( )

  
( )

  
( )

  
( )

)

  
 

 (

     
        

    
     

)  

(

  
 

 ̂ 
( )

 ̂ 
( )

 ̂ 
( )

 ̂ 
( )

)

  
 

 (

     
     
     
     

)   

 

The maximal weight  ̂ 
( )

        is greater than        , so the agent requests cooperation. We 

test the following threshold   ( )          
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We suppose that in the neighbourhood of the focal agent are two agents   ( )  and    ( )  with 

datasets: 

 

 ( )  (

         
         
         
         

)   ( )  (

   
   
   
   

)   ( )  (

         
         
         
         

)   ( )  (

   
   
   
   

)  

 

They calculate the weights  ( ),       , on the basis of their own historical data in the same manner 

as the focal agent has done it in the beginning of this example. Let the obtained weights are: 

(

 
 
 

  
( )

  
( )

  
( )

  
( )

)

 
 
 

 (

    

        

    

        

)  

(

 
 
 

  
( )

  
( )

  
( )

  
( )

)

 
 
 

 

(

 

        

    
    

        )

    

 

Both agents   ( ) and   ( ) have observations with the weights   
( )

   ( ) . So they send these 

observations, as follows:  

 

 ̂(   )  ([
         
         

]  [
   
   

])   ̂(   )  ([
         
         

]  [
   
   

])  

 

Next,   ( ) updates its matrices: 

 

 ( )  

(

 
 
 
 
 

         
         
         
         
         
         
         
         )

 
 
 
 
 

  ( )  

(

 
 
 
 
 

   
   
   
   
   
   
   
   )

 
 
 
 
 

 

 

and calculates the new weights and the corresponding normalised weights during forecasting for the 

data point   
( )

 (         ):  
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 ̂ 
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Now, we can make the estimation based on the new data: 

 

 ̂ ( )  

  
  

( )
       

( )
       

( )
       

( )
       

( )
       

( )
       

( )
       

( )
    

  
( )

   
( )

   
( )

   
( )

   
( )

   
( )

   
( )

   
( )

 

 
     

     
       

 

Remind that for this data point the corresponding true value         . We can see that the 

adjustment facilitates better estimate  ̂ ( )       of      while before adjustment the estimate was 

 ̂ ( )      .  

 

5. Case Studies 

5.1. Problem formulation 

We simulated a traffic network in the southern part of Hanover (Germany). The network contained 

three parallel and five perpendicular streets, which formed 15 intersections with a flow of 

approximately 5000 vehicles per hour. The network is shown in Figure 4. 

 

Figure 4. Road network in the southern part of Hanover, Germany. 
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We assumed that only a small proportion of vehicles were equipped with corresponding devices, 

which helped to solve the travelling time forecasting problem. These devices could communicate with 

other vehicles and make the necessary calculations used by DDPM module. In the current case, the 

DDPM module was implemented for regression based forecasting models. Other vehicles played the 

role of the ‘environment’, creating corresponding traffic flows. 

 

The vehicles received information from TIC about the centrally estimated system variables (such as 

average speed, number of stops, congestion level, etc.) in this city district, which they combined with 

their stored historical information, before making adjustments after exchanging information with other 

vehicles using cooperative learning algorithms.  

 

We assumed that each traffic participant considered the same factors during travelling time 

forecasting. These factors are shown in Table 1. Only significant factors were also used, which were 

tested specifically for linear regression model using the t-distribution.  

 

Table 1. Factors used for travelling time forecasting. 

Variable Description 

  travelling time (min); 

    route length (km) 

    average speed in system (km/h) 

    average number of stops(units/min) 

    congestion level (vehicles/h) 

    number of the traffic lights in the route (units) 

    number of the left turns in the route (units) 

 

To obtain more reliable results, we considered the travel frequency based on statistics from a survey 

[38] in Germany (2012) of drivers aged over 14 years, as shown in Figure 5. 

 

Figure 5. Frequency of driving according to the survey [38]. 
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The system was implemented and simulated in the R package. The agents were trained using the 

available real-world dataset (n = 6500). The data were normalised in the interval [0,1]. No data 

transformation was performed because experiments showed that they provide no additional quality 

improvements in the current models. During kernel-based regression, we used bandwidths   calculated 

by formula (4.2), which are listed in Table 2. 

