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Abstract Future Internet (FI) technologies can considerably enhance the effec-
tiveness and user friendliness of present cooperative mobility management sys-
tems (CMMS), providing considerable economical and socialimpact. Real-world
application scenarios are needed to derive requirements for software architecture
and smart functionalities of future-generation CMMS in thecontext of the Inter-
net of Things (IoT) and cloud technologies. The deployment of IoT technologies
can provide future CMMS with huge volumes of real-time data that need to be ag-
gregated, communicated, analysed, and interpreted. In this study, we contend that
future service- and cloud-based CMMS can largely benefit from sophisticated data
processing capabilities. Therefore, new distributed datamining and optimization
techniques need to be developed and applied to support decision-making capabil-
ities of future CMMS. This study presents real-world scenarios of future CMMS
applications, and demonstrates the need for next-generation data analysis and opti-
mization strategies based on FI capabilities.
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1 Introduction

Increasing traffic and frequent congestion on today’s roadsrequire innovative solu-
tions for infrastructure and traffic management. As the components of traffic systems
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become more autonomous and smarter (e.g. vehicles and infrastructure components
are now equipped with communication capabilities), there is an increasing need for
cooperation among intelligent transportation systems (ITS) for traffic management
and environmental monitoring in order to improve traffic management strategies.
Further, there is growing interest and increasing volume ofinvestments to coop-
erative mobility management systems (CMMS). In these new-generation business
management systems, the management of transportation networks is closely inte-
grated with the business strategies and operational modelsof transport companies
and individual customers, providing a considerable impactfor companies in terms
of business planning, service quality and adaption to customer needs as well as for
individual users in terms of time and money saving, adaptivetravel planning and
support of social mutually beneficial behavior. Innovativecloud services can be cre-
ated using the cloud capabilities of future Internet (FI) toaccess smart objects via
the Internet of Things (IoT). This development can enable wide access to necessary
information, because all of this data will be available in-the-cloud.

However, implementing a traffic cloud is far from easy. From an end user’s point
of view, the complexity of data and algorithms is hidden in the cloud. Users(ranging
from traffic authorities to car drivers and automated components) expect to work
with relatively simple applications on the Internet via mobile or embedded devices.
These devices are fully connected and can (theoretically) use all the information
available from all other users and system elements. This creates great opportuni-
ties for coordinated near-optimal management of the infrastructure (e.g. in terms
of load balancing). However, there is a huge amount of available data with a short
update rate. This creates a need to employ innovative data mining and correspond-
ing decision-making algorithms (under the hood of the traffic cloud) to support
CMMS applications in finding, collecting, aggregating, processing, and analysing
information necessary for optimal decision-making user behavior strategies. Note
that information here is virtually centralized by cloud technologies. However it is
distributed, and (very often) created and managed in a decentralized fashion on the
physical (fabric) layer. Thus, data mining and decision-making methods are required
to find an optimal balance between decentralized information processing/decisions
and costs of data transfer/decision coordination.

The contribution of this study is fourfold: First, we analyse related cloud-based
architectures and CMMS scenarios. Second, we consider architectures for imple-
menting the corresponding data analysis and optimization of mobility operations.
Third, we discuss the employment of appropriate mathematical methods for three
use-cases; fourth, we point out and discuss work directionsand opportunities in the
area of cloud-enabled CMMS.

The remainder of this paper is organized as follows. Section2 reviews related
work in the area of FI and cloud architecture for mobility application. In Section
3, we propose and analyse three application scenarios of CMMS and consider data
analysis and optimization of participants’ behaviour strategies in traffic systems. In
Section 4, we present a cloud-based architecture for mobility networks based on the
previously presented scenarios. Section 5 concludes and discusses future research
opportunities.
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2 Related Work

A strong worldwide interest in opportunities in transportation and mobility field has
spurred the need for further analysing these FI opportunities. In Europe, FI and IoT
research has been a priority direction for the 7th European Framework Programme
(FP7) and will continue to do so for the upcoming Horizon 2020Programme (e.g.
the objectives ’A reliable, smart and secure IoT for Smart Cities’ or ’Integrated per-
sonal mobility for smart cities’ in FP7 or ’Substantial improvements in the mobility
of people and freight’ in Horizon 2020). These research questions are motivated
and co-funded by private companies and municipalities fromthe areas of trans-
port, logistics, communication and traffic management (e.g. the FP7 project Instant
Mobility [ ?]). These stakeholders understand the possible enhancements to existing
systems that new technologies can provide to CMMS. Researchin this area is still
largely at the stage of formulation of scenarios and coordination protocols. The first
cloud-based traffic network architectures have been proposed in [?], which employ
ambient intelligence (AmI) [?] or IoT components [?], [?].

