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Abstract Future Internet (FI) technologies can considerably enddhe effec-
tiveness and user friendliness of present cooperative lityomanagement sys-
tems (CMMS), providing considerable economical and saaiglact. Real-world
application scenarios are needed to derive requirementsofoware architecture
and smart functionalities of future-generation CMMS in tletext of the Inter-
net of Things (IoT) and cloud technologies. The deploymdrnb® technologies
can provide future CMMS with huge volumes of real-time datat need to be ag-
gregated, communicated, analysed, and interpreted. $rsthdy, we contend that
future service- and cloud-based CMMS can largely benefih fsophisticated data
processing capabilities. Therefore, new distributed daitsing and optimization
techniques need to be developed and applied to supportiaeamsking capabil-
ities of future CMMS. This study presents real-world scaspf future CMMS
applications, and demonstrates the need for next-geaerd#ta analysis and opti-
mization strategies based on FI capabilities.
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processing and mining, multi-agent systems, distributsgisibn-making
1 Introduction

Increasing traffic and frequent congestion on today’s reaedsire innovative solu-
tions for infrastructure and traffic management. As the comets of traffic systems
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become more autonomous and smarter (e.g. vehicles andtmftaure components
are now equipped with communication capabilities), ther@n increasing need for
cooperation among intelligent transportation systemS)for traffic management
and environmental monitoring in order to improve traffic rageament strategies.
Further, there is growing interest and increasing volumeéaéstments to coop-
erative mobility management systems (CMMS). In these nemegation business
management systems, the management of transportatiolonketig closely inte-
grated with the business strategies and operational mofiélansport companies
and individual customers, providing a considerable impactompanies in terms
of business planning, service quality and adaption to costaeeds as well as for
individual users in terms of time and money saving, adagtiaeel planning and
support of social mutually beneficial behavior. Innovatil@ud services can be cre-
ated using the cloud capabilities of future Internet (Flatzess smart objects via
the Internet of Things (loT). This development can enableveccess to necessary
information, because all of this data will be availablelie-cloud.

However, implementing a traffic cloud is far from easy. Framead user’s point
of view, the complexity of data and algorithms is hidden ia thoud. Users(ranging
from traffic authorities to car drivers and automated conembs) expect to work
with relatively simple applications on the Internet via rilelor embedded devices.
These devices are fully connected and can (theoreticadlg)all the information
available from all other users and system elements. Thitesegreat opportuni-
ties for coordinated near-optimal management of the itrivagire (e.g. in terms
of load balancing). However, there is a huge amount of dvaildata with a short
update rate. This creates a need to employ innovative datiagnand correspond-
ing decision-making algorithms (under the hood of the traffoud) to support
CMMS applications in finding, collecting, aggregating, @essing, and analysing
information necessary for optimal decision-making useravér strategies. Note
that information here is virtually centralized by cloudheologies. However it is
distributed, and (very often) created and managed in a dietized fashion on the
physical (fabric) layer. Thus, data mining and decisiorkimgmethods are required
to find an optimal balance between decentralized informgti@cessing/decisions
and costs of data transfer/decision coordination.

The contribution of this study is fourfold: First, we anaylated cloud-based
architectures and CMMS scenarios. Second, we consideitezttires for imple-
menting the corresponding data analysis and optimizatianability operations.
Third, we discuss the employment of appropriate mathemlatiethods for three
use-cases; fourth, we point out and discuss work direcodsopportunities in the
area of cloud-enabled CMMS.

The remainder of this paper is organized as follows. SeQioeviews related
work in the area of Fl and cloud architecture for mobility Bggtion. In Section
3, we propose and analyse three application scenarios of Sl consider data
analysis and optimization of participants’ behaviourtstgées in traffic systems. In
Section 4, we present a cloud-based architecture for niph#itworks based on the
previously presented scenarios. Section 5 concludes acdsiies future research
opportunities.
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2 Related Work

A strong worldwide interest in opportunities in transpticta and mobility field has
spurred the need for further analysing these FI opporesitn Europe, Fl and IoT
research has been a priority direction for the 7th Europeam&work Programme
(FP7) and will continue to do so for the upcoming Horizon 2@26gramme (e.g.
the objectives 'A reliable, smart and secure 10T for SmatieSior 'Integrated per-
sonal mobility for smart cities’ in FP7 or 'Substantial innpements in the mobility
of people and freight’ in Horizon 2020). These research tijpes are motivated
and co-funded by private companies and municipalities fthenareas of trans-
port, logistics, communication and traffic management ¢l FP7 project Instant
Mobility [ ?]). These stakeholders understand the possible enhantetoaxisting
systems that new technologies can provide to CMMS. Reséatblis area is still
largely at the stage of formulation of scenarios and coattithn protocols. The first
cloud-based traffic network architectures have been pegpws[?], which employ
ambient intelligence (AmI)7] or IoT components?], [7].