 

Table 2. Factors and corresponding bandwidth values  . 

Variable                         

Bandwidth                         

Bandwidth value 0.01 0.03 0.2 0.2 0.1 0.05 

 

We combined the linear and kernel-based regression results using two additional estimates. The first 

estimate was the optimum, were we supposed an ‘oracle’ model helped to select the best forecast (with 

a low forecasting error) from every forecast. The oracle model represented the best forecast that could 

be achieved using the linear and kernel regressions. 

 

The second ‘average’ estimate was the average of the kernel and linear estimates. There was a strong 

positive correlation between the linear and kernel estimates (about 0.8) but we demonstrated that the 

average estimate was often better than the kernel or linear estimates.  

 

We conducted experiments using three types of models: a centralised architecture with an authority, a 

decentralised uncoordinated, and a decentralised coordinated architecture. The linear and kernel-based 

regression models were implemented in each model, as well as their combinations (oracle and average 

estimates).   

 

We compared the results by analysing the average forecasting errors (3.7), the relative forecasting 

errors (3.8) and coefficients of determination    (3.4 and 4.8). These characteristics are well-known 

measures of the effectiveness in predicting the future outcomes using regression models and they can 

be used with parametric and non-parametric models [39]. 

 

5.2. Centralised architecture 

This model assumes that agents transmit their observations to a central authority, which requires the 

transmission of a large amount of data so it is very expensive. However, its forecast precision is the 

best of all the models considered because this method is based on all datasets. 
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First, we considered the linear regression model described in section 3.2. This model was constructed 

using 2000 observations, which were selected randomly from the available dataset of 6500. The 

parameter estimates are shown in Table 3. All of the parameters satisfied the significance test, which 

was a measure of the effect on the target variable, i.e., the travelling time. These parameters could be 

used as the ‘true’ parameter values in linear models with decentralised architectures. 

 

Table 3. Factors and corresponding parameters. 

Variable                         

Coefficient estimate                         

Estimated value 0.222 -0.032 0.003 0.056 0.086 -0.017 

 

Second, we also considered kernel-based regression model for the same data.  

 

To test the efficiency of the models by cross-validation, we used 500 observations that were not used 

in the construction of the model. The corresponding     values are provided in Table 4, which shows 

that kernel regression gave more reliable results with          . 

 

Table 4. Values of the coefficient of determination    using the centralised approach. 

 Linear Kernel 

    value 0.829 0.913 

 

Figure 6 shows the average forecasting errors for the linear, kernel-based, oracle, and average models. 

Clearly, the kernel model yielded better results compared with the linear model (c.15% smaller errors). 

The kernel model and average model yielded the same results after 300 time units, except the average 

model had 5% smaller standard deviation of errors. Before 300 time units, the average model was 

slightly better. In addition, the oracle model gave the best results, i.e. 25% better than the kernel 

model. The best method for constructing the oracle model remains unclear. 

 

Figure 6. Average forecasting errors using different models. 
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5.3. Decentralised uncoordinated architecture 

In this section, we consider an estimation model with fully decentralised uncoordinated architecture. 

There were no transmission costs in this case, although it was assumed that each agent was equipped 

with a special device for making forecasts. The main problem was that each agent constructed its own 

local model using a relatively small amount of data. This led to major forecasting errors, which could 

not be corrected due to the lack of coordination. 

 

We simulated 20 agents (vehicles) with an initial experience of 20 observations. The simulation 

experiments ran for 150 time units. The data used in the simulations were homogeneous. However, the 

LSE function (3.2) used for parameter estimation in the linear model had a number of local optima. If 

the parameters   of the agent fell into these local optima, could remain there for a long time. A typical 

situation is shown in Figure 7.  

  

Figure 7. System parameter estimates    (left) and    (right) for a linear model using different agents. 

Figure 7 shows the dynamics when changing the parameter values over time with several agents. The 

straight horizontal line shows the ‘true’ value of the corresponding parameter estimated in the 

centralised model. It can be seen that some agents had parameters that did not converge. Moreover, 

‘clusters’ of agents were observed that converged to different values. Clearly, this had a negative 

effect on the quality of the forecasts. 

