
Decentralised Cooperative Agent-based
Clustering in Intelligent Traffic Clouds

Jelena Fiosina, Maksims Fiosins and Jörg P. Müller ∗

Clausthal University of Technology,
Institute of Informatics,

Julius-Albert Str. 4, D-38678, Clausthal-Zellerfeld, Germany
{Jelena.Fiosina,Maksims.Fiosins}@gmail.com, Joerg.Mueller@tu-clausthal.de

Abstract. Contemporary traffic management systems will become more
intelligent with advent of future Internet technologies. The systems are
expected to become more simple, effective and comfortable for users,
but this transformation will require the development of both new system
architectures as well as enhanced processing and mining algorithms for
large volumes of cloud data. In this study, we consider a conceptual ar-
chitecture of a cloud-based traffic management system that applied to a
multi-modal journey planning scenario. For this purpose, it is necessary
to process large amounts of travel-time information. Information is col-
lected by cloud service providers and processed for future route planning.
In this paper, we focus on the data clustering step in the data mining
process. The data collection and processing require an appropriate clus-
tering algorithm to aggregate similar data. In particular, we support a
process where a particular service provider can request additional infor-
mation from others to be used in the clustering function, requiring a
decentralised clustering algorithm. We present a cloud- based architec-
ture for this scenario, develop a decentralised cooperative kernel-density
based clustering algorithm, and evaluate the efficiency of the proposed
approach using real-world traffic data from Hanover, Germany.

Keywords: Cloud computing architecture, decentralised data process-
ing and mining, multi-agent systems, kernel density estimation, cluster-
ing

1 Introduction

Congested roads need to develop a new generation of Traffic Management Sys-
tems (TMS). These systems are very important for individual users, for example
as drivers and pedestrians, business logistic operators and city public transport
organizers. Such complex distributed systems can be well represented by multi-
agent systems (MAS), which are based on multiple interacting and cooperating
agents with intelligent behaviour.

∗The research leading to these results has received funding from the EU 7th Frame-
work Programme (FP7/2007-2013) under grant agreement No. PIEF-GA-2010-274881.

Future Internet capabilities such as cloud computing (CC) also influence
TMS. CC aims at providing elastic services, high performance and scalable data
storage to a large and ever increasing number of users [1]. CC systems provide
large-scale infrastructure for high-performance computing and are dynamically
adapted to user and application needs. Several common problems can be iden-
tified and several benefits obtained by the synergy between MAS and CC in an
agent-based cloud computing (ABCC) paradigm. CC is mainly focused on the
efficient use of computing infrastructure through reduced cost, service delivery,
data storage, scalable virtualization techniques, and energy efficiency. In con-
trast, MAS are focused on the intelligent aspects of agent behaviour and their
use in developing complex applications. In particular, CC can offer a very power-
ful, reliable, predictable and scalable computing infrastructure for the execution
of MASs by implementing complex, agent-based applications for modelling and
simulation. On the other hand, software agents can be used as basic components
for implementing intelligence in clouds, making them more adaptive, flexible,
and autonomic in resource management, service provisioning and large-scale ap-
plication executions [14].

One of the key aspects of agent intelligence in ABCC is the capability to pro-
cess and mine huge volumes of distributed data from various sources. Research
activities have an inherent need to develop effective distributed data process-
ing and mining algorithms for ABCC that take the needs and requirements of
concrete traffic scenarios into account.

In this paper we consider travel time data processing that is distributed
among cloud service providers. We focus on the problem of data clustering. Clus-
tering is a descriptive data mining task used to partition a data-set into groups
such that data objects in one group are similar to each other and are as different
as possible from those in other groups. In cloud systems, data-sets are distributed
among several providers, creating a need to develop distributed algorithms for
data clustering. We develop a semi-parametric algorithm for distributed data
clustering and consider some applications to ABCC-based intelligent TMS. We
implement a kernel density (KD) technique based on contemporary computa-
tional statistics. It is a popular technique that reduces the search for clusters
into a search for dense regions and allows finding arbitrary form clusters. This is
accomplished using a so-called probability density function from which the given
data set is assumed to have been generated [10].