An architecture of AmI-enabled CMMS is proposed in [?]. It supports virtual
control strategists and management policy makers in decision-making and is mod-
elled using the metaphor of autonomous agents. AmI is definedas the ability of
the environment to sense, adapt, and respond to actions of persons and objects that
inhabit its vicinity. Moreover, the multiagent system (MAS) paradigm makes AmI
environments act autonomously and socially, featuring collaboration, cooperation,
and even competitive abilities.

Cloud computing systems are oriented towards a high level ofinteraction with
their users, real-time execution of a large number of applications, and dynamic pro-
visioning of on-demand services. In this study, we considerthe layered architecture
of cloud-based computing systems presented in [?]. It supports a class of specialized
distributed systems that is characterized by a high level ofscalability, service encap-
sulation, dynamic configuration, and delivery on demand. The architecture includes
the following layers:

The fabric layer includes all computing, storage, data, and network resources
available in the cloud. The resources are accessible through the resource services,
are used for cloud computations, management, and as testbeds. Theunified source
layer provides infrastructure-as-a-service by defining unified access to the raw com-
putational resources of the fabric layer using a virtual machine. Theplatform layer
provides platform-as-a-service, including a collection of specialized tools, middle-
ware, and services on the top of unified resources to create a deployment platform
(e.g. scheduling create service and artificial testbeds). The application layer con-
tains all applications that are run in the cloud. Application execution in the cloud is
distributed: applications can be partly executed on the client, partly in the cloud.

The application of cloud-based architectures for ITS is demonstrated in [?]. In
order to provide an acceptable level of service, a cloud-based ITS consists of two
main components: anapplication component, which provides dynamic services and
runs all the cloud applications; and adigital (simulated) traffic networkcomponent,
which performs constant information collection and processing in order to provide
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in-time data. A cloud-based ITS adapts its decisions by using available information
and by interacting with human as well as automated traffic participants.

We apply our experience in implementing data processing, mining [?], [?], and
decision-making methods [?], [?] for existing transportation problems. Next, we
discuss the key aspects of methods in future-generation CMMS.

3 Traffic Cloud Scenarios and Related Data Analysis and
Optimization Problems

We propose three cloud-based ITS application scenarios: 1)A cooperative inter-
section control, which optimizes vehicle flows in traffic networks by regulating
the intersection controllers. 2)A personal travel companion, which provides dy-
namic planning and monitoring of multimodal journeys to travelers, surface vehicle
drivers, and transports operators. 3)A logistics services companion, which pro-
vides benefits to clients and stakeholders involved in, affected by, or dependent on
the transportation of goods in urban environments. We demonstrate the most impor-
tant stages of data processing and optimization in order to derive requirements for a
general architecture described in the next section.

3.1 Virtualized cooperative intersection control

This scenario uses adaptive, semi-distributed traffic management strategies hosted
in the cloud for the regulation of intersection controllers, and creates ad-hoc net-
works in the cloud between clusters of vehicles and the traffic management infras-
tructure. It recommends the optimal speed to drivers to keepthe traffic flow smooth,
and assists adapting traffic controllers (e.g. traffic lights, signs) based on the real-
time traffic situation. This service uses real-time traffic information and a route-data
collection service to formulate strategies for the optimization of network operation.

Stage 1: Processing the following data streams (historical and real-time): 1)
floating-car data (speeds, positions, etc.); 2) sensor datafrom the infrastructure
(loops, traffic lights, etc.); 3) information about routes and actual locations of col-
lective transport (public transport, taxi, shared cars, etc.) 4) data from distribution
vehicles (logistic transport); 5) weather conditions; 6) accidents, car breakdowns,
road-works; 7) organizational activities (sport events, conferences, etc.)