 

The quality of the agent models was checked by cross-validation. In this case, the cross-validation 

checked the  -th agent’s model based on observations of the other agents as test data. This procedure 

generated 20 coefficients of determination    (one for each agent) values for the kernel-based and 

linear models. Figure 8 shows the corresponding histograms. The kernel model was better with a 

higher number of agents, although its performance degraded for some agents.  
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Figure 8.     values for the overall system based on kernel (left) and linear (right) models. 

As with the centralised architecture, we compared the average forecasting errors for the linear, kernel-

based, oracle and average models. The linear and kernel model results were approximately the same 

quality (the kernel model produce c. 2% smaller errors). However, the average model yielded 

considerably better results (6% smaller errors compared with the kernel model). The oracle model 

yielded the best results, i.e. c. 35% better than the kernel model.  

 

Figure 9. Average forecasting errors using the kernel, linear, and combined models. 

 

5.4. Decentralised coordinated model 

This section considers an estimation model with decentralised coordinated architecture. The agents 

made a local estimation of the system parameters and used cooperative mechanisms to adjust their 

parameters (linear model) or observations (kernel-based model) according to those of other agents. 

The amount of information transmitted was lower than that in the centralised model, because only 

locally estimated parameters were transmitted rather than global data.  

 

We used the same simulation parameters as those used in the uncoordinated architecture, i.e. 20 agents 

with the initial experience of 20 observations. Most simulation experiments ran for 100 time units. The 

agents were equipped with a special device for making forecast calculations and communicating. In 

the linear model, the experiences of agents were used as the weights (reliability level) for their 
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parameters during the adjustment process. In the kernel-based, model the agents transmitted two best 

observations. 

 

First, we show the system dynamics for one randomly selected agent (Figure 10). Large errors 

disappeared over time and the number of communication events also decreased. 

 

Figure 10. System dynamics of single agent using kernel and linear models,       ,       . 

We analysed the number of communication events in greater detail. Figure 11 shows that the number 

of communication events with the linear and kernel-based models depended on the model parameters 

  and   , which regulated the communication conditions. There was a significant decrease in the 

number of communication events with the kernel-based model. With the linear model, there was a 

significant difference in the number of communication events that depended on parameters that did not 

decrease over time. The number of communication events also decreased slightly with time. 

 

Figure 11. Number of communication events using the kernel and linear models. 

We analysed the dynamics of the parameter changes in the linear model (Figure 12). The straight 

horizontal line shows the ‘true’ value of the corresponding parameter, which was estimated by the 
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centralised architecture. There was good convergence of the parameters to the ‘true’ values. Further, 

there were no clusters of agents with different parameters, so the quality of forecasts should be good.  

  

Figure 12. System parameter estimates b1 (left) and b6 (right) for linear model with different agents,    

   ,       . 

The quality of the agent models was also checked by cross-validation technique, as with the previous 

model. Figure 13 shows that the kernel model yielded better results than the previous uncoordinated 

architecture. The linear model did not yield much better results, but the ‘bad’ agents disappear so all 

agents had equal    values. Thus, it is necessary to make a trade-off between system accuracy 

(represented by   ) and the number of necessary communication events. The trade-off depended on 

the communication and accuracy costs. 

 

Figure 13.    for the whole system for kernel (left) and linear (right) models,       ,       . 

As previously discussed and shown in Figure 11, changes in the model parameter values   and    

affected the number of communication events. Fewer communication events meant less precision. 

Figure 14 shows how the dynamics of the average forecasting errors changed, depending on the 

system parameters. With the kernel model, a change in parameter   from 0.8 to 0.99 decreased the 

errors by 12% while the number of communication events increased by 35%. Changes in the linear 

model parameter    from 1.3 to 2.5 yielded approximately the same increase in quality of about 10%, 
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however the number of communication events increased by 300%. This demonstrated the importance 

of making a trade-off between an amount of communication and accuracy.   

 

Figure 14. Average forecasting errors using kernel-based and linear models. 

We compared the average forecasting errors using different models (Figure 15), as with the centralised 

and uncoordinated architecture. The results were similar to the centralised architecture results, i.e., the 

kernel model was c. 5% better than the linear model. The average estimate was similar to the kernel 

estimate, but it was slightly better (2%). The oracle model is considerably better than the other 

estimates (c. 40% better than the kernel model).  