The contribution of this study is the following: 1) a description of data pro-
cessing stages in a cloud-based TMS that is applicable to a multi-modal journey
planning scenario; 2) development of a novel decentralised cooperative agent-
based KD clustering algorithm; 3) application of the proposed algorithm for
the described scenario; 4) an experimental validation of the proposed clustering
algorithm using real-world traffic data.

The remainder of this paper is organized as follows. Section 2 discusses re-
lated work. Section 3 formulates the considered TMS scenarios and presents the
corresponding ABCC-based architecture. In Section 4, we present a KD clus-
tering method. Section 5 suggests a decentralised, cooperative, agent-based KD

clustering algorithm and corresponding efficiency metrics. Section 6 reports the
experimental results. The last section presents the conclusion and discusses the
future work opportunities.

2 Related Work and State of the Art

By adapting to user and application needs, CC technologies, such as Future
Internet and the Internet of Things (IoT), can enhance modern TMS and provide
large-scale infrastructures for high-performance computing that are ’elastic’ in
nature [14]. CC technology is a worldwide priority research direction, and some
authors (e.g., [12], [6]) have proposed work on next-generation TMS. Research
areas are motivated and co-funded by private companies and municipalities in the
areas of transport, logistics, communication and traffic management. Research
in this area is still largely at the stage of scenario formulation and coordination
protocols. One of the first cloud-based traffic network architecture, employing
IoT components, has been proposed in [12].

Complex distributed systems are often modelled by MAS [7], [2]. Coupling
CC with software agents opens new avenues for implementing intelligent cloud
services. The convergence of interests between MAS, which require reliable dis-
tributed infrastructures, and CC systems, which needs intelligent software with
dynamic, flexible, and autonomous behaviour, may result in new systems and
applications [14]. Agents in such systems have the potential to be more intel-
ligent and to possess special modules for intelligent data processing [10] and
decision-making [7].

However, implementing a traffic cloud is far from easy. From an end user’s
point of view, the complexity of data and algorithms is hidden in the cloud.
Users, ranging from traffic authorities to car drivers and automated components,
expect to work with relatively simple web applications via mobile or embedded
devices. These devices are permanently connected and can (theoretically) use all
the information available from other users and system elements. A huge amount
of available information must be found, collected, aggregated, processed and
analysed for optimal decision-making and behaviour strategies. Such information
is virtually centralized in cloud repositories, but should be managed physically
in a decentralised fashion [6].

One of the key milestones in a path to more intelligent and up-to-date TMS
is the continuous modification of existing methods and implementation of new
modern technologies derived from the communication and data analysis fields.
A decentralised regression forecasting model was considered in [5] and decision
making methods in [7]. In this study, we focus on decentralised data clustering
and the corresponding classification, which can be considered as a prerequisite
step to implementation of forecasting and decision-making models.

In traffic research, the most popular clustering and classification problems
are traffic state clustering [15] and participant behaviour clustering for group
formation [11]. In this paper, we concentrate on clustering travel-time informa-

tion, which is part of the traffic state, trying to discover homogeneous traffic
patterns that can be used with the common forecasting model.

KD clustering is a promising computational statistics tool that allows arbi-
trary shaped clusters to be discovered. Such non-parametric methods are well
suited for exploring clusters, because no generative model of data is assumed.
Instead, the probability density in the data space is directly estimated from data
instances. Fast clustering, which is based on KD, was described by Hinnenburg
and Gabriel [9]. The distributed (with a central authority) version of KD-based
clustering (KDEC scheme) was considered in [10]. Another decentralised graph-
oriented not KD clustering approach was presented in [13].

3 Cloud-based TMS architecture

We consider a future cloud-based TMS. The general architecture was proposed
in [12] and then extended in [6]. The cloud-based TMS supposes the permanent
connection of all participants and dynamically provides necessary services. The
participants’ applications that are run in the cloud are data-intensive, which
necessitates the processing of large volumes of information to satisfy the par-
ticipants’ requests. In [6] we motivate the following data processing stages in a
typical cloud-based TMS.

Stage 1: Mining data from the IoT and its pre-processing. All the partici-
pants of the cloud-based system have virtual representations as active IoT com-
ponents (agents). The cloud system locates and collects the necessary data from
different agents, and provides usual data mining operations (changes and out-
liers are detected, preliminary aggregation and dimensionality reduction are per-
formed). The collected data are stored as historical information in the cloud and
are used later as input data for ad-hoc network models (Stage 2).