Stage 2:Creating ad-hoc networks, which are virtual abstract networks for solv-
ing specific problems (intersection and regional traffic models, green wave models,
public transport priority, jam avoidance, etc.). Estimating network parameters (traf-
fic flux, density, and speed, travel time estimation, etc.).

Stage 3: Developing static strategies of intersection control and cooperation
based on historical information, previous experience, anddata models from the pre-
vious stage (traffic light signal plan optimization; signalplans for expected events
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(such as increase of flows, changed weather conditions, organizational activities);
cooperation plans of clusters of vehicles, etc.).

Stage 4:Combining dynamic real-time information with static strategies in order
to receive up-to-date controlling decisions (correction of signal plans according to
current conditions, cooperation of signal controllers to resolve problems such as
jams, accidents, etc.)

3.2 Dynamic multi-modal journey planning

The purpose of this use case is to help travellers plan and adjust a multi-modal, door-
to-door journey in real-time. It provides improved (i.e., quicker, more comfortable,
cheaper, and greener) mobility to daily commuters and othertravellers by identify-
ing optimal transportation means and a strong real-time orientation. This planning
proposal for a multi-modal journey takes into account the current means of trans-
portation, the traveller’s context and preferences, city traffic rules, and the current
requirements and constraints. The journey plan needs to obtain an overall indication
of the trip duration as well as accommodate early reservation of resources (train or
plane ticket).

Stage 1:Processing of the following data streams (historical and dynamic) in
addition to the previous application: 1) floating passengerdata; 2) travellers’ pref-
erences; 3) timetables and availability of collective transport (tickets, shared cars
availability, etc.); 4) changes in time-tables.

Stage 2:Creation of ad-hoc networks (transit stations, public transport coor-
dination, passenger choice of transport, etc.) and estimation of network parame-
ters (travel time for different transport modes depending on various factors, waiting
times, passenger arrival at stops, price models, etc.).

Stage 3:Multi-modal route pre-planning based on historical data and estimated
network parameters for expected conditions (pre-planningfor popular routes, pre-
planning for pre-booked routes, pre-planning for expectedevents) as well as optimal
time-table calculation for public transport based on the expected conditions.

Stage 4:Dynamic update of pre-planned routes for the actual multi-modal jour-
ney (actual travel-time estimation, re-planning in the case of delays in previous trips
in the multi-modal chain, re-planning for additional travel possibilities, or cancelling
a part of the multi-modal journey), as well as dynamic updateof public transport
time-tables (on-demand changes, co-ordination of different transport means).

3.3 Itinerary booking and real-time optimized route navigation

This use case helps a logistics provider (1) guarantee quick(especially on-time)
deliveries at a low cost based on up-to-date information and(2) maximize the effi-
ciency of each vehicle and the fleet. It is fundamental to optimize the movements
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of the logistics vehicles, to help them avoid traffic jams andtake the shortest routes
when possible.

Stage 1:Processing of the following data streams (historical and dynamic) in
addition to the first application: 1) order data (transportation demand); 2) available
logistic vehicles (possible load, speed, etc.); 3) timetables (if necessary) and actual
positions of the vehicles; 4) client data (drop-off preferences, actual location, etc.).

Stage 2:Creation of ad-hoc networks (delivery models, logistic provider-client
interaction models, etc.), and estimation of the network parameters (travel times
for different route segments, delay probability, drop-offprocess time distribution,
probability of accidents, probability of problems with vehicles, etc.).

Stage 3:Pre-planning of the delivery process (preliminary good distribution by
vehicles, preliminary order of clients for each vehicle, preliminary route for each
vehicle, preliminary time window for each client, etc.). Note that the itineraries
of large logistic operators can be used to provide better predictions of the traffic
situation using virtualized cooperative intersection intelligence application as well
as by applying priority rules for logistic vehicles during booking.