 

Figure 15. Average forecasting errors using the kernel, linear and combined approaches,       , 

      . 

In the coordinated architecture, the agents with more experience (historical dataset) helped the agents 

with less experience to improve their forecasts. This cooperation helped to improve the quality of 

forecasts, especially those of less experienced agents. As a result, the average quality of the system 

was increased compared with the uncoordinated architecture (by c. 15% for the kernel-based, c. 8% 

for linear, c. 6% for the average, and c. 9% for the oracle estimate). There was almost no difference 

from the centralised architecture, although the amount of communication was smaller and the 

communication events occurred at a local level. 

 

6. Discussion 

Table 5 summarises the results of the average forecasting errors and goodness-of-fit criteria    
using 

the different forecasting models (linear, kernel, average, and oracle) with various architectures 
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(centralised, decentralised uncoordinated/coordinated). This demonstrated the advantages and 

disadvantages of the algorithms we implemented.  

 

The linear regression model used all the data points for forecasting. This was is a positive aspect if 

there were no historical observations close to the requested point. However, the equal effect of the 

distant and nearby data points, and the linear dependency, led to inaccurate forecasts. Furthermore, the 

coordination of the parameters always increased the squared error calculated using the agent’s data 

because the current parameters were calculated based on the squared error minimisation. This meant 

that the straight regression line was being adjusted continuously via coordination and new data points, 

so it could not be fitted well for all data points. Thus, linear regression gave the worst forecasts: 

        for the centralised architecture and         for the coordinated architecture. The 

centralised architecture was worse because a single line could not make good forecasts for 2000 data 

points. Figure 6 shows that there was a decrease in the average forecasting errors with about 100 

points, followed by an increase. The linear model within the uncoordinated architecture was worse due 

to the convergence of the parameters of several agents to local optima instead of global optima. 

 

Table 5. Average forecasting errors and goodness-of-fit criteria    
for the different forecasting 

models,       ,       . 

Model Average forecasting errors    (After cross-validation) 

Linear  

Centralised architecture 

Uncoordinated architecture 

Coordinated architecture 

 

0.051 

0.054 

0.050 

 

0.829 

0.811 

0.819 

Kernel-based 

Centralised architecture 

Uncoordinated architecture 

Coordinated architecture 

 

0.045 

0.053 

0.047 

 

0.913 

0.814 

0.859 

Aggregated (average) 

Centralised architecture 

Uncoordinated architecture 

Coordinated architecture 

 

0.046 

0.049 

0.046 

 

--- 

--- 

--- 

Aggregated (oracle) 

Centralised architecture 

Uncoordinated architecture 

Coordinated architecture 

 

0.034 

0.037 

0.034 

 

--- 

--- 

--- 
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The kernel-based regression model used only neighbouring points for forecasting. In contrast to the 

linear model, the absence of nearby points prevented good forecasting. However, there was no strong 

linear dependency and the model fitted well to the data points with non-linear dependencies. 

Coordination greatly improved the quality of forecasting because new neighbouring data points were 

provided. The centralised architecture made the best forecasts because there were many nearby points 

for most requested point (       ). However, absence of experience (uncoordinated architecture) 

produced bad forecasts (       ), which were comparable with the results of the linear model. 

Coordination improved the    to 0.86 (with the linear model only to 0.82). For large amounts of data 

kernel-based model required numerous computations (all data points needed to be checked to ensure 

nearby points for each forecast). 

 

With the average estimator, i.e. the mean of the kernel-based and linear estimators,    could not be 

calculated because of the nature of the model. However, analysis of the relative forecasting errors 

showed that the average estimator in coordinated and uncoordinated architectures for relatively small 

amounts of data produced relatively better results than kernel-based or linear estimators. This was not 

explained by a negative correlation between the linear and kernel-based forecasting errors, because 

there was a strong positive correlation of about 0.8), and instead in was due to the structure of these 

errors. As shown in Figure 10, the kernel model was more accurate on average, but it sometimes 

yielded highly inaccurate forecasts (if only one neighbouring observation was used for forecasting). 