Stage 2: Ad-hoc network models. The application-specific networks of virtual
traffic participants are created, and the corresponding data models are used in
order to estimate the important characteristics and parameters of these networks
using the information collected in Stage 1 and for strategy optimization at Stage
3.

Stage 3: Static decisions and initial strategy optimization. Cloud applica-
tions use pre-calculated results of the ad-hoc network models from Stage 2
and the available historical information (including private information) about
the traffic network to perform their pre-planning tasks. These models are also
checked in the digital traffic network.

Stage 4: Dynamic decisions and strategy update. The pre-planned tasks from
Stage 3 are executed, and updates are made according to the dynamic real-time
situation extracted from the virtual agents. The aggregation of the pre-planned
data and strategies with the dynamic ones is the most important problem at
this stage.

We consider a dynamic multi-modal journey planning scenario [6]. In this
scenario, the TMS helps travellers to plan and adjust a multi-modal, door-to-
door journey in real-time. To provide recommendations to travellers, the cloud-

Applications
Dynamic data

Artificial network

Historical data

Sevice provider 1

Sevice provider 2

Sevice provider 3

ZOOM: Sevice provider 1

Coordination

Fig. 1. System architecture

based TMS collects travel-time data in Stage 1 and organizes a historical travel
information repository. In Stage 2 the travel times are continuously estimated for
the travel maps. Stage 3 supposes construction of pre-defined routes for popular
origin-destination pairs on the maps. In Stage 4 the actual information is taken
into account and routes are updated correspondingly.

Note that there is no single ’central’ cloud for this purpose. Instead, many
providers may offer similar multi-modal journey planning services. They each
collect information from subscribed travellers, and then create their own inde-
pendent repositories, ad-hoc networks, and travel recommendations.

The providers are motivated by self-interest; their main goal is to maximize
profit. To achieve this goal, they must balance two conflicting aspects of data
processing. On the one hand, the providers are interested in maintaining a unique
repository that provides clients with better services than those offered by com-
petitors. On the other hand, the service providers are also interested in selling
traveller information for profit (both to clients and to other providers).

After the creation of a (physical or virtual) data repository at Stage 1, each
provider should process data in Stage 2 to prepare information for decisions in
Stage 3. An important problem at Stage 2 is that of travel-time estimation for
travel segments in the network. Different models, for example regression models,
can be used for estimation [5]. However, to produce quality regression results, a
single regression model should be used for each cluster, with potentially different
models used across different clusters. Clustering of collected data is therefore one
of the first tasks performed in Stage 2. In the next Section we describe a KD

technique of contemporary computational statistics, that allows finding clusters
of arbitrary form [10], [9].

4 Kernel Density (KD) Clustering

Now let us formulate the clustering problem and describe the KD clustering
algorithm. Let X = {x1,x2, . . . ,xN}, xi ∈ Rd be a dataset to be clustered into
k non-overlapping subsets S1, S2, . . . , Sk.

Non-parametric clustering methods are well suited for exploring clusters of
arbitrary form without building a generative model of the data. KD clustering
consists of a two-step procedure: estimation and optimisation. During the esti-
mation step, the probability density of the data space is directly estimated from
data instances. During the optimisation step, a search is performed for densely
populated regions in the estimated probability density function.

Let us formalize the estimation step. The density function is estimated by
defining the density at any data object as being proportional to a weighted sum
of all objects in the data-set, where the weights are defined by an appropriately
chosen kernel function [10].

A KD estimator is

Ψ̂ [X](x) =
1

N

∑

xi∈X

|H|−1K
(

H−1 ‖x− xi‖
)

=
1

N

∑

xi∈X

KH (‖x− xi‖) , (1)

where ‖x− xi‖ is a vector of coordinate distances between xi and x, H is a
bandwidth matrix, K(x) is a kernel function, KH (•) = |H|−1K

(

H−1•
)

[8].
K(x) is a real-valued, non-negative function on Rd and has finite integral

over Rd. We use the multivariate Gaussian function in our study: K(x) =
(2π)−d/2exp

(

− 1
2x

Tx
)

. The bandwidth matrix H is a d × d positive-definite
matrix that controls the influence of data objects and smoothness of the esti-
mate. If no information is available with regard to correlation between factors,
a diagonal matrix H = diag(h1, . . . , hd) can be used.

