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Abstract New Internet technologies can considerably enhance contemporary traffic
control and management systems (TCMS). Such systems need toprocess increasing
volumes of data available in clouds, and so new algorithms and techniques for statis-
tical data analysis are required. A very important problem for cloud-based TCMS is
the selection of the shortest itinerary, which requires route comparison on the basis
of historical data and dynamic observations. In the paper wecompare two non-
overlapping routes in a stochastic graph. The weights of theedges are considered to
be independent random variables with unknown distributions. Only historical sam-
ples of the weights are available, and some edges may have common samples. Our
purpose is to estimate the probability that the weight of thefirst route is greater than
that of the second one. We consider the resampling estimatorof the probability in
the case of small samples and compare it with the parametric plug-in estimator. The
analytical expressions for the expectations and variancesof the proposed estimators
are derived, which allow theoretical evaluation of the estimators’ quality. The ex-
perimental results demonstrate that the resampling estimator is a suitable alternative
to the parametric plug-in estimator. This problem is very important for a vehicle
decision-making procedure to choose route from the available alternatives.
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1 Introduction

Future Internet opportunities open new perspectives on thedevelopment of intelli-
gent transport systems (ITS). Technologies such as cloud and grid computing, the
Internet of Things concept and ambient intelligence methods allow the development
of new applications, to hide the complexity of data and algorithms in the network.
This allows traffic participants to run simple applicationson their mobile devices,
which provide clear recommendations on how they should act in the current situa-
tion. These simple applications are based on the aggregation and processing of large
amounts of data, which are collected from different traffic participants and objects.
These data are physically distributed and available in virtual clouds. This creates a
need for innovative data analysis, processing, and mining techniques, which run in
clouds and prepare necessary information for end-user applications.

In this study, we deal with route recommendation systems, which are essential
applications in cloud-based ITS. This system includes optimization of the booked
itinerary with respect to user preferences, time, fuel consumption, cost, and air pol-
lution to provide better (i.e., quicker, more comfortable,cheaper, and greener) mo-
bility. The recommendations can be made on the basis of static information about
the network (traffic lights, public transport schedules, etc.) combined with dynamic
information about the current situation and historically stored data about traveling
under equivalent conditions. If necessarily, the recommendations of other travelers.
can be included. Booking the shortest itinerary is a key aspect in many traffic sce-
narios with different participants: a dynamic multi-modaljourney, a simple private
drive through a transport network, or smart city logisticaloperations. We consider an
example of driving through a transport network segment considering the time con-
sumption as the optimization criterion in itinerary comparisons and shortest route
selection. In this case, the route recommendation is based on the estimates of the
travel time along the route.

For this purpose, an artificial transport network is created, the travel times for
alternative routes are estimated, and the best route is selected. Different methods of
travel-time forecasting can be used, such as regression models, and neural networks.
Most of these are sensitive to outliers or incorrect model selection(e.g. wrong distri-
bution). In these situations, the methods of computationalstatistics can be effective.

Computational statistics includes a set of methods for non-parametric statistical
estimation. The main idea is to use data in different combinations to replace complex
statistical inferences by computations. The resampling approach supposes that the
available data are used in different combinations to obtainmodel-free estimators
that are robust to outliers. The quality of the estimators obtained is also important.

In the present study, we demonstrate data flows in cloud-based ITS for route rec-
ommendations and propose a resampling-based approach for the route comparison
in such systems. We derive the properties of the proposed resampling estimators and
compare these with traditional plug-in estimators.

The remainder of this study is organized as follows: Section2 formulates the
problem, Sections 3-4 describe the resampling procedure and its properties, Section
5 contains a numerical example, and Section 6 presents the conclusion.
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2 Problem Formulation