An architecture of Aml-enabled CMMS is proposed ij. [It supports virtual
control strategists and management policy makers in adeeisiaking and is mod-
elled using the metaphor of autonomous agents. Aml is defisetthe ability of
the environment to sense, adapt, and respond to actiongsageand objects that
inhabit its vicinity. Moreover, the multiagent system (MASaradigm makes Aml
environments act autonomously and socially, featuringabokation, cooperation,
and even competitive abilities.

Cloud computing systems are oriented towards a high levaitefaction with
their users, real-time execution of a large number of appbios, and dynamic pro-
visioning of on-demand services. In this study, we condidedayered architecture
of cloud-based computing systems presente@]idtisupports a class of specialized
distributed systems that is characterized by a high levetalability, service encap-
sulation, dynamic configuration, and delivery on demanak dtchitecture includes
the following layers:

The fabric layer includes all computing, storage, data, and network ressurc
available in the cloud. The resources are accessible thrthegresource services,
are used for cloud computations, management, and as testfeelinified source
layer provides infrastructure-as-a-service by defining unifieckas to the raw com-
putational resources of the fabric layer using a virtual Inivae. Theplatform layer
provides platform-as-a-service, including a collectidrspecialized tools, middle-
ware, and services on the top of unified resources to creagplaydnent platform
(e.g. scheduling create service and artificial testbeds3.application layer con-
tains all applications that are run in the cloud. Applicatexecution in the cloud is
distributed: applications can be partly executed on threntlipartly in the cloud.

The application of cloud-based architectures for ITS is destrated in P]. In
order to provide an acceptable level of service, a clouegdhdES consists of two
main components: aapplication componentvhich provides dynamic services and
runs all the cloud applications; andlaital (simulated) traffic networkomponent,
which performs constant information collection and prea&s in order to provide



4 Jelena Fiosina, Maksims Fiosins aridig)P. Miller

in-time data. A cloud-based ITS adapts its decisions bygugiilable information
and by interacting with human as well as automated traffitiqggpants.

We apply our experience in implementing data processingingi[?], [?], and
decision-making method®], [?] for existing transportation problems. Next, we
discuss the key aspects of methods in future-generation SMM

3 Traffic Cloud Scenarios and Related Data Analysis and
Optimization Problems

We propose three cloud-based ITS application scenario&:operative inter-
section control which optimizes vehicle flows in traffic networks by reguiat
the intersection controllers. 2 personal travel companion which provides dy-
namic planning and monitoring of multimodal journeys tovélers, surface vehicle
drivers, and transports operators./)ogistics services companionwhich pro-
vides benefits to clients and stakeholders involved inctdfi by, or dependent on
the transportation of goods in urban environments. We dsirate the most impor-
tant stages of data processing and optimization in ordegtiwelrequirements for a
general architecture described in the next section.

3.1 Virtualized cooperative intersection control

This scenario uses adaptive, semi-distributed traffic mament strategies hosted
in the cloud for the regulation of intersection controlleaad creates ad-hoc net-
works in the cloud between clusters of vehicles and the ¢raffitnagement infras-
tructure. It recommends the optimal speed to drivers to Keefraffic flow smooth,

and assists adapting traffic controllers (e.g. traffic Bglsigns) based on the real-
time traffic situation. This service uses real-time traffiormation and a route-data
collection service to formulate strategies for the optetian of network operation.

Stage 1:Processing the following data streams (historical and-tigad): 1)
floating-car data (speeds, positions, etc.); 2) sensor foata the infrastructure
(loops, traffic lights, etc.); 3) information about routeslaactual locations of col-
lective transport (public transport, taxi, shared cars,)et) data from distribution
vehicles (logistic transport); 5) weather conditions; 6é¢idents, car breakdowns,
road-works; 7) organizational activities (sport events)ferences, etc.)