Stage 4:Dynamic update of pre-planned delivery routes depending onup-to-
date information (re-planning of routes depending on current traffic situation, re-
planning in the case of accidents or traffic jams, re-planning in the case of vehicle
problems, estimation of actual delivery time, etc.). Cooperation between logistic
vehicles (exchange or orders, adoption of other vehicle’s orders in the case of prob-
lems, etc.). Dynamic agreement with clients (agreement about drop-off place de-
pending on current position of the vehicle and client, agreement about change of
drop-off time, reaction to the new/changed customer requests, etc.).

4 Reference Architecture for Traffic Cloud Data Mining and
Strategy Optimization

The applications mentioned in the previous section are data-intensive. Services pro-
vided through the cloud require large amounts of data to be processed, aggregated,
and analysed. Then, the processed data is used for calculating optimal strategies for
traffic participants. Now we generalize the stages of data processing and network
optimization from the scenarios discussed in the previous section. We propose a
reference architecture for traffic cloud data mining and optimization of strategies
(TCDMOS), which is based on [?], but we focus on data processing and decisions.
TCDMOS is illustrated in Fig. 1. It includes the following stages of data processing
and network optimization:

Stage 1:Mining data from the IoT and its pre-processing. All the participants
of the cloud-based system have virtual representations as active IoT components
(agents). These virtual agents are associated with data (mostly real-time) and act
as data sources for the cloud-based system. The cloud systemlocates and collects
the necessary data from different agents, and provides usual data mining operations
(changes and outliers are detected, preliminary aggregation and dimensionality re-
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Fig. 1 TCDMOS Architecture: Traffic Cloud Data Mining and Optimization of Strategies

duction are performed). The collected data are stored as historical information in
the cloud and are used later as input data for ad-hoc network models (Stage 2).
Stream-based methods of semi-decentralized change-pointdetection, outlier detec-
tion, clustering and classification, and factor analysis occur regularly in this stage.

Stage 2:Ad-hoc network models. The application-specific digital networks of
virtual traffic participants (e.g. regional, social) are created, and the corresponding
data models are used in order to estimate the important characteristics and param-
eters of these networks using the information collected in Stage 1 and for strategy
optimization at Stage 3. The future behaviour of traffic participants is forecasted as
well. Semi-decentralized, flows forecasting (possibly with incomplete information)
methods such as (multiple-response) regression models, Bayesian networks, time
series, simulation, are also applied at this stage. Many pre-defined data models can
run concurrently in the digital network. The correspondingdata storages are located
in the cloud and are semi-centralized, so the methods shouldtake costs of different
pieces of information into account.

Stage 3:Static decisions and initial strategy optimization. Cloud applications use
pre-calculated results of the ad-hoc network models from Stage 2 and the available
historical information (including private information) about the traffic network to
perform their pre-planning tasks. Initial optimization ofthe strategies is resource-
expensive, and can be partially pre-calculated in ad-hoc network models and then
instantiated according to the application’s goals and preferences. These models are
also checked in the digital traffic network. This stage can require aggregation of
different data models and existing strategies. Methods of self-learning stochastic
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(multi-criteria) optimization such as neural networks, decision trees, Markov deci-
sion processes, choice models, graph optimization algorithms are used.

Stage 4:Dynamic decisions and strategy update. The pre-planned tasks from
Stage 3 are executed, and updates are made according to the dynamic real-time sit-
uation extracted from the virtual agents. The aggregation of the pre-planned data
and strategies with the dynamic ones is the most important problem at this stage.
An additional difficulty here is the requirement of fast real-time execution. (Auto-
matic) cooperation between users in their decisions is possible; therefore, stream-
based methods of data models and strategy updates such as reinforcement learning,
Bayesian networks, dynamic decision trees, stream regression, and distributed con-
straint satisfaction/optimization can be applied.

5 Future Work and Conclusions

The main contribution of this study is a reference architecture for traffic cloud data
mining and optimization of strategies (TCDMOS) and relateddata processing and
network optimization methods. We envisage this as an important step towards mak-
ing FI and cloud technologies usable for next-generation CMMS. TCDMOS re-
quirements were elicited from traffic scenarios, which reflect needs and impact of
CMMS for business and society, and the corresponding problems that should be
solved for effective cloud system operation were illustrated. Future work will be de-
voted to elaborating the architecture, developing novel algorithms, and integrating
and validating them in state-of-the-art cloud computing frameworks.
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