We consider a cloud-based ITS architecture [8]. In terms of the Internet of Things,
the real-world users are represented in the cloud system as virtual agents, which act
in the cloud and virtual traffic network. The street network is presented by the virtual
transport network, which consists of a digital map as well asthe associated ad-hoc
network models that allow estimation and forecasting of theimportant network char-
acteristics for each problem [6]. The virtual agents store the real-time information,
which is collected and constantly processed in the cloud. Moreover, the strategies
for execution of the cloud application are constantly pre-calculated and checked in
the virtual network (e.g., the shortest routes are pre-calculated). When a user runs
the cloud application, the pre-calculated strategy is updated with the real-time data
and is executed, with respect to the corresponding changes.Data flows and corre-
sponding optimization methods in the cloud-based ITS architecture are presented in
Fig. 1.
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Fig. 1 Data flows and corresponding optimization methods in cloud-based ITS
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We consider an application, that provides route recommendations to vehicle
drivers. The essential process of this application is the comparison of pre-defined
routes. It is based on historical samples of the route segments, which are collected
from the virtual users. The candidate routes are compared inthe virtual transport net-
work in order to recommend the best route to a user. As the travel times are random,
a stochastic comparison should be used. We consider a directed graphG = (V,E)
with n edges,|E|= n, where each edgeei ∈E has an associated weightXi (e.g. travel
time). We assume that the weights{X1,X2, . . . ,Xn} are independent random vari-
ables (r.v.). A route in the graph is a sequence of edges such that the next edge in the
sequence starts from the node, where the previous edge ends.Let us denote a routeb
as a sequencekb of edge indices in the initial graph:kb =(kb

1,k
b
2, . . . ,k

b
nb
), which con-

sists ofnb edges. Hence, a routeb is the sequence of edgesrb = {ekb
1
,ekb

2
, . . . ,ekb

nb
}.

The route weightSb is the sum of the corresponding edge weights, soSb = ∑i∈kb Xi.
We compare two non-overlapping routes by calculating the probability that the

weight of route 1 is greater than that of route 2:Θ = P{S1 > S2}.
The distributions of the edge weights are unknown, only the samples are avail-

able:Hi = {Hi,1,Hi,2, . . . ,Hi,mi}, wherei= 1,2, . . . ,c, c≤ n. Each sample may corre-
spond to one or several edges. An (unknown) cumulative distribution function (cdf)
of the sampleHi elements is denoted byFi(x) , i = 1,2, . . . ,c.

The traditional plug-in approach supposes a choice of distribution type and es-
timation of its parameters. In the case of small samples, it is difficult to choose the
distribution law correctly; hence the estimators obtainedare usually inaccurate.

Hence, it is preferable to use the non-parametric resampling procedure ([7]),
which is a variant of the bootstrap method ([3], [4]). The implementation of this
approach to various problems was considered in the studies reported in ([1], [2],
[5]). We employ the usual simulation technique without parameter estimation and
use this in the simulation process to extract elements randomly from the samples of
random variables. We produce a series of independent experiments and accept the
average over all realizations as the resampling estimator of the parameter of interest.

Two cases are considered: (1) each edge has different samples, so only one el-
ement is extracted from the sampleHi; and (2) edges may correspond to common
samples, including the common samples for two routes.

3 Resampling Procedure

We propose anN-step resampling procedure. At each step, we randomly without
replacement chooseη1

i +η2
i elements from each sampleHi: η1

i elements for route
1, andη2

i elements for route 2:η i = (η1
i ,η2

i ).
Let Jb

i (l), |J
b
i (l)|= ηb

i be a set of element indices extracted from the sampleHi,
for a routeb, b = 1,2, during resampling stepl, i = 1, . . . ,c. Let X∗l =

⋃c
i=1{Hi, j :

j ∈ J1
i (l)}∪

⋃c
i=1{−Hi, j : j ∈ J2

i (l)} be thel-th resample of the edge weights for
both routes, with the weights of route 2 assumed to be negative.
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LetΨ(x) be an indicator function, wherex = (x1,x2, . . .) is a vector of real num-
bers:Ψ(x) is unity if ∑

i
xi > 0; otherwise, it is zero. The average ofΨ(X∗l) over

all N steps is accepted as the resampling estimator of the probability of interest:
Θ ∗ = 1

N ∑N
l=1Ψ(X∗l). The resampling procedure is presented as Algorithm 1.

Algorithm 1 Function RESAMPLE
1: function RESAMPLE(Hi,ηi, i = 1, . . . ,c, N)
2: for all l ∈ 1, . . . ,N do
3: for all i ∈ 1. . .c do
4: X∗li ← extract(Hi,η1

i +η2
i )

5: X1∗li ← subsample(X∗li ,1,η1
i ); X2∗li ← subsample(X∗li ,η1

i +1,η2
i )

6: end for
7: X∗l =

⋃

X1∗li
⋃

−X2∗li ; Θl ←Ψ(X∗l)
8: end for
9: Θ ∗← 1

N ∑N
l=1Θl

10: return Θ ∗
11: end function

The functionextract(X ,n) randomly choosesn elements without replacement
from the set X. The functionsubsample(X ,a,n) returnsn elements fromX , starting
from positiona. These two cases differ with the parameters of theextract procedure.