Stage 2:Creating ad-hoc networks, which are virtual abstract neke/éor solv-
ing specific problems (intersection and regional traffic sledgreen wave models,
public transport priority, jam avoidance, etc.). Estimgtnetwork parameters (traf-
fic flux, density, and speed, travel time estimation, etc.).

Stage 3:Developing static strategies of intersection control andperation
based on historical information, previous experience,dgatd models from the pre-
vious stage (traffic light signal plan optimization; sigpédns for expected events
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(such as increase of flows, changed weather conditionsniaeg@gnal activities);
cooperation plans of clusters of vehicles, etc.).

Stage 4:Combining dynamic real-time information with static ségites in order
to receive up-to-date controlling decisions (correctidisignal plans according to
current conditions, cooperation of signal controllers ésalve problems such as
jams, accidents, etc.)

3.2 Dynamic multi-modal journey planning

The purpose of this use case is to help travellers plan angdizamulti-modal, door-
to-door journey in real-time. It provides improved (i.euicker, more comfortable,
cheaper, and greener) mobility to daily commuters and dthgellers by identify-
ing optimal transportation means and a strong real-timentation. This planning
proposal for a multi-modal journey takes into account theent means of trans-
portation, the traveller's context and preferences, cffit rules, and the current
requirements and constraints. The journey plan needs &nodn overall indication
of the trip duration as well as accommodate early resemwatiogesources (train or
plane ticket).

Stage 1:Processing of the following data streams (historical andadyic) in
addition to the previous application: 1) floating passertgea; 2) travellers’ pref-
erences; 3) timetables and availability of collective sport (tickets, shared cars
availability, etc.); 4) changes in time-tables.

Stage 2:Creation of ad-hoc networks (transit stations, public gpant coor-
dination, passenger choice of transport, etc.) and estmaff network parame-
ters (travel time for different transport modes dependingarious factors, waiting
times, passenger arrival at stops, price models, etc.).

Stage 3:Multi-modal route pre-planning based on historical datd estimated
network parameters for expected conditions (pre-planfongopular routes, pre-
planning for pre-booked routes, pre-planning for expeetaghts) as well as optimal
time-table calculation for public transport based on theeexed conditions.

Stage 4:Dynamic update of pre-planned routes for the actual mudtdah jour-
ney (actual travel-time estimation, re-planning in theeoafsdelays in previous trips
in the multi-modal chain, re-planning for additional trepessibilities, or cancelling
a part of the multi-modal journey), as well as dynamic upadtpublic transport
time-tables (on-demand changes, co-ordination of diffetransport means).

3.3 ltinerary booking and real-time optimized route navigation

This use case helps a logistics provider (1) guarantee despecially on-time)
deliveries at a low cost based on up-to-date information(@heahaximize the effi-
ciency of each vehicle and the fleet. It is fundamental tonoige the movements
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of the logistics vehicles, to help them avoid traffic jams #alee the shortest routes
when possible.

Stage 1:Processing of the following data streams (historical andadyic) in
addition to the first application: 1) order data (transptademand); 2) available
logistic vehicles (possible load, speed, etc.); 3) timewlif necessary) and actual
positions of the vehicles; 4) client data (drop-off preferes, actual location, etc.).

Stage 2:Creation of ad-hoc networks (delivery models, logisticvider-client
interaction models, etc.), and estimation of the netwonlaieters (travel times
for different route segments, delay probability, dropjafbcess time distribution,
probability of accidents, probability of problems with veles, etc.).

Stage 3:Pre-planning of the delivery process (preliminary goodritigtion by
vehicles, preliminary order of clients for each vehicleglppninary route for each
vehicle, preliminary time window for each client, etc.). tdahat the itineraries
of large logistic operators can be used to provide bettedigtiens of the traffic
situation using virtualized cooperative intersectioreiligence application as well
as by applying priority rules for logistic vehicles duringdking.