Let us now formalize the optimisation step. This step detects maximum of
KD and groups all of the data objects in their neighbourhood into corresponding
clusters. We use a hill climbing method for KD maxima estimation with Gaus-
sian kernels (DENCLUE2) [9] and modify the technique for the multivariate
case. This method converges towards a local maximum and adjusts the step size
automatically at no additional costs.

Each KD maximum can be considered as the centre of a point cluster. With
centre-defined clusters, every local maximum of Ψ̂(·) corresponds to a cluster
that includes all data objects that can be connected to the maximum by a
continuous, uphill path in the function of Ψ̂(·). Such centre-defined clusters allows
for arbitrary-shaped clusters to be detected, including non-linear clusters. An
arbitrary-shape cluster is the union of centre-defined clusters that have maximum
that can be connected by a continuous, uphill path.

The goal of the hill climbing procedure is to maximize the KD Ψ̂ [X](x). By
setting the gradient∇Ψ̂ [X](x) of KD to zero and solving the equation∇Ψ̂ [X](x) =

0 for x, we get:

x(l+1) =

∑

xi∈X
KH

(
∥

∥x(l) − xi

∥

∥

)

xi
∑

xi∈X
KH

(∥

∥x(l) − xi

∥

∥

) . (2)

The formula (2) can be interpreted as a normalized and weighted average
of the data points. The weights for each data point depend on the influence of
the corresponding kernels on x(l). Hill climbing is initiated at each data point

xi ∈ X and is iterated until the density does not change, i.e. [Ψ̂ [X](x
(l)
i) −

Ψ̂ [X](x
(l−1)
i)]/Ψ̂ [X](x

(l)
i) ≤ ǫ, where ǫ is a small constant. The end point of the hill

climbing algorithm is denoted by x∗

i = x
(l)
i , corresponding to a local maximum

of KD.
Now we should determine a cluster for xi. Let Xc = {xc

1,x
c
2, . . .} be an

ordered set of already identified cluster centres (initially, we suppose Xc = ∅).
First we find an index of the nearest cluster centre from x∗

i in the set Xc:

nc(x∗

i) = argmin
j:xc

j
∈Xc

∥

∥xc
j − x∗

i

∥

∥ .

If the nearest cluster centre is close to x∗

i , then the point xi is included in
this cluster; otherwise, the point is used as a cluster centre to form a new cluster

Λ(xi)←

nc(x∗

i) if

∥

∥

∥
x
c
nc(x∗

i
)−x

∗

i

∥

∥

∥

x
∗

i

≤ δ,

|Xc|+ 1 otherwise.

where δ is a small constant and Λ(x) is a class labeling function. In the second
case, we also create a new cluster centre: Xc ← Xc ∪ {x∗

i }.

5 Decentralised KD-based clustering

In this section, we describe a cooperative method for sharing the clustering
experience among agents in a network. While working with streaming data, one
should take into account two main facts: (1) the nodes should coordinate their
clustering experience over some previous sampling period, and (2) they must
also adapt quickly to the changes in the streaming data without waiting for the
next coordination action.

Let us first discuss the cooperation technique. Let A = {Aj | 1 ≤ j ≤ p}
be a group of p agents. Each agent Aj ∈ A has a local dataset Dj = {xj

t | t =
1. . . . , N j}, xj

t ∈ Rd. To underscore the dependence of the KD function (1) from

the local dataset of Aj , we denote the KD function by Ψ̂ [Dj](x).
Consider a case when some agent Ai is unable to cluster a data point xi

t

in some future time moment t because it does not have sufficient data nearby.
By ’unable to cluster’, we mean that this data point forms a new independent
cluster after the optimisation step is performed. In this case, the agent Ai sends
a request to other neighbour agents by sending the data point xi

t to them. Each
agent Aj that receives the request tries to classify the point xi

t using its own

KD function Ψ̂ [Dj](xi
t) and performs an optimisation step to identify a cluster

for this point. If the optimisation step is successful, meaning that this point
belongs to an existing cluster, the agent replies to Ai with information relevant
to the neighbourhood of the requested point (parameters, artificial data points,
random data points, etc.). Let us also define Gi ⊂ A, a group of agents that are
able to reply to Ai with clustering information.