4 Properties of the Resampling Estimator

The estimatorΘ ∗ is obviously unbiased:E(Θ ∗) = Θ , so we are interested in its
variance. Consider the elements extracted at two differentstepsl 6= l′. Moreover,
we denote:µ = E Ψ(X∗l), µ2 = E Ψ(X∗l)2, µ11= E Ψ(X∗l) ·Ψ(X∗l

′
), l 6= l′. Then,

the variance isV (Θ ∗) = E(Θ ∗2)−µ2 =
{

1
N µ2+

N−1
N µ11

}

−µ2, for the estimation
of which we need the mixed momentµ11 depending on the resampling procedure.

Different Samples for Each Edge
In this case,Jb

i (l) consists of one element, denoted asjb
i (l). This is the index of

an element extracted from the sampleHi at stepl for routeb.
Let Mi = {1,2, . . . ,mi}, Ub : {i : ηb

i 6= /0}, Mb = ∏i∈Ub Mi andjb(l) = { jb
i (l) : i ∈

Ub}, j(l) = (j1(l), j2(l)), wherejb(l) ∈Mb andb = 1,2.
We use a modification of theω-pair notation [5]. Letωb ⊂Ub, ω = (ω1,ω2).

We assume that two vectorsj(l) and j(l′) produce anω-pair, if jb
i (l) = jb

i (l
′) for

i ∈ ωb and jb
i (l) 6= jb

i (l
′) for i /∈ ωb. In other words, the components of the vectors

j(l) andj(l′) produce theω-pair if they have the same elements from the samples,
whose indices are contained byω.

Let A(ω) be an event ’resamplesj(l) andj(l′) for the different stepsl 6= l′ pro-
duce theω-pair’, let P{ω} be the probability of this event, and letµ11(ω) be the
corresponding mixed moment. The probability of producing theω-pair is
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P{ω}=
1

|M1||M2| ∏
i∈

⋃

b {Ub\ωb}

(mi−1).

The mixed momentµ11 can be calculated with the formulaµ11=∑ω⊂U1×U2 P(ω)µ11(ω).
Next, we intend to calculateµ11(ω), ω ⊂U1×U2. Let

Sdi f
l (ω) = ∑i∈U1\ω1 Hi, j1i (l)

−∑i∈U2\ω2 Hi, j2i (l)
,

Scom
ll′ (ω) = ∑i∈ω1 Hi, j1i (l)

−∑i∈ω2 Hi, j2i (l)
.

Then,µ11(ω) can be calculated as

µ11(ω) = E(Ψ(X∗l) ·Ψ(X∗l
′
)|ω) =

∫+∞
−∞

(

1−Fd
ω (−x)

)2
dFc

ω(x),

whereFd
ω (x) is cdf of Sdi f

l (ω), Fc
ω(x) is cdf of Scom

ll′ (ω) givenω-pair.

Common Samples for Edges
Here, we use the notation ofα-pairs ([1], [2], [5]) instead ofω-pairs. Let
Jb

i (l)= { jb
i,1(l), jb

i,2(l), . . . , jb
i,ηb

i
(l)}, Jb(l)= {Jb

i (l) : i∈Ub}, J(l)= {J1(l),J2(l)},

whereJb
i (l)⊂Mb, b = 1,2, l = 1, . . . ,N, i = 1,2, . . . ,c.

Let Ab
i (ll
′) be a set of indices of the common elements, extracted from thesample

Hi for route b at stepsl and l′. Let Abp
i (ll′) be a set of indices of the common

elements, extracted from the sampleHi for routeb at stepl and for routep and at
stepl′. Let Ābp

i (l) be a set of indices of the elements from routeb at stepl, which
were in neither routeb nor routep at stepl′, b, p ∈ {1,2} andb 6= p:

Ab
i (ll
′) = Jb

i (l)∩ Jb
i (l
′), Ābp

i (l) = Jb
i (l) \ (A

b
i (ll
′)∪Abp

i (ll′)), Abp
i (ll′) = Jb

i (l)∩

Jp
i (l
′), Āpb

i (l)= Jp
i (l)\(A

p
i (ll

′)∪Apb
i (ll′)). Let 0≤αb

i ≤ηb
i , 0≤αbp

i ≤min(ηb
i ,η

p
i ),

b, p ∈ {1,2} and b 6= p. Let αi = {α1
i ,α2

i ,α12
i ,α21

i }, α = {αi}, i = 1,2, . . . ,c.
Next, we say thatJ(l) andJ(l′) produce anα-pair, if and only if:α1

i = |A1
i (ll
′)|,

α2
i = |A2

i (ll
′)|, α12

i = |A12
i (ll′)|, α21

i = |A21
i (ll′)|. Let All′(α) denote the event ’sub-

samplesJ(l) andJ(l′) produce anα-pair’, and letPll′{α} be the probability of this
event:Pll′{α}= Pll′{All′(α)}.