Stage 4:Dynamic update of pre-planned delivery routes dependingmto-
date information (re-planning of routes depending on eurteffic situation, re-
planning in the case of accidents or traffic jams, re-plagminthe case of vehicle
problems, estimation of actual delivery time, etc.). Caapien between logistic
vehicles (exchange or orders, adoption of other vehiclelers in the case of prob-
lems, etc.). Dynamic agreement with clients (agreementitathmp-off place de-
pending on current position of the vehicle and client, agre about change of
drop-off time, reaction to the new/changed customer regquete.).

4 Reference Architecture for Traffic Cloud Data Mining and
Strategy Optimization

The applications mentioned in the previous section areidétasive. Services pro-
vided through the cloud require large amounts of data to begssed, aggregated,
and analysed. Then, the processed data is used for cahgutadtimal strategies for
traffic participants. Now we generalize the stages of datagusing and network
optimization from the scenarios discussed in the previaetian. We propose a
reference architecture for traffic cloud data mining andmoization of strategies
(TCDMOS), which is based or?], but we focus on data processing and decisions.
TCDMOS is illustrated in Fig. 1. It includes the followinggstes of data processing
and network optimization:

Stage 1:Mining data from the loT and its pre-processingl the participants
of the cloud-based system have virtual representationgtage doT components
(agents). These virtual agents are associated with datatlfnreal-time) and act
as data sources for the cloud-based system. The cloud si@tates and collects
the necessary data from different agents, and provided$ dateamining operations
(changes and outliers are detected, preliminary aggmyatid dimensionality re-
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Fig. 1 TCDMOS Architecture: Traffic Cloud Data Mining and Optimiiat of Strategies

duction are performed). The collected data are stored asricl information in
the cloud and are used later as input data for ad-hoc netwodels (Stage 2).
Stream-based methods of semi-decentralized changegmigndtion, outlier detec-
tion, clustering and classification, and factor analysisuocegularly in this stage.

Stage 2:Ad-hoc network models'he application-specific digital networks of
virtual traffic participants (e.g. regional, social) areated, and the corresponding
data models are used in order to estimate the important aieaistics and param-
eters of these networks using the information collectedtay& 1 and for strategy
optimization at Stage 3. The future behaviour of traffic jegyaints is forecasted as
well. Semi-decentralized, flows forecasting (possiblyhviitcomplete information)
methods such as (multiple-response) regression modeygsizan networks, time
series, simulation, are also applied at this stage. Manylefimed data models can
run concurrently in the digital network. The correspondilaga storages are located
in the cloud and are semi-centralized, so the methods sltakidcosts of different
pieces of information into account.

Stage 3:Static decisions and initial strategy optimizati&ioud applications use
pre-calculated results of the ad-hoc network models froag&®e and the available
historical information (including private informationpaut the traffic network to
perform their pre-planning tasks. Initial optimizationtbge strategies is resource-
expensive, and can be partially pre-calculated in ad-hbwark models and then
instantiated according to the application’s goals andguegfces. These models are
also checked in the digital traffic network. This stage cajuie aggregation of
different data models and existing strategies. Methodsebflsarning stochastic
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(multi-criteria) optimization such as neural networksgid®n trees, Markov deci-
sion processes, choice models, graph optimization algostare used.

Stage 4:Dynamic decisions and strategy updaiéne pre-planned tasks from
Stage 3 are executed, and updates are made according tondmaidyreal-time sit-
uation extracted from the virtual agents. The aggregatfathe pre-planned data
and strategies with the dynamic ones is the most importaiil@m at this stage.
An additional difficulty here is the requirement of fast réiate execution. (Auto-
matic) cooperation between users in their decisions isilpessherefore, stream-
based methods of data models and strategy updates suchfaso@inent learning,
Bayesian networks, dynamic decision trees, stream reégressd distributed con-
straint satisfaction/optimization can be applied.

5 Future Work and Conclusions

The main contribution of this study is a reference architecfor traffic cloud data
mining and optimization of strategies (TCDMOS) and reladath processing and
network optimization methods. We envisage this as an irapbgtep towards mak-
ing FI and cloud technologies usable for next-generationMSV TCDMOS re-
quirements were elicited from traffic scenarios, which fleeeds and impact of
CMMS for business and society, and the corresponding pmublinat should be
solved for effective cloud system operation were illugtdat-uture work will be de-
voted to elaborating the architecture, developing novgb@thms, and integrating
and validating them in state-of-the-art cloud computiragrfeworks.
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