Our model uses a two-phase protocol for performing communication between
agents. First, since Ai is unable to classify the data point xi

t, the informa-
tion is sent to other agents. In response to the help-request, the neighbours
Aj send parameters from their estimated KD functions. Since the KD function
is non-parametric and estimated directly from observations, we approximate the
function with a mixture of multi-dimensional Gaussian distributions. Agent Aj

identifies cluster associated with point xi
t and performs the approximation of

clusters with a mixture of normal distributions. Next, Aj transmits the cluster
parameters (weight, mean and covariance matrix). The agent Ai adds this infor-
mation to its KD and updates its clusters. Since parameter transmission requires
less data, this approach requires less transmission, however, the approximation
reduces the cluster shapes to a union of ellipsoids.

Let us consider an approximation step that approximates KD functions with
a mixture of multivariate normal distributions. This step can be achieved with
the expectation maximisation (EM) algorithm proposed by Dempster [4]. The
approach is widely used for calculation of the maximum likelihood estimate of
mixture models.

In a mixture model, the probability density function is

f(x;Θ) =
B
∑

b=1

πbfb(x;Θb), (3)

where πb are positive mixing weights that sum to one, fb are component density
functions parameterized by Θb, and Θ = {πb, Θb} are the model parameters.
Each observation is assumed to be from one of the B components. A common
choice for component density is a multivariate normal distribution with param-
eters Θb = (µb,Σb), where µb is a mean and Σb is a covariance matrix. Given a
set of independent observations X = {x1, . . . ,xv} in xj ∈ Rd, the objective is
to fit such a model to the data.

In the EM procedure, the expected likelihood of a given data-set is iteratively
maximized. Let zi ∈ {0, 1}B be the membership indicator variable such that
zib = 1 if xi is generated by fb(·) and 0 otherwise.

The E step simplifies to computing the conditional probabilities

〈

zib
〉

= P
{

zib = 1|xi;Θold
}

=
πbfb(x

i;Θold)
∑

l πlfl(xi;Θold)
. (4)

In the M step, we have an update rule in closed form:

π̂b =
1

v

∑

i

〈

zib
〉

, µ̂b =

∑

i

〈

zib
〉

xi

∑

i

〈

zib
〉 , (5)

Σ̂b =

∑

i

〈

zib
〉

(xi − µ̂b)(x
i − µ̂b)

T

∑

i

〈

zib
〉 . (6)

The algorithm alternates between the E and the M steps until convergence
is achieved.

We assume that each helping-agent Aj ∈ Gi receives data point xi
t and tries

to classify it. If it is successful, Aj determines that xi
t belongs to a specific cluster

and executes the EM-algorithm with this cluster. This algorithm approximates
the cluster using a mixture of Bj multidimensional normal distributions with
parameters Θj = {µj , Σj , πj}, where µj = (µj

1, . . . , µ
j
Bj), Σ

j = (Σj
1, . . . , Σ

j
Bj)

and πj = (πj
1, . . . , π

j
Bj), which are then returned to Ai.

After receiving all answers, the agent Ai has a vector of the parameters {Θj}.
The answers {Θj} can be interpreted by the agent Ai as data points µj with the
only difference being that the additional weights πj and bandwidths from Σj

should now be taken into account. Denote D̂i as a dataset of the agent Ai that
includes the received answers. Density estimates (1) of each agent are additive,

i.e. the aggregated density estimate Ψ̂ [D̂i](x) can be decomposed into a sum of
local density estimates and answers:

Ψ̂ [D̂i](x) = wiΨ̂
[Di](x) +

1− wi
∑

Aj
∈Gi

b∈Bj

πj
b ·

∑

Aj∈Gi

Bj

∑

Aj
∈Gi

b∈Bj

πj
bKΣj

b

(‖x− µj
b‖),

(7)

where wi is the weight assigned to own observations of the agent.
To measure the clustering similarity [3] among the agents Ai ∈ A we use

the following representation of a class labeling by a matrix C with components:

Ci,j =

{

1 if xi and xj belong to the same cluster and i 6= j,
0 otherwise.