To calculateµ11(α) we replaceω-pairs withα-pairs. Therefore we need to cal-
culateP{α} andµ11(α). The probabilityP{α} is

P{α}= ∏i∈1,2,...,c

(

η1
i

α1
i

)(

η2
i

α21
i

)(

mi−η1
i −η2

i

η1
i −α1

i −α21
i

)

(

mi

η1
i

) ×

×

(

η1
i −α1

i

α12
i

)(

η2
i −α21

i

α2
i

)

(

mi−2η1
i −η2

i +α1
i +α21

i

η2
i −α12

i −α2
i

)

(

mi−η1
i

η2
i

) ,

where
(n

m

)

is a binomial coefficient.
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To calculateµ11(α) we divide each sum into three subsums:Sdi f
l (α) contains

different elements for stepsl and l′; Scom
ll′ (α) - the common elements for the

same route;Scom12
ll′ (α) - the common elements for different routes. LetSdi f

l (α) =

∑c
i=1

{

∑ j∈Ā12
i (l) Hi, j−∑ j∈Ā21

i (l) Hi, j

}

, Scom
ll′ (α)=∑c

i=1

{

∑ j∈A1
i (ll
′) Hi, j−∑ j∈A2

i (ll
′) Hi, j

}

,

Scom12
ll′ (α) = ∑c

i=1

{

∑ j∈A12
i (ll′) Hi, j−∑ j∈A21

i (ll′) Hi, j

}

.

As Scom
ll′ (α) = Scom

l′l (α) andScom12
ll′ (α) =−Scom12

l′l (α), µ11(α) is:

µ11(α) = E{Ψ(X∗l) ·Ψ(X∗l
′
)|α}= P

{

Ψ(X∗l) = 1,Ψ(X∗l
′
) = 1|α

}

=

=
∫ +∞
−∞

∫ +∞
−∞ (1−Fd

α (−x− y))× (1−Fd
α (−x+ y))dFc

α(x)dFc12
α (y),

whereFd
α (x) is cdf ofSdi f

l (α), Fc
α(x) is cdf ofScom

ll′ (α), Fc12
α (x) is cdf ofScom12

ll′ (α).

5 Numerical Example

We model a route recommendation in the southern part of the city of Hanover, (Ger-
many), which is shown in Fig. 2 (left), and represented by thegraph in Fig. 2 (right).
We compare two routes: nodes 9,8,7,5,3,1 (solid) and nodes 9,6,4,2,1 (dashed) for
vehicles travelling from 9 to 1.

e

1 2

3 4

5 6

7 8 9

H4

H2 H2

H3

H2

H4

H3

H3

H1

Fig. 2 Street network of the south part of Hanover city and corresponding graph

The cloud-based ITS collects information about travel times for different road
segments. We assume that due to technical or organizationallimitations, the travel
times on different roads are indistinguishable. The traveltimes are collected into
four samplesH1, H2, H3 andH4, as demonstrated in the graph in Fig. 2 (right).

The traditional methods for route comparison give a biased estimator. As an al-
ternative, we apply the resampling approach. For comparison, we use the mean
squared errors of the plug-inMSE(Θ̃) estimator and the resampling estimator
MSE(Θ ∗) = V (Θ ∗) because ofE(Θ ∗) = Θ . The experimental results are shown
in Fig. 3. We can see that the resampling estimator is effective in most situations.
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Fig. 3 MSE (vertical axis) of plug-in and res. estimators forΘ = 0.5 (left) andΘ = 0.34 (right)

Conclusion

Cloud applications open new perspectives on intelligent transportation services.
Data mining is one of the most important problems for such systems. We demon-
strated the application of the resampling approach to the problem of route compari-
son in route recommendation systems. The formulas obtainedallow calculation and
comparison of the properties of the estimators considered.Future work will be de-
voted to the integration of the proposed algorithms to cloud-based TCMS and their
validation on large-scale transport networks.
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