The linear model was less accurate, but it did not produce such big outliers. The average method 

avoided big outliers of the kernel model and it provided more accurate forecasts. However, this 

advantage was lost when the kernel model had sufficient data to avoid outliers (in Figure 6 this 

occurred after c. 300 observations). 

 

The oracle-based estimator, which combined the kernel-based and linear estimators, provided a 

possible lower bound for the average forecasting error. This algorithm could improve forecasts by c. 

25%. However, it is still unclear, how to choose between kernel-based and linear estimates. It is 

important to identify the factors or characteristics of estimators, which allow a comparison of linear 

and kernel-based regression estimates for one actual point.  

  

7. Conclusions 

This study considered the problem of intelligent data processing and mining in decentralised multi-

agent networks. We focused on cooperative regression-based travelling time forecasting in distributed 

traffic networks.  
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We proposed a multi-agent architecture and structure for intelligent autonomous agents and paid 

special attention to the data processing and mining modules. This approach allows the input data 

processing and making travelling time forecasting, while adjusting the agent models if necessary. 

 

We analysed linear and kernel-based regression models, which can be applied efficiently for travelling 

time forecasting. Regression models were tested with special attention to their implementation for 

streaming data, which is important for intensive data flows in traffic systems. We proposed regression-

based coordination learning algorithms based on the confidence intervals of estimates, which allowed 

agents to improve the quality of their forecasts. Each model was illustrated with simple examples in a 

tutorial style, which facilitated understanding of the algorithms. 

 

We demonstrated the practical application of the proposed approaches using real-world data from 

Hanover, Germany. We proposed the structure of regression models by selecting significant factors. 

Three types of architectures were compared: distributed centralised and decentralised 

coordinated/uncoordinated.  

 

For each of the proposed architectures, we tested accuracy of the linear and kernel-based regression 

estimators of the travelling time, as well as combinations of both. We used the relative error and 

determination coefficient as goodness-of-fit criteria. The quality of each agent model was checked by 

cross-validation. 

 

The results demonstrated the appropriate goodness-of-fit of all the models considered (>0.8). The 

kernel model usually produces better results compared with the linear model, although it was more 

sensitive to outliers. A simple combination of the linear and kernel-based estimates (average) reduced 

the effect of outliers and provided better estimates with small amounts of data (<300). However, a 

more effective algorithm for choosing between the kernel-based and linear estimation method could 

theoretically yield 25–30% better results, which was demonstrated by the oracle model. 

 

The centralised architecture provided the best quality of forecasts. However, it required a large amount 

of communication and computation, which was frequently impossible to implement. In decentralised 

architectures, the cooperation between agents and the corresponding model adjustment improved the 

forecasts considerably. It was possible to obtain almost the same average forecasting errors as in 

centralised architectures, especially when we aggregated the kernel-based and linear estimates. This 

showed that a decentralised architecture with communication could be a good alternative to the 

centralised architecture, although it dispenses with the expensive authority, uses a fewer amount of 

communication and computation, which are mostly local and executed in parallel.  
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Our future work will be continued in three directions: (a) construction of the distributed model of 

multiple multivariate regression, which allows forecasting of several response variables 

simultaneously from the same set of explanatory variables (factors); (b) application of other regression 

model types and different methods of combination of their estimates; (c) modification of the parameter 

adjustment algorithm (new strategies for the calculation of the reliability level of agents, resampling 

approach [40], etc.) in order to be more reliable to outliers. 

 

ACKNOWLEDGEMENTS 

The research leading to these results has received funding from the European Union Seventh 

Framework Programme (FP7/2007-2013) under grant agreement No. PIEF-GA-2010-274881. We 

thank also Prof. J.P. Müller for his useful and valuable ideas during this paper preparation. 

 

REFERENCES 

 

[1]  H. Kargupta and P. Chan, Eds., Advances in Distributed and Parallel Knowledge Discovery, California, 

USA: AAAI Press/MIT Press, 2000.  

[2]  J. C. da Silva, C. Giannella, R. Bhargava, H. Kargupta and M. Klusch, “Distributed data mining and 

agents,” Eng. Appl. Artif. Intell., vol. 18, no. 7, pp. 791-801, 2005.  