Let two labelings have matrix representations C(1) and C(2), respectively.
We define a dot product that computes the number of pairs clustered together
〈

C(1), C(2)
〉

=
∑

i

∑

j C
(1)
i,j C

(2)
i,j . The Jaccard’s similarity measure can be ex-

pressed as

J(C(1), C(2)) =

〈

C(1), C(2)
〉

〈

C(1), C(1)
〉

+
〈

C(2), C(2)
〉

−
〈

C(1), C(2)
〉 . (8)

6 Experimental simulation results and case studies

We simulated a traffic network in the southern part of Hanover (Germany). The
network contained three parallel and five perpendicular streets, creating fifteen
intersections with a flow of approximately 5000 vehicles per hour.

The service providers solved a travel time clustering problem using the factors
listed in Table 1. They received information about the centrally estimated system

variables (such as average speed, number of stops, congestion level, etc.) for
this city district from TMS, combined it with their historical information, and
made adjustments according to the information of other participants.They used
the autonomous KD clustering (Section 4) and implemented the decentralised
cooperative clustering algorithm (Section 5).

Table 1. System factors influencing the travel time

Variable Description

Y travel time (min);
X1 length of the route (km);
X2 average speed in the system (km/h);
X3 average number of stops in the system (units/min);
X4 congestion level of the flow (veh/h);
X5 number of traffic lights in the route (units);
X6 number of left turns in the route (units).

Note that the clustering of the factors X1−X6 is performed together with the
dependent variable Y . This clustering step can be considered as a pre-processing
of initial data for the future forecasting with regression models. Different travel
time Y forecasting models were obtained inside different clusters, that allows
better fit of the models and better prediction considered in [5].

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Length of the route

Tr
av

el
 ti

m
e

Fig. 2. A X1 − Y projection of 200 observations

We simulated 10 agents with initial experience varied in range from 10 to 200
observations. Most simulation experiments ran for 200 time units. We assumed
that all observations were homogeneous and the agents tried to estimate the
same clusters. We normalized the initial data before the simulation execution.

To provide a visual overview of data, we presented the projection of 200
observations to the X1 − Y plane with the corresponding six clusters (Fig. 2).
The visual intersection of the clusters in this projection is due to the difference
of the point values in other dimensions.

For more accurate clustering, the agents used the presented decentralised
cooperative KD clustering algorithm. Cooperation among the agents allowed
improving clustering quality.

Let us illustrate one data synchronization step presented at Fig. 3. The re-
questing agent asks for help for point A (top left). The helping agent clustered
the point using its own data, detected the corresponding cluster (bottom left),
approximated it with the mixture of three normal distributions (shown as ellipses
for two dimensional case with centres in B, C, D) and sent the corresponding
parameters to the helping agent (bottom right). The helping agent added the
obtained parameters as data points to its data and made new clustering (top
right). This allowed to improve clustering similarity of these two agents from
0.011 to 0.037 as well as clustering similarity of the requesting agent with an
’ideal’ clustering from 0.004 to 0.006.

A system dynamics for a different number of transmitted points is shown
at Fig. 4. Clustering similarity (right) increased faster for a bigger number of
the estimated and transmitted components of normal distributions Bj for cluster
approximations, but the number of communication events (left) decreased faster.
Note, however, that one communication event was more expensive for a bigger
number of transmitted points, but supplied more information.

Quality of the agent models was also checked by a cross-validation technique
(Fig. 5) at the beginning (left) and at the end (right) of the simulation. These
histograms shown a probability distribution of a similarity, which peak moved
to bigger value after the coordination procedure.

7 Future Work and Conclusions

We developed the decentralised coordinated KD clustering approach for agent-
based cloud computing architecture of intelligent transport system. The data
coordination scheme is based on the transmission of parameters of multidimen-
sional normal distribution, which approximate the cluster to which the requested
point belongs. An experimental validation of the developed algorithm was also
performed. Our future work is devoted to the development of new coordination
schemes in proposed decentralised clustering approach.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Length of the route

Tr
av

el
 ti

m
e

A

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Length of the route

Tr
av

el
 ti

m
e

BCDA

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Length of the route

Tr
av

el
 ti

m
e

A

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Length of the route

Tr
av

el
 ti

m
e

BCDA

Fig. 3. A communication step between the requesting (top) and helping (bottom)
agents.

0 50 100 150 200

1
2

3
4

5

Simulation time

N
um

be
r

of
 c

om
m

un
ic

at
io

ns

B=10
B=5
B=2

0 50 100 150 200

0.
05

0.
10

0.
15

0.
20

Simulation time
C

lu
st

er
in

g
si

m
ila

rit
y

B=10
B=5
B=2

Fig. 4. A number of communication events (left) and similarity of agents’ clusters
(right) over time depending on B components in a mixture of multidimensional normal
distributions

Clustering similarity

F
re

qu
en

cy

0.00 0.05 0.10 0.15 0.20 0.25

0
5

10
15

20
25

30
35

Clustering similarity

F
re

qu
en

cy

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

0
2

4
6

8
10

12
14

Fig. 5. Frequencies of clustering similarity for each pair of agents at the beginning
(left) and at the end (right) of simulation

References

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee,
G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing.
Communications of the ACM 53(4), 50–58 (2010)

2. Bazzan, A.L.C., Klgl, F.: A review on agent-based technology for traffic and trans-
portation. The Knowledge Engineering Review FirstView, 1–29 (2013)

3. Ben-Hur, A., Elisseeff, A., Guyon, I.: A stability based method for discovering
structure in clustered data. In: Pacific Sym. on Biocomputing 7, pp. 6–17 (2002)

4. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. J. of the Royal Stat. Society. Series B 39, 1–38 (1977)

5. Fiosina, J., Fiosins, M.: Chapter 1: Cooperative regression-based forecasting in dis-
tributed traffic networks. In: Q.A. Memon (ed.) Distributed Network Intelligence,
Security and Applications, pp. 3–37. CRC Press, Taylor and Francis Group (2013)

6. Fiosina, J., Fiosins, M., Müller, J.P.: Mining the traffic cloud: Data analysis and
optimization strategies for cloud-based cooperative mobility management. In: Proc.
of Int. Sym. on Management Int. Systems, Adv. in Int. Syst. and Comp., vol. 220,
pp. 25–32. Springer-Verlag, Berlin Heidelberg (2013)

7. Fiosins, M., Fiosina, J., Müller, J.P., Görmer, J.: Reconciling strategic and tactical
decision making in agent-oriented simulation of vehicles in urban traffic. In: 4th
Int. ICST Conf. on Simulation Tools and Techniques (SimuTools’2011) (2011)

8. Härdle, W., Müller, M., Sperlich, S., Werwatz, A.: Nonparametric and Semipara-
metric Models. Springer-Verlag, Berlin Heidelberg (2004)

9. Hinneburg, A., Gabriel, H.H.: DENCLUE 2.0: Fast clustering based on kernel
density estimation. In: Proc. of IDA’07, Adv. in Intelligent Data Analysis VII,
LNCS, vol. 4723, pp. 70–80. Springer-Verlag, Berlin Heidelberg (2007)

10. Klusch, M., Lodi, S., Moro, G.: Agent-based distributed data mining: The KDEC
scheme. In: AgentLink, pp. 104–122 (2003)

11. Lee, J.G., Han, J., Whang, K.Y.: Trajectory clustering: A partition-and-group
framework. In: ACM SIGMOD Int. Conf. on Management of Data (SIGMOD’07),
pp. 593–604. Beijing (2007)

12. Li, Z., Chen, C., Wang, K.: Cloud computing for agent-based urban transportation
systems. IEEE Int. Systems, IEEE Computer Society 26(1), 73–79 (2011)

13. Ogston, E., Overeinder, B., van Steen, M., Brazier, F.: A method for decentralized
clustering in large multi-agent systems. In: Proc. of 2nd Int. Conf. on Autonomous
Agents and Multiagent Systems, pp. 789–796 (2003)

14. Talia, D.: Cloud computing and software agents: Towards cloud intelligent services.
Proc. of the 12th Workshop on Objects and Agents 741, 2–6 (2011)

15. Weijermars, W., van Berkum, E.: Analyzing highway flow patterns using cluster
analysis. In: Proc. of the 8th Int. IEEE Conf. on ITS, pp. 831–836. Vienna (2005)