[3]  H. Lin, R. Zito and M. Taylor, “A review of traveltime prediction in transport and logistics,” Proceedings of 

the Eastern Asia Society for Transportation Studies, vol. 5, pp. 1433-1448, 2005.  

[4]  M. Fiosins, J. Fiosina, J. Müller and J. Görmer, “Agent-based integrated decision making for autonomous 

vehicles in urban traffic,” Advances on Practical Applications of Agents and Multiagent Systems (Advances 

in Intelligent and Soft Computing), vol. 88, pp. 173-178, 2011.  

[5]  M. Fiosins, J. Fiosina, J. P. Müller and J. Görmer, “Reconciling Strategic and Tactical Decision Making in 

Agent-Oriented Simulation of Vehicles in Urban Traffic,” in Proc. of 4th Int. ICST Conf. on Simulation 

Tools and Techniques (SimuTools'2011), pp. 144-151, 2011.  

[6]  H. A. Simon, The Sciences of the Artificial, MIT Press, 1996.  

[7]  N. R. Jennings, “An agent-based approach for building complex software systems.,” Communications of the 

ACM, vol. 44, no. 4, pp. 35-41, 2001.  

[8]  M. Wooldridge, An Introduction to Multi-Agent Systems, John Wiley & Sons, 2002.  

[9]  P. A. Mitkas, D. Kehagias, A. L. Symeonidis and I. N. Athanasiadis, “A Framework for Constructing Multi-

Agent Applications and Training Intelligent Agents,” in In Proc. of the 4-th Int.l Workshop on Agent-

oriented Software Engineering (AOSE-2003) in conjunction with Conference on Automous Agents and 

Multi-Agent Systems (AAMAS 2003}, pp. 96-109, 2003.  

[10]  A. Bazzan, “Opportunities for multiagent systems and multiagent reinforcement learning in traffic control,” 

Autonomous Agents and Multiagent Systems, vol. 18, no. 3, pp. 342-375, 2009.  

[11]  M. Rieser, K. Nagel, U. Beuck, M. Balmer and J. Rümenapp, “Truly agent-oriented coupling of an activity-

based demand generation with a multi-agent traffic simulation,” Transportation Research Record, vol. 

2021, pp. 10-17, 2007.  

[12]  P. Davidsson, L. Henesey, L. Ramstedt, J. Törnquist and F. Wernstedt, “An analysis of agent-based 

approaches to transport logistics,” Transportation Research Part C: Emerging Technologies, vol. 13, no. 

14, pp. 255-271, 2005.  

[13]  A. Freitas, Data Mining and Knowledge Discovery with Evolutionary Algorithms, Springer, 2002, 264 p.  



39 
 

[14]  A. L. Symeonidis and P. A. Mitkas, “Agent Intelligence Through Data Mining,” in Multiagent Systems, 

Artificial Societies, and Simulated Organizations, New York, Springer-Verlag, 2005.  

[15]  L. Cao, D. Luo and C. Zhang, “Ubiquitous Intelligence in Agent Mining,” Agents and Data Mining 

Interaction ( Lecture Notes in Computer Science), vol. 5680, pp. 23-35, 2009.  

[16]  M. Klusch, S. Lodi and G. Moro, “Agent-based distributed data mining: The kdec scheme,” Proc. of Int. 

Conf. on Intelligent Information Agents - The AgentLink Perspective; Lecture Notes in Computer Science, 

vol. 2586, pp. 104-122, 2003.  

[17]  C. Guestrin, P. Bodik, R. Thibaux, M. Paskin and S. Madden, “Distributed regression: an efficient 

framework for modeling sensor network data,” in Proc. of the 3rd Int. Sym. on Information Processing in 

Sensor Networks, Berkeley, California, USA, pp. 1-10, 2004.  

[18]  S. S. Stankovic, M. S. Stankovic and D. M. Stipanovic, “Decentralized parameter estimation by consensus 

based stochastic approximation,” IEEE Trans. Automatic Controll, vol. 56, pp. 1535-1540, 2009.  

[19]  A. Bazzan, J. Wahle and F. Kluegl, “Agents in traffic modelling - from reactive to social behaviour,” 

Advances in Artificial Intelligence (Lecture Notes in Artificial Intelligence), vol. 1701, pp. 509-523, 1999.  

[20]  G. Malnati, C. Barberis and C. Cuva, “Gossip: Estimating actual travelling time using vehicle to vehicle 

communication,” in Proceedings of Fourth International Workshop on Intelligent Transportation, 

Hamburg, 2007.  

[21]  W. Lee, S. Tseng and W. Shieh, “Collaborative real-time traffic information generation and sharing 

framework for the intelligent transportation system,” Information Scienses, vol. 180, pp. 62-70, 2010.  

[22]  J. Ehmke, M. Fiosins, J. Görmer, D. Schmidt, H. Schumacher and H. Tchouankem, “Decision Support for 

Dynamic City Traffic Management Using Vehicular Communication,” in Proc. of 1st International 

Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 

2011), pp. 327-332, 2011.  

[23]  R. Claes and T. Holvoet, “Ad hoc link traversal time prediction,” in Proceedings of the 14th International 

IEEE conference on Intelligent Transportation Systems, pp. 1803-1808, 2011.  

[24]  J. Fiosina, “Decentralised regression model for intelligent forecasting in multi-agent traffic networks,” 

Distributed Computing and Artificial Intelligence (Advances in Intelligent and Soft Computing), vol. 151, p. 

255–263, 2012.  

[25]  J. Fiosina and M. Fiosins, “Cooperative Kernel-Based Forecasting in Decentralized Multi-Agent Systems 

for Urban Traffic Networks,” in Proc. of Ubiquitous Data Mining (UDM) Workshop at the 20th European 

Conference on Artificial Intelligence, pp. 3-7, 2012.  

[26]  B. L. Smith, B. L. Williams and R. K. Oswald, “Comparison of parametric and nonparametric models for 

traffic flow forecasting,” Transportation Research Part C, vol. 10, pp. 303-321, 2002.  

[27]  C. McKnight, H. S. Levinson, C. Kamga and R. Paaswell, “Impact of traffic congestion on bus travel time 

in northern New Jersey,” Transportation Research Record Journal, vol. 1884, pp. 27-35, 2004.  

[28]  N. Draper and H. Smith, Applied Regression Analysis, New York: John Wiley and Sons, 1986.  

[29]  A. Albert, Regression and the Moor-Penrose Pseudoinverse, New York and London: Academic Press, 1972.  

[30]  A. Andronov, A. Kiselenko и E. Mostivenko, Forecasting of the development of Regional Transport 

System, Syktyvkar: KNZ UrO RAN (in Russian), 1991.  

[31]  W. Härdle, Applied Nonparametric Regression, Cambridge: Cambridge University Press, 2002.  

[32]  W. Härdle and M. Müller, “Multivariate and semiparametric kernel regression,” in Smoothing and 

Regression, M. Schimek, Ed., New York, Wiley, 2000, pp. 357-391. 

[33]  B. W. Silverman, Density Estimation for Statistics and Data Analysis, Chapman and Hall, 1986.  

[34]  D. W. Scott, Multivariate Density Estimation: Theory, Practice, and Visualization, Wiley, 1992.  

[35]  P. Hall, “Large Sample Optimality of Least Squares Cross-Validation in Density Estimation,” The Annals of 

Statistics, vol. 11, no. 4, pp. 1156-1174, 1983.  

[36]  W. Härdle, M. Müller, S. Sperlich and A. Werwatz, Nonparametric and Semiparametric Models, 

Berlin/Heidelberg: Springer, 2004.  



40 
 

[37]  J. Gentle, W. Härdle and Y. Mori, Eds., Handbook of Computational Statistics: Concepts and Methods, 

Berlin/Heidelberg: Springer, 2004.  

[38]  “Frequency: Travelling with passenger cars,” Statista, 2012. [Online]. Available: 

http://de.statista.com/statistik/daten/studie/176124/umfrage/haeufigkeit-pkw-fahren/. 

[39]  J. S. Racine, “Consistent significance testing for nonparametric regression,” Journal of Business and 

Economic Statistics, vol. 15, pp. 369-379, 1997.  

[40]  H. Afanasyeva and A. Andronov, “On robustness of resampling estimators for linear regression models,” 

Communications in Dependability and Quality Management: An international Journal, vol. 9, no. 1, pp. 5-

11, 2006.  

 

 


